BiFeO3 as Electrode Material for Lithium Batteries

BiFeO3 as Electrode Material for Lithium Batteries

Luo Shihai Gao Mei Chen Jun Xing Xianran Li Zhong Zhou Xingtai Wen Wen 

Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Baojia Road, Shanghai 201800

Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Pudong New area, Shanghai 201204

Department of Physical Chemistry, University of Science and Technology of Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083

Corresponding Author Email: 
wenwen@sinap.ac.cn
Page: 
141-146
|
DOI: 
https://doi.org/10.14447/jnmes.v14i3.101
Received: 
November 15, 2010
|
Accepted: 
February 14, 2011
|
Published: 
April 19, 2011
| Citation
Abstract: 

BiFeO3 was studied as electrode material for lithium battery applications. The voltage profile of BiFeO3 vs Li battery displays three discharge plateaus around 1.3, 0.7 and 0.4 V (vs Li/Li+) and the first discharge capacity is about 1000 mAh/g, with a cutoff voltage of 0.05 V. If the cutoff voltage is limited to 0.7 V, much better capacity retention is achieved. The structural changes of BiFeO3 during electrochemical cycling process were investigated using synchrotron-based in situ XRD and XANES. Lithium ions were inserted into BiFeO3 during the discharge process. The whiteline of Bi LIII-edge XANES spectra gradually decreased during the discharge process with their LIII edge position concomitantly shifted towards lower energy position. However, the Fe K-edge XANES spectrum of the fully discharged product is similar to that of the pristine one and displays no shifts. This indicates that Bi ions are responsible for charge transfer during the electrochemical cycling process. The reduction of Bi3+ to Bi0 as the gradual insertion of Li ions, is a three-step reduction process. Li2Bi alloy formation was observed at the end of the discharge process, which is not fully reversible towards lithium intercalation/extraction and decomposes to metallic Bi.

Keywords: 

 Lithium batteries; in situ XRD; in situ XANES  

1. Introduction
2. Material Synthesis and Data Acquisition Method
3. Results and Discussion
4. Summary
5. Acknowledgements

Wen Wen thanks the Institutional Innovation grant (Grant Number: O95501E061) of the Shanghai Institute of Applied Physics, CAS for the financial support. Zhou Xingtai thanks the Ministry of Science and Technology for the national key fundamental research program financial support (Grant Number: 2010CB934500) and the Science and Technology Commission of Shanghai Municipality for the financial support (Grant Number: 1052nm07800). The authors also thank beamlines BL14B1 and BL14W1 of SSRF (Shanghai Synchrotron Radiation Facility) for providing the beam time. 

  References

[1] M.K. Aydinol, A.F. Kohan, G. Ceder, K. Cho, and J. Joannopoulos, Phys. Rev. B 56, 1354 (1997).

[2] Y.W. Tsai, B.J. Hwang, G. Ceder, H.S. Sheu, D.G. Liu, and J.F. Lee, Chem. Mater., 17, 3191 (2005).

[3] Y. Shin, and A. Manthiram, Electrochim. Acta, 48, 3583 (2003).

[4] J.W. Stevenson, T.R. Armstrong, R.D. Carneim, L.R. Pederson, and W.J. Weber, J. Electrochem. Soc., 143, 2722 (1996).

[5] P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux, and Y. Laligant, Nature, 404, 856 (2000).

[6] D.D. Fontaine, G. Ceder, and M. Asta, Nature, 343, 544 (1990).

[7] J. Li, H.M. Dahn, R.J. Sanderson, A.D.W. Todd, and J.R. Dahn, J. Electrochem. Soc., 155, A975 (2008).

[8] Y. Sharma, N. Sharma, G.V.S. Rao, and B.V.R. Chowdari, Chem. Mater., 20, 6829 (2008).

[9] K. Imaki, M. Nakayama, Y. Uchimoto, and M. Wakihara, Solid State Ionics, 172, 73 (2004).

[10]M. Nakayama, K. Imaki, H. Ikuta, Y. Uchimoto, and M. Wakihara, J. Phys. Chem. B, 106, 6437 (2002).

[11]Y.J. Shan, L.Q. Chen, Y. Inaguma, M. Itoh, and T. Nakamura, J. Power Sources,  54, 397 (1995).

[12]D.W. Zhang, S. Xie, and C.H. Chen, J. Electroceramics, 15, 109 (2005).

[13]H. Xia, F.Yan, M.O. Lai, L. Lu, and W.D. Song, Funct. Mater. Lett., 2, 163 (2009).

[14]J. Chen, X.R. Xing, A. Watson, W. Wang, R.B. Yu, J.X. Deng, L. Yan, C. Sun, and X.B. Chen, Chem. Mater., 19, 3598 (2007).

[15]B.H. Toby, J. Appl. Crystallogr., 38, 1040 (2005).

[16]B. Ravel, and M. Newville, J. Synchrotron Rad., 12, 537 (2005).

[17]W. Wen, B. Kumarasamy, S. Mukerjee, M. Auinat, and Y. EinEli, J. Electrochem. Soc., 9, A1902 (2005).

[18]S. Ghosh, W. Wen, C.R. Urian, C. Heath, V. Srinivasamurthi, W.M. Reiff, S. Mukerjee, V. Naschitz, and S. Licht, Electrochem. Solid-State Lett., 6, A260 (2003).

[19]Y. Ein-EIi, S.H. Lu, M.A. Rzeznik, S. Mukerjee, X.Q. Yang, and J. Mcbreen, J. Electrochem. Soc., 145, 3383 (1998).

[20]JCPDS card 20-169.

[21]X.T. Gao, S.R. Bare, B.M. Weckhuysen, and I.E. Wachs, J. Phys. Chem. B, 102, 10842 (1998).

[22]G. Wirnsberger, K. Gatterer, H.P. Fritzer, W. Grogger, B. Pillep, P. Behrens, M.F. Hansen, and C.B. Koch, Chem. Mater. 13, 1453 (2001).

[23]JCPDS card 27-422.

[24]JCPDS card 45-956.

[25]JCPDS card 27-427.

[26]JCPDS card 44-1246.

[27]S. Grugeon, S. Laruelle, L. Dupont, and J.-M. Tarascon, Solid State Sciences, 5, 895 (2003).

[28]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.-M. Tarascon, Nature, 407, 496 (2000).