A New Electrochemical Biosensor of Host-guest Recognition Mode for DNA Hybridization Detection

A New Electrochemical Biosensor of Host-guest Recognition Mode for DNA Hybridization Detection

Hui Zhao Hao FanJinxiang Ceng Qianggen Li Yan Lin Xiaoyun Wang 

Department of Chemistry?East China Normal University?Shanghai 200062

Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, JiangXi 330004

Corresponding Author Email: 
fanhao11@yahoo.com.cn
Page: 
11-14
|
DOI: 
https://doi.org/10.14447/jnmes.v15i1.82
Received: 
10 June 2011
| |
Accepted: 
7 July 2011
| | Citation
Abstract: 

This paper reports on an electrochemical biosensor to detect the hybridization specificity by using host-guest recognition technique. A hairpin DNA with a dabcyl molecule which is typical guest molecule to b-Cyclodextrins (b-CD) at the 3’-terminus and a NH2 linked at the 5’-terminus as the probe DNA. The probe DNA was immobilized on the PdS nanoparticle to construct a double-labeled probe (DLP) and could selectively hybridize with its target DNA. A b-CD modified Poly(N-acetylaniline) glassy carbon electrode was used for capturing dabcyl in DLP. Without binding with target DNA, the DLP keep stem-loop structure and block dabcyl enter into the cavity of b-CD on electrode. However, a target-binding DLP is incorporated into double stranded DNA, causing loop-stem structure opened and dabcy l could be easy captured by b-CD which brought DLP on electrode surface. With electrochemical measurement, the signal come from Pd2+ be used for target DNA quantitative analysis.

Keywords: 

DNA, electrochemical, cyclodextrins, double-labeled probe, host-guest recognition

1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Acknowledgements

We gratefully acknowledge the financial support from JiangXi University of Traditional Chinese Medicine of China.

  References

[1] Wang J., Chem. Eur. J., 5, 1681 (1999).

[2] Napier M.E., Loomis C.R., Sistare M.F., Kim J., Ecrkhardt A.E., Thorp H.H., Bioconjugate Chem., 8, 906 (1997).

[3] Youssoufi H.K., Garnier F., Srivastava P., Godillot P., Yassar A., J. Am. Chem. Soc., 119, 7388 (1997).

[4] Lai R.Y., Lagally E.T., Lee S.H., Soh H.T., Plaxco K.W., Heeger A.J., PNAS., 103, 4017 (2006).

[5] Boon1 E.M., Ceres D.M., Drummond T.G., Hill M.G., Barton J.K., Nature Biotechnology., 18, 1096 (2000).

[6] Anne A., Bouchardon A., Moiroux J., J. Am. Chem. Soc., 125, 1112 (2003).

[7] Hao F., Rong X., Xiuhua W., Ying X., Qingjiang W., Pingang H., Yuzhi F., Electroanalysis., 15,1781(2010).

[8] Hao F., Rong X., Ying X., Qingjiang W., Pingang H., Yuzhi F., Electrochemistry Communications., 12 ,501 (2010).

[9] Hao F., Ying X., Zhu C., Rong X., Qingjiang W., Pingang H., Yuzhi F., Biosensors and Bioelectronics., 26, 2655 (2011).

[10] Yoshimura I., Miyahara Y., Kasagi N., Yamane H., Ojida A., Hamachi I., J. Am. Chem. Soc., 126, 12204 (2004).

[11] Ihara T., Uemura A., Futamura A., Shimizu M., Baba N., Nishizawa S., Teramae N., Jyo A., J. Am. Chem. Soc., 131, 1386 (2009).

[12] Ueno A., Kuwabara T., Nakamura A., Toda F., Nature., 356, 136 (1992).

[13] Maeda Y., Fukuda T., Yamamoto H., Kitano H., Langmuir., 16, 4188 (1997).

[14] FerancováA., Labuda J., J. Anal. Chem., 370, 1 (2001).

[15] Ferancova A., Labuda E.K.J., Barek Z.J.J., Electroanalysis., 14, 1668 (2002).

[16] Fan H., Chang Z., Xing R., Chen M., Wang Q.j., He P.G., Fang Y.Z., Electroanalysis. 19, 2113 (2008).

[17] Milica T.N., Mirjana I.C., Veana V., Olga I.M., J. Phys. Chem., 94, 6390 (1990).

[18] Demers, L.M. Mirkin C.A., Mucic R.C., Reynolds R.A., Elghanian R., Viswanadham G., Anal. Chem., 72, 5535 (2000).

[19] Zheng L.Z., Wu S.G., Lin X.Q., Rui L.N.L., Macromolecules. 35, 6174 (2002).

[20] Kumar G.S., Chem.Rev., 89, 1915 (l989).

[21] Harada A., Adachi H., Kawaguchi Y., Kamachi M., Macromolecules. 30, 5181 (1997).

[22] Banerjee I.A., Yu L., Matsui H., J. Am. Chem. Soc., 125, 9542 ( 2003).