OPEN ACCESS
Copper Sulphide (CuS) thin films were electrodeposited onto indium doped tin oxide coated conducting glass (ITO) substrates from an aqueous acidic bath containing CuSO4, Na2S2O3 and EDTA. The deposition mechanism was investigated using cyclic voltammetry. The appropriate potential region in which the formation of stoichiometric CuS thin films occurs was found to be -500 mV versus SCE and the solution pH was maintained at 3.0 ± 0.1. X-ray diffraction studies revealed that the deposited films are found to be cubic structure with preferential orientation along (111) plane. Optical absorption measurements were used to estimate the band gap value of CuS thin films deposited at different bath temperatures. Surface morphology and film composition was analyzed using an energy dispersive x-ray analysis (EDAX) set up attached with scanning electron microscope (SEM), respectively. The experimental observations are discussed in detail.
Copper sulphide; surface morphology; optical properties.
One of the authors (S.Thanikaikarasan) is highly thanks to Council of Scientific and Industrial Research (CSIR) for the award of Senior Research Fellowship (SRF) to carry out this work.
[1] Titipun Thongtem, Anukorn Phurungrat, Somchai Thongtem; Journal of Materials Science. 42 (2007) 9316.
[2] Y.He, X. Yu, X.Zhao; Materials Letters. 61 (2007) 3014.
[3] Y.J. Yang, J.W.Xiang; Applied Physics. A81 (2005) 1351.
[4] K.Anuar, Z..Zainal, M.Z.Hussein, H.Ismail; Journal of Materials Science: Materials in Electronics. 12 (2001) 147.
[5] J.P. Rai; Solar Energy Materials. 30 (1993) 119.
[6] W.Liang, M.H.Whangbo; Solid State Communications. 85 (1993) 405.
[7] K.W.Boer; Physica Status Solidi. A40 (1977) 435.
[8] M T.S.Nair, G.Alvarrez-Garcia, C.A. Estrada-Gasva and P.K.Nair; Journal of Electrochemical Society. 140 (1993) 212.
[9] P.K. Nair, V.M. Garcia, A. M. Fernandez, H.S.Ruiz and M.T.S. Nair; Journal of Physics D. 24 (1991) 441.
[10] Z.H. Han, Y.P. Li, H.Q. Zhao, S.H. Yu, Y.L. Yin, and Y.T. Qian; Materials Letters. 44 (2000) 366.
[11] M. Kemmler, M.Lazell, P.O.Brien, D.J.Otway, J.H. Park, J.R. Walsh; Journal of Materials Science: Materials in Electronics. 13 (2002) 531.
[12] S.Y. Wang, W.Wang, Z.H. Lu; Materials Science and Engineering B 103 (2003) 184.
[13] B. Minceva- Sukarova, M. Najdoski, I. Grozdanov, C.J. Chunnilall; Journal of Molecular Structure. 410-411 (1997) 267.
[14] H.S. Randhawa, R.F. Bunshah, D.G. Brock, B.M. Basol, O..M. Stafsudd; Solar Energy Materials. 6 (1982) 445.
[15] Y.B. He, A.Polity, I. österreicher, D. Pfisterer, R. Gregor, B.K. Meyer, M. Hardt; Physica B. 308-310 (2001) 1069.
[16] Han Joon Kwon, S.Thanikaikarasan, Thaiyan Mahalingam, Kyung Ho Park, C.Sanjeeviraja, Yong Deak Kim; Journal of Materials Science: Materials in Electronics. 19 (2008) 1086.
[17] T.Mahalingam, S. Thanikaikarasan, M. Raja, C. Sanjeeviraja, Soonil Lee, Hosun Moon, Yong Deak Kim, P.J. Sebastian; Journal of New Materials for Electrochemical Systems. 10 (2007) 33.
[18] M.I. Schimeel, H. Wendt; Proc. Electrochem. Soc. 97-20 (1997) 16.
[19] N. R. de Tacconi, K. Rajeshwar, R.O. Lezna; Journal of Physical Chemistry. 100 (1996) 18234.
[20] R.D. Engelken, H.E. McCloud; Journal of Electrochemical Society. 132 (1985) 567.
[21] JCPDS Powder Diffraction File Search Manual-2003, 89-2073.
[22] T.Mahalingam, A.Kathalingam, S.Velumani, Soonil Lee, Hosun Moon and Yong Deak Kim; Journal of New Materials for Electrochmical Systems. 10 (2007) 21.
[23] Abhay A. Sagade, Ramphal Sharma; Sensors and Actuators B. 133 (2008) 135.