Surface Characteristics of Ti/IrO2 Anode Material and its Electrocatalytic Properties for Polycyclic Aromatic Hydrocarbons (PAHs) Degradation in Aqueous Solution

Surface Characteristics of Ti/IrO2 Anode Material and its Electrocatalytic Properties for Polycyclic Aromatic Hydrocarbons (PAHs) Degradation in Aqueous Solution

Asim Yaqub* Mohamed Hasnain Isa Shamsul Rahman Mohamed Kutty Huma Ajab

Civil Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 31750 Tronoh, Perak, Malaysia

Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 31750 Tronoh, Perak, Malaysia

Corresponding Author Email: 
onment_green@yahoo.com
Page: 
039-044
|
DOI: 
https://doi.org/10.14447/jnmes.v17i1.442
Received: 
July 29, 2013
| |
Accepted: 
September 18, 2013
| | Citation
Abstract: 

In this study, electrochemical degradation of 16 priority PAHs was examined using Ti/IrO2 anode. Iridium dioxide (IrO2) was coated by thermal decomposition of appropriate precursor solution on surface of titanium plate. Surface morphology of coated surface was observed by FESEM and XRD analysis. All electrochemical experiments were conducted using synthetic solution of PAHs in a batch cell under galvanostatic condition. GC-MS was used to quantify PAHs concentration. Electrochemical oxidation results reveal significant degradation of PAHs at Ti/IrO2 surface. Total PAHs removal was about 97 % at all studied initial pH values 3, 6 and 9 in the presence of electrolyte. Crystalline surface of Ti/IrO2 anode exhibited good electrocatalytic properties towards PAHs degradation.

Keywords: 

Anode material, electrocatalytic, iridium dioxide, PAHs

1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Concilusion
  References

[1] USEPA U, Integrated Risk Information System (IRIS). EPA; (1999).

[2] Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). August (1995). http://www.atsdr.cdc.gov/ToxProfiles/tp69.pdf

[3] USEPA. Standards and Regulations for Polycyclic Aromatic Hydrocarbons. http://www.atsdr.cdc.gov/csem/csem.asp?csem=13&po=8

[4] D. Mackay, W.Y. Shiu, K.C. Ma, Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals: Polynuclear aromatic hydrocarbons, polychlorinated dioxins and dibenzofurans. Lewis Publishers, Chelsea, Michigan, USA (1992).

[5] E.N. Pakpahan, M.H. Isa, S.R.M. Kutty, S. Chantara, W. Wiriya, Environ. Tech., 34, 407 (2013).

[6] A. Chiavola, R. Baciocchi, R. Gavasci. J. Hazard. Mater., 184, 97 (2010).

[7] E.N. Pakpahan, M.H. Isa, S.R.M. Kutty, S. Chantara, J Sci. Ind. Res., 17, 430 (2012).

[8] O.S. Amodu, T.V. Ojumu and S.K.O. Ntwampe. Bioavailability of High Molecular Weight Polycyclic Aromatic Hydrocarbons Using Renewable Resources. http://dx.doi.org/10.5772/54727

[9] A. Yaqub, H. Ajab, M.H. Isa, H. Jusoh, M. Junaid, R. Farooq, J. New. Mater. Electrochem. Syst., 15, 289 (2012).

[10] A. Yaqub, H. Ajab, Rev. Chem. Eng., 29, 123 (2013).

[11] J. Kristóf, J. Mihály, S. Daolio, A. De Battisti, L. Nanni, C. Piccirillo, J. Electroanal. Chem., 434, 99 (1997).

[12] Y. Igarashi, K. Tani, M. Kasai, K. Ahikaga, T. Ito, Jpn. J. Appl. Phys., 39, 2083 (2000).

[13] F. Zhang, R. Barrowcliff, G. Stecker, W. Pan, D. Wang, S.T.J. Hsu, Appl. Phys., 44, 398 (2005).

[14] C.P. DePauli, S. Trasatti, J. Electroanal. Chem., 396, 161 (1995).

[15] N. Rajalakshmi, K.S. Dhathathreyan, Chem. Eng. J., 129, 31 (2007).

[16] Z. Yue, E. Yifeng, F. Louzhen, Q. Yongfu, Y. Shihe, Electrochim. Acta, 52, 5873 (2007).

[17] S. Fierro, A. Kapałka, C. Comninellis, Electrochem. Commun., 12, 172 (2010).

[18] A.A. El-Moneim, M.B. Mohamed, Electrochem. Sci., 7, 671 (2012).

[19] C. Comninellis, Electrochim. Acta, 39, 1857 (1994).

[20] L. Ouattara, T. Diaco, I. Duo, M. Panizza, G. Foti, C.J. Comninellis, Electrochem. Soc., 150, D41 (2003).

[21] X.Y. Li, Y.H. Cui, Y.J. Feng, Z.M. Xie, J.D. Gu. Water Res., 39, 1972 (2005).

[22] C.R. Costa, C.M.R. Botta, E.L.G. Espindola, P. Olivi, J. Hazard. Mater., 153, 616 (2008).

[23] A. Kapalka, G. Fóti, C. Comninellis, Electrochem. Commun., 10, 607 (2008).

[24] K.W. Kim, E.H. Lee, J.S. Kim, K.H. Shin, B.I. Jung. Electrochim. Acta, 47, 2525 (2002).

[25] C.L. Zanta, P.A. Michaud, C. Comninellis, A.R. De Andrade, J.F. Boodts, J. App. Electrochem., 33, 1211 (2003).

[26] N. Matyasovszky, M. Tian, A. Chen, The J. of Phy. Chem. A, 113, 9348 (2009).

[27] R. Chaiyont, C. Badoe, C. Ponce de León, J.L. Nava, F.J. Recio, I. Sires, F.C. Walsh, Chem. Eng. Technol., 36, 123 (2013).

[28] M.P. Pechini, N. Adams, US Patent, 3 (1967) 3,330,697.

[29] EPA Methods. SW846 3510C, Separatory Funnel Liquid-Liquid Extraction. www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3510c.pdf

[30] LUS. Standard operating procedure for oil spill source identification. “Water Extraction Procedure” LSU-RCAT SOP#001 –08. Louisiana State University, page 1-10.

[31] R. Otogawa, M. Morimitsu, M. Matsunagab, Electrochim. Acta, 44, 1509 (1998).

[32] E.N. Balko, P.H. Nguyen, J. Appl. Electrochem, 21, 678 (1991).

[33] J.T. Kong, S.Y. Shi, X.P. Zhu, J.R. Ni, J. Environ. Sci., 19, 1380 (2007).

[34] C. Comninellis, and G.P. Vercesi, J. Appl. Electrochem., 21, 335 (1991).

[35] C. Comninellis, Electrochim. Acta. 39, 1857 (1994).

[36] P. Cañizares, C. Saez, J. Lobato, M.A. Rodrigo, Electrochim. Acta, 49, 4641 (2004).

[37] K. Vijayaraghavan, T.K. Ramanujam, N. Balasubramanian, Color Technol, 117, 49 (2001).

[38] X.M. Wang, J.M. Hu, J.Q. Zhang, C.N. Cao, Electrochim. Acta, 53, 3386 (2008).

[39] Z. Ežerskis, and Z. Jusys, J. Appl. Electrochem, 32, 543 (2002).

[40] J. Aromaa, O. Forsen, Electrochim. Acta, 51, 6104 (2006).