A Study of the Catalyst/Absorbent Effect on the Hydrogen Production by Solid Absorption Enhanced Water Gas Shift (SAEWGS)

A Study of the Catalyst/Absorbent Effect on the Hydrogen Production by Solid Absorption Enhanced Water Gas Shift (SAEWGS)

M.A. Escobedo-BretadoE. Lopez-Chipres M.D. Delgado-Vigil J.M. Salinas-Gutierrez A. Lopez-Ortiz V.H. Collins-Martinez

Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Veterinaria s/n, Circuito Universitario, Durango, 34120, México.

Depto. Química de Materiales, Centro de Investigación en Materiales Avanzados, S. C., Miguel de Cervantes 120, Chihuahua, 31109, México.

Corresponding Author Email: 
miguel.escobedo@ujed.m; virginia.collins@cimav.edu.m
Page: 
289-293
|
DOI: 
https://doi.org/10.14447/jnmes.v13i3.172
Received: 
27 November 2009
| |
Accepted: 
10 February 2010
| | Citation
Abstract: 

The combination of the WGS and CO2 solid absorption (SAEWGS) produce H2 and CO2 separation in one step. Experimental conditions: quartz-made fixed bed reactor at SV = 1500 h-1, feed; 5 % CO, 15 % H2O, balance He-N2 and 600 °C, 1 atm. Absorbents tested were calcined dolomite (CaO*MgO) and sodium zirconate (Na2ZrO3) employing catalyst/absorbent mixtures in 1/1 and 1/2 weight ratios. A synthesized WGS catalyst (Fe-Cr) was used. Results using the mixture catalyst/absorbent = 1/2 with CaO*MgO generated 95 % of H2 and 5 % CO2 without CO. An increase in the catalyst/absorbent weight ratio from 1/1 to 1/2 also increased hydrogen from 89 to 95 %, respectively. This was attributed to slow CO2 diffusion into the particle affecting absorption kinetics. Whereas, Na2ZrO3 produced only 70 % H2, 29 % CO2 and 1 % CO being a small CO2 partial pressure responsible for the lower H2 content. Using Na2ZrO3, the variation of the cat/abs ratio had no effect over the hydrogen content.

Keywords: 

Hydrogen production, CO2 Capture, CaO*MgO, Na2ZrO3

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgments

The authors expressed their gratitude to CONACYT and PROMEP for the financial support granted for the development of this research through project No. 40356 SEP CONACY and PROMEP/103.5/09/4066 project. Also the authors gratefully acknowledge to MSc. Enrique Torres and Eng. Karla Campos for their support during the execution of the present research. The authors desire to acknowledge specially to The National Nanotechnology Laboratory at CIMAV.

  References

[1] K. Gallucci, S. Stendardo, P. U. Foscolo, Int. J. Hydrogen Energy, 33, 3049 (2008).

[2] D. P. Harrison, Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies Vancouver, Canada 1101 (2004).

[3] N. J. Simms, J. E. Oakey, Materials Issues for Coal-Fired Combined Cycle Power Plants, British Coal Corporation, Coal Research Establishment, Stoke Orchard, Cheltenham, Glos, GL524RZ, U.K. (1991).

[4] S. C. Reyes, J. H. Sinfelt, J. S. Feeley, Ind. Eng. Chem.42, 1588 (2003).

[5] J. N. Brandani V. P. Foscolo, Ind. Eng. Chem. Res 45, 834 (2006).

[6] E. J. Granite, T. O’Brien, Fuel Process Technol, 86, 1423 (2005).

[7] J. R. Rostrup-Nielsen, Catalytic Steam Reforming. In: Catalysis: Science and Technology, J. R. Anderson and M. Boudart. New York: Springer Verlag, 5, 1 (1984).

[8] D. P. Harrison, C. Han, G. Lee, A Calcium Oxide Sorbent Process For Bulk Separation Of Carbon Dioxide, Advanced Coal-Fired Power System 95 Review Meeting, Morgantown, Wes Virginia (1995).

[9] H. A. J. van Dijka, S. Walspurgera, P. D. Cobdena, D. Jansena, R. W. van den Brinka and F. G. de Vos, Energy Procedia, (2009), doi:10.1016/j.egypro.2009.01.084.

[10] A. Lopez and D. P. Harrison, Ind. Eng. Chem. Res., 40, 5102 (2001).

[11] A. W. Forsberg, Chem. Eng. Prog. 101, 20 (2005).

[12] P. Heidebrecht, C. Hertel, and K. Sundmacher, Int. J. Chem. Reactor Eng., 6, A19 (2008).

[13] V. Dupont, A. B. Ross, I. Hanley, M. V. Twigg, Int. J. Hydrogen Energy, 32, 67 (2007).

[14] W. J. Comas, M. Laborde, N. Amadeo. J. Power Sources. 138, 61 (2004).

[15] L. Fan, H. Gupta, M. V. Iyer, B. Sakadjian., Semi Annual Technical Progress Report, Department of Chemical Engineering, Ohio State University, (2005).

[16] J. Stevens, 50 kW Absorption Enhanced Natural Gas Reformer, Chevron Texaco Tech. Ventures, (2005).

[17] Z. Wang, J. Zhou, Q. Wang, J. Fan, K. Cen. Int. J. Hydrogen Energy, 31, 945 (2006).

[18] M. Kato, S. Yoshikawa, K. Nakawaga, J. Mater Sci. Lett. 21, 485 (2002).

[19] D. Lardizábal, V. Collins, A. López, NL/a/2006/000017, Aplicación de Patente Mexicana (2006).

[20] M. A. Escobedo Bretado, M. D. Delgado Vigil, J. Salinas Gutiérrez, A. López Ortiz, V. Collins-Martínez, Int. J. Hydrogen Energy, (2009), doi:10.1016/j.ijhydene.2009.07.025.

[21] M. A. Escobedo Bretado, M. D. Delgado Vigil, J. Salinas Gutiérrez, A. López Ortiz, V. Collins-Martínez, J. New Mat. Electrochem. Systems, 12, 23 (2009).

[22] M. Maroño, J. M. Sánchez and E. Ruiz, Int. J. Hydrogen Energy, 35, 37 (2010).

[23] A. Khan, P. G. Smirniotis, J. Mol. Catal. Chem., 280, 43 (2008).

[24] López; N. Pérez; A. Reyes; D. Lardizábal; Sep. Sci. Technol. 39, 15, 35 (2004).

[25] Y. Lei, N. W. Cant, D. L. Trimm, J. Catal., 239, 227 (2006).

[26] L. Mikkelsen, P. H. Larsen and S. Linderoth, J. Therm. Anal. Calorim., 64, 879 (2001).

[27] T. Zhao, E. Ochoa-Fernández, M. Rønning, D. Chen, Chem. Mater., 19, 13 (2007).