Synthesis and Characterization of Lamellar LiCoO2 as Cathode Materials for Lithium-Ion Batteries

Synthesis and Characterization of Lamellar LiCoO2 as Cathode Materials for Lithium-Ion Batteries

Zhaorong ChangZhongjun Chen Hongwei Tang Xiao Zi Yuan Haijiang Wang 

College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, P.R. China

Institute for Fuel Cell Innovation, National Research Council of Canada, Vancouver, BC, Canada V6T 1W5

Corresponding Author Email: 
czr_56@163.com
Page: 
107-111
|
DOI: 
https://doi.org/10.14447/jnmes.v13i2.177
Received: 
8 February 2009
| |
Accepted: 
27 September 2009
| | Citation
Abstract: 

Lamellar LiCoO2 cathode material has been prepared using the co-precipitation method. The synthesized LiCoO2 powder is characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The XRD studies show that the layered material has a α-NaFeO2 structure with high crystallinity and property of high direction-oriented growth. The SEM confirms that the synthesized LiCoO2 powder is laminated with its shape similar to the layered structure of the natural shells. At a current of 0.2C rate and 3 - 4.2 V, the initial charge and discharge capacity of 156 and 145mAh·g-1 can be obtained. The capacity of 143mAh·g-1 is retained at the end of 30 charge– discharge cycles with the capacity retention of 99%. The charge-discharge curves at various rates have demonstrated that the laminated LiCoO2 powders have an excellent rate performance and cycling stability.

Keywords: 

layered structure; LiCoO2; cathode material

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgments

This work is financially supported by the Natural Science Foundation of China under approval No. 20671031.

  References

[1] J. G. Lee, T. G. Kim, B. Park, Mater. Res. Bull., 42, 1201 (2007).

[2] C. L. Liao, Y. H. Lee, K. Z. Fung, J. Alloys Compd., 436, 303 (2007).

[3] M. Matsui, K. Dokko, K. Kanamura, J. Power Sources, 177, 184 (2008).

[4] Y. M. Lee, D. H. Ko, J. Y. Lee, J. K. Park, Electrochim. Acta, 52, 1582 (2006).

[5] T. Fang, J. G. Duh. Surf.Coat.Technol., 201, 1886 (2006).

[6] J. N. Reimers, J. R. Dahn, J. Electrochem. Soc., 139, 2091 (1992).

[7] Y. K. Sun, I. H. Oh, S. A. Hong. J. Mater. Sci., 31, 3617 (1996).

[8] M. Tabuchi, K. Ado, H. Kobayashi, H. Sakaebe, H. Kageyama, C. Masquelier, M. Yonemura, A. J. Hirano, Mater. Chem., 9, 199 (1999).

[9] C. H. Han, P. Y. Yeh. J. Mater. Chem., 10, 599 (2000).

[10] J. Ying, C. Jiang, C. Wan, J. Power Sources, 129, 264 (2004).

[11] N. Li, C. J. Patrissi, G. Che, C. R. Martin, J. Electrochem. Soc., 147, 2044 (2000).

[12] Y. X. Gu, D. R. Chen, X. L. Jiao, J. Phys. Chem B, 109, 17901 (2005).

[13] H. Wang, Y.-H. Jang, B. Huang, D. R. Sadoway,Y.-M. Chiang, J. Electrochem. Soc., 146, 473 (1999).

[14] S. M. Lala, L. A. Montoro, J. M. Rosolen, J. Power Sources, 124, 118 (2003).

[15] T. Kawamura, M. Makidera, S. Okada, J. I. Yamaki, J. Power Sources, 146, 27 (2005).

[16] Anjuli T. Appapillai, Azzam N. Mansour, Jaephil Cho, Yang Shao-Horn, Chem. Mater., 19, 5748 (2007).

[17] W. J. Clegg, K. Kendall, N. M. Alford. Nature, 347, 445 (1990).

[18] A. Rougier, P. Gravereau, C. Delmas, J. Electrochem. Soc., 143, 1168 (1996).

[19] R. J. Gummow, M. M. Thackeray, W. I. F. David, Res. Bull., 27, 317 (1992).

[20] S. T. Myung, N. Kumagai, S. Komaba, H. T. Chung, J. Appl. Electrochem., 30, 1081 (2000).

[21] J. R. Dahn, U. von Sacken, C. A. Michal, Solid State Ionics, 44, 87 (1990).

[22] J. N. Reimers, E. Rossen, C. D. Jones, J. R. Dahn, Solid State Ionics, 61, 335 (1993).

[23] M. J. Zou, M. Yoshio, S. Gopukumar, J. I. Yamaki, Electrochem. Solid State Lett., 7, A176 (2004).

[24] K. M. Shaju, G. V. Subba Rao and B. V. R. Chowdari, Electrochim. Acta, 48, 145 (2002).

[25] K. Du, H. Zhang, L. Qi, Electrochimica Acta, 50, 211 (2004).

[26] M. K. Jo, Y. S. Hong, J. B. Choo, J. P. Cho, J. Electrochemical Society, 156, A430 (2009).