Synthesis and Characterization of RuO2 Anode Materials with Large Surface Areas for Oxygen Evolution Reaction

Synthesis and Characterization of RuO2 Anode Materials with Large Surface Areas for Oxygen Evolution Reaction

Yang Zhang Lixia Yue Ke Teng Shiyong Yuan Hongchao Ma

School of Chemistry Engineering & Material, Dalian Polytechnic University, Dalian 116034, Liaoning

School of Chemistry Engineering & Material, Dalian Polytechnic University, Dalian 116034, Liaoning

Corresponding Author Email:
26 September 2011
10 January 2012
17 February 2012
| Citation

A novel olivary or petal-like RuO2 material with large surface area was successfully synthesized by surfactant-assisted homogeneous precipitation method using urea and dodecyl sulfate as the source reagent. The surface morphology, structural, and electrochemical properties of as-synthesized RuO2 materials were characterized by x-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), Cyclic voltammetry (CV), N2adsorption–desorption isotherms and polarization curve for oxygen evolution reaction (OER). It was found that the morphology and crystalline structures and electrochemical properties of as-synthesized RuO2 materials were strongly dependent on the calcining temperature. The ruthenium-surfactant mesophase with mesoporous structure transformed from network to regular olivary or petal-like RuO2 materials and remaining partial mesoporous character after calcination at lower temperature (i.e., 300 and 400 °C). However, the mesophase transformed into RuO2 agglomeration consisted of nanosized particles after calcination at 650 °C, which may be attributed to complete deorganization and porous structure collapse of RuO2 materials. In addition, the as-synthesized RuO2 materials showed higher specific surface area and better electrochemical activities for oxygen evolution reaction compared with the RuO2 prepared without surfactant. The electrochemical activity of as-synthesized RuO2 material calcined at 400 °C is about 3 times than that of RuO2 prepared without surfactant for oxygen evolution reaction. This can be attributed to the porous structure and large surface area of as-synthesized RuO2materials.


RuO2, high electrochemical activity, oxygen evolution, porous material, large surface area

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions

This work was supported by Program for Liaoning Excellent Talents in University (LGQ-2011-054).


[1] M.T. Brumbach, T.M. Alam, P.G. Kotula, ACS Appl. Mat. Interfaces, 2, 778 (2010).

[2] A.S. Kumar, T.Tanase, J. Zen, Langmuir, 25, 13633 (2009).

[3] K.C. Pillai, T.O. Kwon, B.B. Park, Water Sci.Tech., 61, 2151 (2010).

[4] S.Trasatti, G. Buzzanca, J. Electroanal. Chem., 29, 1 (1971).

[5] J. Lee, H. Chen, H.M. Wu, T. Wei, Electrochim. Acta, 52, 2625 (2007).

[6] K.M. Sujit, N. Munichandraiah, J. Power Sources, 175, 657 (2008).

[7] T.P. Gujar, V.R. Shinde, C.D. Lokhande, Electrochem. Comm., 9, 504 (2007).

[8] W.P. Gan, Z.H. Qin, H. Liu, Materials Review, 22, 143 (2008).

[9] L. Zang, H. Kisch, Angew. Chem, Int. Ed., 39, 3921 (2000).

[10] S. Wodiunig, V. Patsis, C. Comninellis, Solid State Ion., 136-137, 813 (2000).

[11] R. Koncki, M. Mascini, Anal.Chim. Acta, 351, 143 (1997).

[12] B.E. Conway, J. Electrochem. Soc., 138, 1539 (1991).

[13] J.P. Zheng, P.J. Cygan, T.R. Jow, J. Electrochem. Soc., 142, 2699 (1995).

[14] Yasushi Murakami, Takeshi Kondo, Yoshio Takasu, J. Alloys and Compounds, 239, 111 (1996).

[15] S.Y. Mar, Y.S. Huang and K.K. Tiong, Thin Solid Films, 258, 104 (1995).

[16] J.H. Yi, P. Thomas, M. Manier, J.P. Mercurio, J. Phys., IV Fr., 8, 9 (1998).

[17] F. Porta, W.P. Hsu, E. Matijević, Colliods Surf., 46, 63 (1990).

[18] S.H. Oh, L.F. Nazar, J. Mater. Chem., 20, 3834 (2010).

[19] S. Brunauer, P.H. Emmet, E. Teller, J. Am. Chem. Soc., 60, 309 (1938).

[20] Mitsunori Yada, Masato Machida, Tsuyoshi Kijima, Chem. Commun., 769 (1996).

[21] Mitsunori Yada, Hiroyuki Takenaka, Masato Machida, Tsuyoshi Kijima, J.Chem. Soc. Dalton Trans., 1547 (1998).

[22] C.T. Kresge, M.E. Leonowicz, J.C. Vartuli, J.S. Beck, Nature, 359, 710 (1992).

[23] P. Salas, L.F. Chen, J.A. Wang, H. Armendáriz, M.L. Guzman, J.A. Montoya, D.R. Acosta, Applied Surface Science, 252, 1123 (2005).

[24] P.D. Yang, D.Y. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Nature, 396, 152 (1998).

[25] K. Dobelhofer, M. Metikos, Z. Ogumi, H. Gerischer, Ber, Bunsenges. Phys. Chem., 82, 1046 (1978).

[26] B. Aurian-Blajeni, A.G. Kimball, L.S. Robblee, G.L.M.K.S. Kahanda, M. Tomkiewicz, J. Electrochem. Soc., 134, 2637 (1987).

[27] R. Boggio, A. Carugati, S. Trasatti, J. Applied Electrochem., 828, 17 (1987).

[28] L.J. Zhao, Z.X. Liu, P. Zhang, Z.Q. Mao., Batt Bimonth., 40, 19 (2010).

[29] Etsushi Tsuji, Akihito Imanishia, Ken-ichi Fukui, Yoshihiro Nakato, Electrochim. Acta, 56, 2009 (2011).

[30] W. Xu, Jyoti Tayal, Suddhasatwa Basu, Keith Scott., Int. J. Hydrogen Energy, 36, 14796 (2011).