Electroplated CuO Thin Films from High Alkaline Solutions

Electroplated CuO Thin Films from High Alkaline Solutions

V. Dhanasekaran T. MahalingamS. Rajendran Jin Koo Rhee D. Eapen 

Department of Physics, Alagappa University, Karaikudi-630 003

Millimeter—WaveINnovation Technology Research Center (MINT), Dongguk University, Seoul 100-715

Instituto de Biotecnologia – UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos 62210

Corresponding Author Email: 
maha51@rediffmail.com
Page: 
49-55
|
DOI: 
https://doi.org/10.14447/jnmes.v15i1.88
Received: 
29 July 2011
| |
Accepted: 
26 October 22011
| | Citation
Abstract: 

CuO thin films were coated on ITO substrates by an electrodeposition route through potentiostatic mode. The electrodeposited CuO thin films were characterized and the role of copper sulphate concentration on the structural, morphological and optical properties of the CuO films was studied. Film thickness was measured by a stylus profilometer and found to be in the range between 800 and 1400 nm. The structural characteristics studies were carried out using X-ray diffraction and found that the films are polycrystalline in nature with a cubic structure. The preferential orientation of CuO thin films is found to be along (111) plane. The estimated microstructural parameters revealed that the crystallite size increases whereas the number of crystallites per unit area decreases with increasing film thickness. SEM studies show that the grain sizes of CuO thin films vary between 100 and 150 nm and also morphologies revealed that the electrodeposited CuO exhibits uniformity in size and shape. The surface roughness is estimated 15 nm of the CuO film were studied by atomic force microscopy. Optical properties of the films were analyzed from absorption and transmittance studies. The optical band gap energy was determined to be 1.5 eV from absorption coefficient. The variation of refractive index (n), extinction coefficient (k), with wavelength was studied and the results are discussed.

Keywords: 

CuO thin films, structural properties, optical constants, surface roughness

1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
  References

[1] Zheng Jiao, Feng Chen, Run Su, Xingjiu Huang, Wei Liu, Jinhuai Liu, Sensors, 2, 366 (2002).

[2] Arijit Chowdhuri, Vinay Gupta, K. Sreenivas, Rev. Adv. Mater. Sci., 4, 75 (2003).

[3] Jinhuai Liu, Xingjiu Huang, GangYe, Wei Liu, Zheng Jiao, Wanglian Chao, Zhongbai Zhou,

[4] Zengliang Yu, Sensors 2, 110 (2003).

[5] Wenzhong Wang, Oomman K. Varghese, Chuanmin Ruan, Maggie Paulose, Craig A. Grimes, J. Mater. Res., 18, 2756 (2003).

[6] K. Kinoshita, T. Yamada, Nature, 357, 313 (1992).

[7] P. Samarasekara, A.G.K. Nisantha, A.S. Disanayake, Chinese Journal of Physics, 40, 196 (2002).

[8] P. Samarasekara, M.A.K. Mallika Arachchi, A.S. Abeydeera, C.A.N. Fernando, A.S. Disanayake, R.M.G. Rajapakse , Bull. Mater. Sci., 28, 483 (2005).

[9] X. Song, S. Sun, W. Zhang, H. Yu, W. Fan, J. Phys. Chem. B, 108, 5200 (2004).

[10] W. Wang, O. Varghese, C. Ruan, M. Paulose, C. Grimes, J. Mater. Res., 18, 2756 (2003).

[11] M. Norman, A. Freeman, J. Phys. Rev. B, 33, 8896 (1986).

[12] P. Podhajecky, Z. Zabransky, P. Novak, Z. Dobiasova, R. Cerny, V. Valvota, Electrochim. Acta, 35, 245 (1990).

[13] M. Hara, T. Kondo, M. Co´ moda, S. Ikeda, K. Shinohara, A. Tanaka, J. Kondo, K. Domen, Chem. Commun., 357 (1998).

[14] S. Nakayama, A. Kimura, M. Shibata, S. Kuwabata, T. Osakai, J. Electrochem. Soc., 148, 467 (2001).

[15] K. Nagase, Y. Zhang, Y. Kodama, J. Kakuta, J. Catal., 187, 123 (1999).

[16] A.H. Jayatissa, K. Guo, A.C. Jayasuriya, Applied Surface Science, 255, 9474 (2009).

[17] J. Morales, L. Sánchez, F. Martín, J.R. Ramos-Barrado, M. Sanchez, Electrochim. Acta, 49, 4589 (2004).

[18] B. Balamurugan, B.R. Mehta, Thin Solid Films, 396, 90 (2001).

[19] S. Ghosh, D.K. Avasthi, P. Shah, V. Ganesan, A. Gupta, D. Sarangi, R. Bhattacharaya, W. Assmann, Vacuum, 57, 377 (2000).

[20] K.H. Yoon, W.J. Choi, D.H. Kang, Thin Solid Films, 372, 250 (2000).

[21] K. Santra, C.K. Sarker, M.K. Mukherjee, B. Ghosh, Thin Solid Films, 213, 226 (1992).

[22] A.Y. Oral, E. Mensur, M.H. Aslan, E. Basaran, J. Mat. Chem. and Phys., 83, 140 (2004).

[23] K.P. Muthe, J.C. Vyas, S.N. Narang, D.K. Aswal, S.K. Gupta, D. Bhattacharya, R.Pinto, G.P. Kothiyal, S.C. Sabharwal, Thin Solid Films, 324, 37 (1998).

[24] M.A. Brookshier, C.C. Chusuei, D.W. Goodman, Langmuir, 15, 2043 (1999)

[25] E.W. Bohannan, I.M. Nicic, H.M. Kothari, J.A. Switzer, Electrochim. Acta, 53, 155 (2007).

[26] S. Bijani, M. Gabas, L. Martinez, J.R. Ramos-Barrado, J. Morales, L. Sanchez, Thin Solid Films, 515, 5505 (2007).

[27] S. Kose, F. Atay, V. Bilgin, I Akyuz, J. Mat. Chem. and Phys., 111, 351 (2008).

[28] P. Poizot, C.J. Hung, M.P. Nikiforov, E.W. Bohannan, J.A. Switzer, Electrochem. Solid-State Lett., 6, C21 (2003).

[29] T. Mahalingam, V. Dhanasekaran, G. Ravi, Soonil Lee, J.P. Chu, Han-Jo Lim, J. Optoelectron. Adv. Mater., 12, 1327 ( 2010).

[30] S. Thanikaikarasan, T. Mahalingam, K. Sundaram, A. Kathalingam, Y.D. Kim, T. Kim, Vacuum, 83, 1066 (2009).

[31] JCPDS card no. 78-0428, (2003).

[32] D.G. Morris, M.A. Morris, M. LeBoeuf, Mater. Sci. Eng. A, 156, 11 (1992).

[33] F.W. Gayle, F.S. Biancaniello, Nano Structured Materials, 6, 429 (1995).

[34] E. Szewczak, J. Paszula, A.V. Leonov, H. Matyja, Mater. Sci. Eng. A, 115, 226 (1997).

[35] R. Swanepoel, J. Phys. E: Sci. Instrum., 16, 1214 (1983).

[36] I. Hprcas, R. Fernandez, J.M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, A.M. Baro, Rev. Sci. Instrum, 78, 013705 (2007).

[37] T. Mahalingam, V.S. John, G. Ravi, P.J. Sebastian, Cryst. Res. Technol., 37, 329 (2002).

[38] R.H. Bari, L.A. Patil, Indian journal of Pure & Applied Physics, 48, 127 (2010).