Catalytic Behavior of Cobalt(I) Salen During the Electrochemical Reduction of Lindane and Hexachlorobenzene

Catalytic Behavior of Cobalt(I) Salen During the Electrochemical Reduction of Lindane and Hexachlorobenzene

Ulises Paramo-GarciaSilvia Gutierrez-Grandos Maria G. Garcia-Jimenez Jorge G. Ibanez 

Instituto de Investigaciones Científicas, Universidad de Guanajuato, Cerro de la Venada S/N, Col. Pueblito de Rocha, 36050 Guanajuato

Depto. ICQ, Universidad Iberoamericana, Prol. Reforma 880, 01219 Mexico, D.F.

Page: 
355-360
|
DOI: 
https://doi.org/10.14447/jnmes.v13i4.140
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

The electrochemical reduction of halogenated organic compounds (RX) is typically performed in organic media. In the present work, we show the catalytic effect of Cobalt(I) Salen during the reduction of lindane and hexachlorobenzene (HCB). CoSalen displays several electrochemical signals; for the purposes of the present study, the most important one is that of the Co(II)/Co(I) couple at –1.55 V vs. Fc+/Fc. Cyclic voltammetry exhibits a catalytic effect, as indicated by the displacement of ca. 0.26 V and 0.16 V for dehalogenation signals in lindane and HCB, respectively. Noticeable, although less pronounced effects were detected as current gains of 65 mA and 7 mA for lindane and HCB, respectively. This catalytic mediator can be used for the target reductions either dissolved in a solution or deposited on the cathodic surface.

  References

[1] M. Alvarez-Pedrerol, N. Ribas-Fito, M. Torrent, D. Carrizo, J. O. Grimalt, J. Sunyer, Occup. Environ. Med., 65, 452 (2008).

[2] S. Yamada, Y. Naito, M. Takada, S. Nakai, M. Hosomi, Chemosphere, 70, 731 (2008).

[3] Hazardous Waste Incineration Presents Legal and Technical Challenges, Chem. Eng. News, 29, 7 (1993).

[4] J. Thomas, C. Ward, Environ. Sci. Technol., 23, 760 (1989).

[5] S. H. Joo, D. Zhao, Chemosphere, 70, 418 (2008).

[6] M. A. Matouq, Z. A. Al-Anber, T. Tagawa, S. Aljbour, M. Al-Shannag, Ultrason. Sonochem., 15, 869 (2008).

[7] K. Rajeshwar, J. G. Ibanez, Environmental Electrochemistry: Fundamentals and Applications in Pollution Abatement, Academic Press, San Diego (1997).

[8] M. Oturan, N. Oturan, C. Lahitte, S. Trevin, J. Electroanal. Chem., 507, 96 (2001).

[9] N. J. Bunce, S. G. Merica, J. Lipkowski, Chemosphere, 35, 2719 (1997).

[10] S. G. Merica, N. J. Bunce, W. Jedral, J. Lipkowski, J. Appl. Electrochem., 28, 645 (1998).

[11] K. Miyoshi, Y. Kamegaya, M. Matsumura, Chemosphere, 56, 187 (2004).

[12] A. Matsunaga, A. Yasuhara, Chemosphere, 59, 1487 (2005).

[13] S. M. Kulikov, V. P. Plekhanov, A. I. Tsyganok, C. Schlimm, E. Heitz, Electrochim. Acta, 41, 527 (1996).

[14] J. F. Rusling, Electrochemistry and Electrochemical Catalysis in Microemulsions, in: Modern Aspects of Electrochemistry (Eds. B. E. Conway, J. O´M. Bockris and R. E. White), Plenum Press, New York, 26, 49 (1994).

[15] M. A. Prasad, M. V. Sangaranarayanan, J. Electroanal. Chem., 569, 127 (2004).

[16] J. Barbera, A. Sweetmana, D. Wijkb, K. Jonesa, Sci. Tot. Environ., 349, 1 (2005).

[17] A. Alatorre-Ordaz, J. Manriquez-Rocha, F. J. Acevedo-Aguilar, S. Gutiérrez-Granados, F. Bedioui, Analysis, 28, 238 (2000).

[18] K. Miyoshi, C. G. Alfafara, M. Matsumura, J. Electroanal. Chem., 568, 293 (2004).

[19] C. Ji, S. E. Day, W. C. Silvers, J. Electroanal. Chem., 622, 15 (2008).

[20] D. Pletcher, H. Thompson, J. Electroanal. Chem., 464, 168 (1999).

[21] F. Vilches-Aguado, S. Gutierrez, C. Bied-Charreton, F. Bedioui, New J. Chem., 21, 1009 (1997).

[22] J. Fry, A. H. Singh, J. Org. Chem., 59, 8172 (1994).

[23] G. W. Bishop, J. A. Karty and D. G. Peters, J. Electrochem. Soc., 154, F65 (2007).

[24] L. J. Klein, K. S. Alleman, D. G. Peters, J. A. Karty, J. P. Reilly, J. Electroanal. Chem., 481, 24 (2000).

[25] C. Ji, D. G. Peters, J. A. Karty, J. P. Reilly, M. S. Mubarak, J. Electroanal. Chem., 516, 50 (2001).

[26] G. Muthuraman and K. Chandrasekara, J. Coll. Interf. Sci., 297, 687 (2006).

[27] J. E. Arguello, C. Costentin, S. Griveau, J-M. Saveant, J. Am. Chem. Soc., 127, 5049 (2005).

[28] H. Shimakoshi, W. Ninomiya, Y. Hisaeda, J. Chem.Soc., Dalton Trans., 1971 (2001).

[29] P. C. Gach, J. A. Karty, D. G. Peters, J. Electroanal. Chem., 612, 22 (2008).

[30] U. Paramo-Garcia, M. A. Rodríguez, M. G. García Jiménez, S. Gutiérrez-Granados, J. G. Ibanez, Electroanal., 18, 904 (2006).

[31] F. Bedioui, E. Labbe, S. Gutierrez-Granados, J. Devynck, J. Electroanal. Chem., 301, 267 (1991).

[32] G. Gritzner, J. Küta, Pure Appl. Chem., 4, 462, (1984).

[33] E. Deunf, O. Buriez, E. Labbe, J-N. Verpeaux, C. Amatore, Electrochem. Commun., 11, 114 (2009).

[34] O. Buriez, L. M. Moretto, P. Ugo, Electrochim. Acta, 52, 958 (2006).

[35] I. Yilmaz, H. Temel, H. Alp, Polyhedron, 27, 125 (2008).

[36] F. Bedioui, M. Voisin, J. Devynck, C. Bied-Charreton, J. Electroanal. Chem., 297, 257 (1991).

[37] S. Trevin, F. Bedioui, M. G. Gomez-Villegas, C. Bied-Charreton, J. Mater. Chem., 7, 923 (1997).

[38] D. Grujicic, B. Pesic, Electrochim. Acta, 49, 4719, (2004).

[39] S. Floate, M. Hyde, R. G. Compton, J. Electroanal. Chem., 49, 523 (2002).