Microstructure Properties of ZnO/ Indium Tin Oxide and ZnO/CuInSe2 grown by Electrochemical Deposition

Microstructure Properties of ZnO/ Indium Tin Oxide and ZnO/CuInSe2 grown by Electrochemical Deposition

Hsiang Che* Yih-Min Yeh Yun Ti Chen Chian You Chen Sheng-Hsin Wang Li-Chen Chu Ren Guei Ueng Hsi-Wen Yu Sheng-Ting Huang

Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Puli, Taiwan, R.O.C.

Graduate School of Opto-Mechatronics and Materials, WuFeng University, Minhsiung, Taiwan, R.O.C.

Corresponding Author Email: 
hchen@ncnu.edu.tw
Page: 
045-048
|
DOI: 
https://doi.org/10.14447/jnmes.v17i1.443
Received: 
June 25, 2013
| |
Accepted: 
September 25, 2013
| | Citation
Abstract: 

In this research, we grew a ZnO film as a buffer layer on indium tin oxide (ITO) substrates and CuInSe2/ITO (CIS/ITO) substrates by electrochemical deposition. To examine material quality of ZnO films, multiple material and optical analyses including scanning electron microscope images, electron probe microanalyzer images, UV-VIS, and x-ray diffraction were conducted. The results indicate that an appropriate amount of H2O2 might enhance the growth of ZnO films on the ITO substrate. Furthermore, triethanolamine addition might suppress the reaction between KCl and the CIS substrate to enhance the growth of the ZnO film on the CIS substrate. The ZnO/CIS structure may replace the toxic CdS/CIS structure for the further development for the CIS solar cell.

Keywords: 

ZnO, CuInSe2, H2O2, triethanolamine, electrochemical deposition

1. Introduction
2. Experimiental
3. Results and Discussion
4. Concilusion
  References

[1] S.J. Ahn, C.W. Kim, J.H. Yun, J. Gwak, S. Jeong, B.H. Ryu, and K.H. Yoon, J. Phys. Chem. C, 114, 8108 (2010).

[2] M. Kemell, F. Dartigues, M. Ritala, M. Leskela, Thin Solid Films, 434, 20 (2003).

[3] A. Ennaoui, M. Weber, R. Scheer, H.J. Lewerenz, Solar Energy Materials and Solar Cells, 54, 277 (1998).

[4] V. Probst, W. Stetter, W. Riedl, H. Vogt, M. Wendl, H. Calwer, S. Zweigart, K.D. Ufert, B. Freienstein, H. Cerva, F.H. Karg, Thin Solid Films, 387, 262 (2001).

[5] U. Malm, J. Malmstrfm, C. Platzer-Bjfrkman, L. Stolt,Thin Solid Films, 480, 208 (2005).

[6] J. Weng, Y. Zhang, G. Han, Y. Zhang, L. Xu, J. Xu, X. Huang, K. Chen, Thin Solid Films, 478, 25 (2005).

[7] J. Herrero, C. Guillene, Thin Solid Films, 451, 630 (2004).

[8] M. Mekhnache, A. Drici, L. Saad Hamideche, H. Benzarouk, A. Amara, L. Cattin, J.C. Bernede, M. Guerioune, Superlattices and Microstructures, 49, 510 (2011).

[9] T. Pauporte´z and D. Lincot, J. Electrochem. Soc., 148, C310 (2001).

[10] D. Lincot, Thin Solid Films, 487, 40, (2005).

[11] J. Elias, R. Tena-Zaera, and C.L. Clement, J. Phys. Chem. C, 112, 5736 (2008).

[12] H. Zhou, T. Fan, D. Zhang, Microporous and Mesoporous Materials, 100, 322 (2007).

[13] N. Orhan, M.C. Baykul, Solid-State Electronics, 78, 147 (2012).

[14] J.B. Franklin, B. Zou, P. Petrov, D.W. McComb, M.P. Ryan and M.A. McLachlan, J. Mater. Chem., 21, 8178 (2011).

[15] H. Chen, Y.M. Yeh, C.H. Liao, H.Y. Sheen, Chalcogenide Letters, 8, 703 (2011).

[16] Y.M. Yeh, H. Chen, C.H. Liao, C.B. Chen and B.Y. Chen, J. New Mat. Electrochem. Systems, 15, 103 (2012).

[17] M. Izaki and T. Omi, J. Electrochem. Soc., 144, 1949 (1997).

[18] R.E. Marottia, D.N. Guerraa, C. Bellob, G. Machadoa, E.A. Dalchiele, Solar Energy Materials & Solar Cells, 82, 85 (2004).

[19] R. Vinodkumar, K.J. Lethy, D. Beena, A.P. Detty, I. Navasa, U.V. Nayar, V.P. Pillai, V. Ganesan, V.R. Reddy, Solar Energy Materials & Solar Cells, 94, 68 (2010).