Oxygen Reduction Studies on Carbon-supported Pt-M Catalysts (M: Ru, W, Mo)

Oxygen Reduction Studies on Carbon-supported Pt-M Catalysts (M: Ru, W, Mo)

R. Hernández Maya A.J. Armenta González O. Ugalde M.T. Oropeza Guzmán P. Roquero

Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación. Baja California, México 22000, Centro de Investigación y Desarrollo Tecnológico en Electroquímica A.C. Querétaro, México 76703

Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000. México D.F. 04510

Corresponding Author Email: 
roquero@servidor.unam.mx
Page: 
137-143
|
DOI: 
https://doi.org/10.14447/jnmes.v15i3.57
Received: 
7 December 2011
| |
Accepted: 
10 February 2012
| | Citation
Abstract: 

The activities of a series of carbon-supported bimetallic catalysts, with different active phases loadings, were tested towards the oxygen reduction reaction (ORR). Pt was used in all materials and its loading was kept constant. Mo, W and Ru were used as promoting phases. Rotating Disk electrode experiments revealed that Pt-Ru displayed the best performance in oxygen reduction among the studied materials. The materials with the highest loadings of the second metal revealed the highest activities. X-Ray Diffraction studies (XRD) and Transmission Electron Microscopy (TEM) revealed the presence of homogeneously dispersed metallic ruthenium and different tungsten or molybdenum oxides in the corresponding catalysts. No evidence of alloying was found, and thus the catalytic performances appear to be related to the distribution and interaction of the active phases.

Keywords: 

oxygen reduction reaction, fuel cell catalyst, platinum, ruthenium, tungsten, molybdenum

1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusion
Acknowledgements

The authors thank Cecilia Saucedo for the obtention of XRD patterns, and Iván Puente Lee for the TEM characterizations. R. Hernández Maya and O. Ugalde acknowledge the scholarships provided by Conacyt, Mexico.

  References

[1] G. Liu, H. Zhang, J. Phys. Chem. C, 112, 2058 (2008).

[2] K. Suárez-Alcántara, O. Solorza-Feria, J. Power Sources, 192, 165 (2009).

[3] M. Gustavsson, H. Ekstroem, P. Hanarp, G. Lindbergh, E. Olsson, B. Kasemo, J. Power Sources, 163, 671 (2007).

[4] J.J. Hwang, C.H. Chao, C.L. Chang, W.Y. Ho, D.Y. Wang, Int. J. Hydrogen Energy, 32, 405 (2007).

[5] D.T. Sawyer, Oxygen Chemistry, Oxford University Press, 1991.

[6] B. Wang, J. Power Sources, 152, 1 (2005).

[7] N.M. Marcovic, P.N. Ross Jr, Surface Science Report, 45, 117 (2002).

[8] S. Liao, V. Linkov, L. Petrik. Appl Catal A: Gen., 235, 149 (2002).

[9] A.S. Arico, P.L. Antonucci, E. Modica, V. Baglio, H. Kim, V Antonucci, Electrochim. Acta, 47, 3723 (2002).

[10] J.J. Salvador-Pascual, V. Collins-Martínez, A. López-Ortíz, O. Solorza-Feria, J. Power Sources, 195, 3374 (2010).

[11] G. Ramos-Sánchez, H. Yee-Madeira, O. Solorza-Feria, Int. J. Hydrogen Energy, 33, 3596 (2008).

[12] Kulesza P.J., Miecznikowski K., Baranowska B., Skunik M., Fiechter S., Bogdanoff P., Electrochem Comm., 8, 904 (2006).

[13] D. Meza, U. Morales, P. Roquero, L. Salgado, Int. J. Hydrogen Energy, 35, 12111 (2010).

[14] K. Suárez-Alcántara, O. Solorza-Feria, Electrochim. Acta, 53, 4981 (2008).

[15] R.G. González-Huerta, J.A. Chávez-Carvayar, O. Solorza-Feria, J. Power Sources, 153, 11 (2006).

[16] L.C. Ordóñez, P. Roquero, P.J. Sebastian, J. Ramírez, Catalysis Today, 107, 46 (2005).

[17] J.C. Calabrese, L.F. Dahl, P. Chini, G. Longoni. J. Am. Chem. Soc., 96, 2614 (1974).

[18] P. Roquero, L.C. Ordóñez, O. Herrera, O. Ugalde, J. Ramírez. International Journal of Chemical Reactor Engineering, 5, 1 (2007).

[19] D.R. Rolison, P.L. Hagans, K.E. Swider, J.W. Long. Langmuir, 15, 774 (1999).

A. Sarapuu, K. Tammesvesky, T.T. Tenno, V. Sammelselg, K. Konttri, D.J. Schiffrin. Electrochem. Commun., 3, 446 (2001).

[20] G. Vásquez-Huerta, G. Ramos-Sánchez, A. Rodríguez-Castellanos, D. Meza-Calderón, R. Antaño-López, O. Solorza-Feria, Journal of Electroanalytical Chemistry, 645, 35 (2010).