Ti-doped Lithium Iron Phosphate (LiFePO4) Cathode Materials: Synthesis and Electrochemical Evaluation

Ti-doped Lithium Iron Phosphate (LiFePO4) Cathode Materials: Synthesis and Electrochemical Evaluation

Keqiang DingWenjuan Li Hongwei Yang Suying Wei Zhanhu Guo

College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024

Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710

Integrated Composites Laboratory (ICL), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710

Corresponding Author Email: 
dkeqiang@263.net, zhanhu.guo@lamar.edu
28 November 2011
| |
9 January 2012
| | Citation

The Ti doped LiFePO4 samples, i.e., LiFe1-xTixPO4 (X=0.01, 0.03 and 0.05), were prepared by a modified solid state method. The obtained samples were thoroughly characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). XRD patterns indicated that an olivine-type LiFePO4 was fabricated, and SEM images revealed that the particle size of LiFe0.99Ti0.01PO4 was the smallest among the obtained samples. The charge-discharge curves showed that LiFe0.99Ti0.01PO4 delivered the discharge capacity of 153.5 mAh/g at 0.2 C, the largest one among the as-prepared samples, which is rather different from the published report that LiFe0.97Ti0.03PO4 manifested the most promising cycling performance among the samples of LiFe1-xTixPO4 (X=0.01, 0.03, 0.05, 0.07 and 0.09).


Ti-doping, carbon-coating, LiFePO4, electrochemical performance.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions

This work was financially supported by the National Natural Science Foundation of China (No. 21173066), Natural Science Foundation of Hebei Province of China (No.B2011205014), Key Project Fund of Hebei Normal University (L2008Z08) and Special Assist Project of Hebei Province Personnel Bureau (106115). Z.G. acknowledges the support from the U.S. National Science Foundation (Nanoscale Interdisciplinary Research Team and Materials Processing and Manufacturing) under Grant CMMI 10-30755.


[1] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997).

[2] D. Jugovic, D. Uskokovic, J. Power Sources, 190, 538 (2009).

[3] C. Sun, S. Rajasekhara, J.B. Goodenough, F. Zhou, J. Am. Chem. Soc., 133(7), 2132 (2011).

[4] B. Jin , E. M. Jin , K.-H. Park , H.-B. Gu, Electrochem. Commun., 10, 1537 (2008).

[5] Y. Huang, H. Ren, S. Yin, Y. Wang, Z. Peng, Y. Zhou, J. Power Sources, 195, 610 (2010).

[6] H.C. Shin, S.B. Park, H. Jang, K.Y. Chung, W.I. Cho, C.S. Kim, B.W. Cho, Electrochim. Acta, 53, 7946 (2008).

[7] Y. Ge, X. Yan, J. Liu, X. Zhang, J. Wang, X. He, R. Wang, H. Xie, Electrochim. Acta, 55, 5886 (2010).

[8] J. Morales, J. Santos-Pena, E. Rodríguez-Castellón, S. Franger, Electrochim. Acta, 53, 920 (2007).

[9] T. Nedoseykina, M.G. Kim, S.-A. Park, H.-S. Kim, S.-B. Kim, J. Cho, Y. Lee, Electrochim. Acta, 55, 8876 (2010).

[10] S.-H. Wu, M.-S. Chen, C.-J. Chien, Y.-P. Fu, J. Power Sources, 189, 440 (2009).

[11] T. Shiratsuchi, S. Okada, T. Doi, J. Yamaki, Electrochim. Acta, 54, 3145 (2009).

[12] H.-H. Chang, C.-C. Chang, C.-Y. Su, H.-C. Wu, M.-H. Yang, N.-L. Wu, J. Power Sources, 185, 466 (2008).

[13] B. Wang, Y. Qiu, L. Yang, Electrochem. Commun., 8 ,1801 (2006).

[14] Y. Huang, H. Ren, Z. Peng, Y. Zhou, Electrochim. Acta, 55, 311 (2009).

[15] J. Ni, M. Morishita, Y. Kawabe, M. Watada, N. Takeichi, T. Sakai, J. Power Sources, 195, 2877 (2010).

[16] X. Yin, K. Huang, S. Liu, H. Wang, H. Wang, J. Power Sources, 195, 4308 (2010).

[17] C.Y. Ouyang, D.Y. Wang, S.Q. Shi, Z.X. Wang, H. Li, X.J. Huang, L.Q. Chen, Chin. Phys. Lett., 23, 61 (2006).

[18] L.Q. Sun, R.H. Cui, A.F. Jalbout, M.J. Li, X.M. Pan, R.S. Wang, H.M. Xie, J. Power Sources, 189, 522 (2009).

[19]M.-R. Yang, T.-H. Teng, S.-H. Wu, J. Power Sources, 159, 307 (2006).

[20] Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, M. Liu, Electrochim. Acta, 54, 3206 (2009).

[21] M. Gaberscek, R. Dominko, J. Jamnik, Electrochem. Commun., 9, 2778 (2007).

[22] K.-F. Hsu, S.-Y. Tsay, B.-J. Hwang, J. Mater. Chem., 14, 2690 (2004).

[23] C.H.Mi, X.G. Zhang, X.B. Zhao, H.L. Li, Mater. Sci. Eng., B, Solid-State Mater. Adv. Technol., 129, 8 (2006).

[24] Y. Huang, H. Ren, S. Yin, Y. Wang, Z. Peng, Y. Zhou, J. Power Sources, 195, 610 (2010).

[25] K. Ding, Z. Jia, Q. Wang, X.He, N. Tian, R. Tong, X. Wang, J. Electroanal. Chem. 513, 67 (2001).

[26]K. Ding, Russ, J. Electrochem., 45, 320 (2009).

[27] F. Nobili, S. Dsoke, F. Croce, R. Marassi, Electrochim. Acta, 50, 2307 (2005).

[28] K. Ding, G. Yang, S. Wei, P. Mavinakuli, Z. Guo. Ind. Eng. Chem. Res., 49, 11415 (2010).

[29] H. Liu, G.X. Wang, D. Wexler, J.Z. Wang, H.K. Liu, Electrochem. Commun., 10, 165 (2008).

[30] A.J. Bard, L.R. Faulkner, Electrochemical Methods, second ed., Wiley, 2001, p. 231.

[31]A.A. Salah, P. Jozwiak, J. Garbarczyk, K. Benkhouja, K. Zaghib, F. Gendron, C.M Julien, J. Power Sources, 140, 370 (2005).

[32] K. Zaghib, N. Ravet, M. Gauthier, F. Gendron, A. Mauger, J.B. Goodenough, C.M. Julien, J. Power Sources, 163, 560 (2006).

[33] Y. Zhang, H. Yin, A. Wang, M. Ren, Z. Gu, Y. Liu, Y. Shen, L. Yu, T. Jiang, Appl. Sur. Sci., 257, 1351 (2010).

[34] X. Zhao, X. Tang, L. Zhang, M. Zhao, J. Zhai, Electrochim. Acta, 55, 5899 (2010).

[35] W. Zhang, X. Zhou, X. Tao, H. Huang, Y. Gan, C. Wang, Electrochim. Acta, 55, 2592 (2010).