Electrochemical Behavior of Resorcinol at a Gold Nanoparticle/Carbon Nanotube Composite Modified Glassy Carbon Electrode

Electrochemical Behavior of Resorcinol at a Gold Nanoparticle/Carbon Nanotube Composite Modified Glassy Carbon Electrode

Yongping Dong 

School of chemistry and chemical engineering, Anhui University of Technology, Maanshan 243002

Corresponding Author Email: 
dongyp@ahut.edu.cn
Page: 
349-354
|
DOI: 
https://doi.org/10.14447/jnmes.v13i4.139
Received: 
18 July 2010
| |
Accepted: 
19 November 2010
| | Citation
Abstract: 

A Gold nanoparticle/carbon nanotube composite modified glassy carbon electrode was fabricated by simple casting method and was used to study the electrochemical behavior of resorcinol in neutral pH condition. The modified electrode exhibited synergistic electrochemical catalytic effects of carbon nanotube and gold nanoparticles on the electrochemical reactions of resorcinol. The intensity of oxidation peak of resorcinol on the modified electrode was enhanced about 10-times compared with that on the bare electrode. The electrochemical reaction was mainly controlled by diffusion process. The layers of composite, pH, electrolytes could influence electrochemical signal of resorcinol. The stability and reproducibility of the modified electrode is good. The oxidation peak current was proportional to resorcinol concentration in the range of 1×10-5 to 1×10-3 mol/L and the detection limit of resorcinol was 5.0 × 10-6 mol/L, demonstrating that it is promising for the detection of resorcinol using the gold nanoparticle/carbon nanotube modified glassy carbon electrode.

Keywords: 

gold nanoparticle, carbon nanotube, resorcinol, modified electrode, glassy carbon electrode

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
  References

[1] L. He, C. S. Toh, Anal. Chim. Acta, 556, 1 (2005).

[2] A. Salimi, R.G. Compton, R. Hallaj, Anal. Biochem., 333, 49 (2004).

[3] H. Zhao, H. Ju, Anal. Biochem., 350, 138 (2006).

[4] M. Zhang, A. Smith, W. Gorski, Anal. Chem., 76, 5045 (2004).

[5] K. Balasubramanian, M. Burhard, Anal. Bioanal. Chem., 385, 452 (2006).

[6] C.M. Welch, R.G. Compton, Anal. Bioanal. Chem., 384, 601 (2006).

[7] X.H. Kang, Z.B. Mai, X.Y. Zou, P.X. Cai, J.Y. Mo, Anal. Biochem., 363, 143 (2007).

[8] X.L. Luo, J.J. Xu, Y. Du, H.Y. Chen, Anal. Biochem., 334, 284 (2004).

[9] V. Lordi, N. Yao, J. Wei, Chem. Mater., 13, 733 (2001).

[10] A.V. Ellis, K. Vijayamohanan, R. Goswami, N. Chakrapani, L. S. Ramanathan, P.M. Ajayan, G. Ramanath, Nano. Lett., 3, 279 (2003).

[11] R. Giordano; P. Serp. P. Kalck, Y. Kihn, J. Schreiber, C. Marhic, Eur. J. Inorg. Chem., 4, 610 (2003).

[12] Z.J. Wang, M.Y. Li, Y.J. Zhang, J.H. Yuan, Y.F. Shen, L. Niu, A. Ivaska, Carbon, 45, 2111 (2007).

[13] B.S. Kong, D.H. Jung, S.K. Oh, C.S. Han, H.T. Jung, J. Phys. Chem., C 111, 8377 (2007).

[14] A. Star, V. Joshi, S. Skarupo, D. Thomas, J.C.P. Gabriel, J. Phys. Chem. B, 110, 21014 (2006).

[15] K. Kim. S.H. Lee, W. Yi, J. Kim, J.W. Choi, Y. Park, J.I. Jin, Adv. Mater., 15, 1618 (2003).

[16] R.Y. Zhang, X.M. Wang, Chem. Mater., 19, 976 (2007).

[17] X.G. Hu, T. Wang, X.H. Qu, S.J. Dong, J. Phys. Chem. B, 110, 853 (2006).

[18] Y.C. Fiamegos, C.G. Nanos, G.A. Pilidis, C.D. Stalikas, J. Chromatogr. A, 983, 215 (2003).

[19] C.E. Lin, Y.T. Chen, T.Z. Wang, J. Chromatogr. A, 837, 241 (1999).

[20] C.E. Lin, Y.T. Chen, J. Chromatogr. A, 871, 357 (2000).

[21] J. Witting, S. Wittemer, M. Veit, J. Chromatogr. B, 761, 125 (2001).

[22] Y.C. Fiamegos, C.D. Stalikas, G.A. Pilidis, M.I. Karayannis, Anal. Chim. Acta, 403, 315 (2000).

[23] Y. Fiamegos, C. Stalikas, G. Pilidis, Anal. Chim. Acta, 467, 105 (2002).

[24] K.D. Khalaf, B.A. Hasan, A. Morales-Rubio, M. Guardia, Talanta, 41, 547 (1994).

[25] J.X. Du, Y.H. Li, J.R. Lu, Talanta, 55, 1055 (2001).

[26] H. Cui, C.X. He, G.W. Zhao, Chem. J. Chinese Univ., 21, 876 (2000).

[27] G. Frens, Nat. Phys. Sci., 241, 20 (1973).

[28] Y.P. Dong, H. Cui, Y. Xu, Langmuir, 23, 523 (2007).

[29] I. Szymanska, H. Radecka, J. Radecki, Sens. Actuators B, 75, 195 (2001).

[30] Y.Z. Fu, R. Yuan, D.P. Tang, Y.Q. Chai, L. Xu, Colloids Surf. B, 40, 61 (2005).

[31] S.L. Pan, L. Rothberg, Langmuir, 21, 1022 (2005).

[32] Y.P. Dong, H. Cui, C.M. Wang, J. Phys. Chem., 110, 18408 (2006).