CFD optimization of injection nozzles geometric dimensions of RHVT-machines in order to enhance the cooling capability

CFD optimization of injection nozzles geometric dimensions of RHVT-machines in order to enhance the cooling capability

Adib BazgirAli Heydari 

Petroleum University of technology, Department of Chemical Engineering, Ahwaz 6199171183, Iran

Corresponding Author Email:
31 December 2017
29 May 2018
30 September 2018
| Citation



In this article, by using Computational Fluid Dynamic techniques, the optimized dimensions for injection nozzles of vortex tube machine are obtained. For this purpose, numerical simulation for different dimensions of length, width and height of nozzles is performed. However, other dimensions of modeled vortex tube are considered constant. The standard k-ε turbulence model was introduced to the governing equations for analyzing highly turbulence and compressible flows. The main goal of this study is to achieve the minimum amount of cold exit temperature by changing the dimensions of injection nozzles. In addition, an investigation is done upon pressure effect in the vortex tube chamber and its relation with the cold exit temperature and the best dimensions of nozzles are selected. Finally, some results of this article are validated by available experimental data. The comparisons show reasonable agreement.


vortex tube, nozzle, temperature separation, numerical modeling, vortex chamber, reversed flows

1. Introduction
2. Governing Equations
3. Turbulence Simulation
4. Geometric Description of The Simulated Vortex Tube
5. Boundary Conditions
6. Grid Independency Study
7. Verifying Turbulence Model
8. Validation of Numerical Simulations
9. Aims and Prospects of Numerical Research
10. Results and Discussions
11. Conclusion

[1] Bazgir A. (2017). Ranque-Hilsch vortex tube: A numerical study. 

[2] Bazgir A, Heydari A. (2018) Energy conversion (efficiency) of straight counter-flow Ranque-Hilsch Vortex Tube (RHVT) by using optimized turbulence model. 

[3] Bazgir A. (2017). Investigation of the effects of number of nozzle intakes on the performance of vortex tube refrigerators base on CFD. 

[4] Bazgir A. (2017) Numerical investigation of flow pattern inside different counter-flow Ranque-Hilsch vortex tube refrigerators. 

[5] Linderstrom-Lang C. (1967). On gas separation in Ranque—Hilsch vortex tubes. Zeitschrift für Naturforschung A 22(5): 835-7.

[6] Marshall J. (1977). Effect of operating conditions, physical size and fluid characteristics on the gas separation performance of a Linderstrom-Lang vortex tube. International Journal of Heat and Mass Transfer 20(3): 227-31.

[7] Raterman KT, Kellar M, George M, Turner TD, Podgorney AK, Stacey DE, et al. (2001). A vortex contactor for carbon dioxide separations. Idaho National Laboratory (INL). 

[8] Kulkarni MR, Sardesai CR. (2002). Enrichment of methane concentration via separation of gases using vortex tubes. Journal of energy engineering 128(1): 1-12.

[9] Poshernev N, Khodorkov I. (2004). Natural-gas tests on a conical vortex tube (CVT) with external cooling. Chemical and Petroleum Engineering 40(3): 212-7.

[10] Takahama H, Kawamura H, Kato S, Yokosawa H. (1979). Performance characteristics of energy separation in a steam-operated vortex tube. International Journal of Engineering Science 17(6): 735-44.

[11] Collins R, Lovelace R. (1979). Experimental study of two-phase propane expanded through the Ranque-Hilsch tube. ASME Journal of Heat Transfer 101(2): 300-5. 

[12] Gao C, Bosschaart K, Zeegers J, De Waele A. (2005). Experimental study on a simple Ranque–Hilsch vortex tube. Cryogenics 45(3): 173-83.

[13] Eiamsa-ard S, Promvonge P. (2008). Numerical simulation of flow field and temperature separation in a vortex tube. International communications in Heat and Mass Transfer 35(8): 937-47.

[14] Wu Y, Ding Y, Ji Y, Ma C, Ge M. (2007). Modification and experimental research on vortex tube. International Journal of Refrigeration 30(6): 1042-9.

[15] Kırmacı V, Uluer O. (2009). An experimental investigation of the cold mass fraction, nozzle number, and inlet pressure effects on performance of counter flow vortex tube. Journal of Heat Transfer 131(8): 081701. 

[16] Pinar AM, Uluer O, Kırmaci V. (2009). Optimization of counter flow Ranque–Hilsch vortex tube performance using Taguchi method. International Journal of Refrigeration 32(6): 1487-94.

[17] Dincer K, Avci A, Baskaya S, Berber A. (2010). Experimental investigation and exergy analysis of the performance of a counter flow Ranque–Hilsch vortex tube with regard to nozzle cross-section areas. International Journal of Refrigeration 33(5): 954-62.

[18] Polat K, Kırmacı V. (2011). Determining of gas type in counter flow vortex tube using pairwise fisher score attribute reduction method. International Journal of Refrigeration 34(6): 1372-86.

[19] Chang K, Li Q, Zhou G, Li Q. (2011). Experimental investigation of vortex tube refrigerator with a divergent hot tube. International journal of refrigeration 34(1): 322-7.

[20] Lewellen W. (1962). A solution for three-dimensional vortex flows with strong circulation. Journal of Fluid Mechanics 14(3): 420-32.

[21] Ahlborn B, Groves S. (1997). Secondary flow in a vortex tube. Fluid Dynamics Research 21(2): 73-86.

[22] Bramo RA, Pourmahmoud N. (2011). CFD simulation of length to diameter ratio effects on the energy separation in a vortex tube. Thermal Science 15(3): 833-48. 

[23] Pourmahmoud N, Bramo AR. (2011). The effect of L/D ratio on the temperature separation in the counter-flow vortex tube. International Journal of Research and Reviews in Applied Sciences 6(1). 

[24] Bramo A, Pourmahmoud N. (2010). A numerical study on the effect of length to diameter ratio and stagnation point on the performance of counter flow vortex tube. Aust J Basic & Appl Sci 4(10). 

[25] Shamsoddini R, Nezhad AH. (2010). Numerical analysis of the effects of nozzles number on the flow and power of cooling of a vortex tube. International Journal of Refrigeration 33(4): 774-82.

[26] Akhesmeh S, Pourmahmoud N, Sedgi H. (2008). Numerical study of the temperature separation in the Ranque-Hilsch vortex tube. American Journal of Engineering and Applied Sciences 1(3). 

[27] Rafiee SE. (2017). Experimental analysis on heat and mass transfer and separation process inside A DCVT based on pressure distribution. Chemical Engineering Transactions 62: 367-372.

[28] Tsutsumi A, Kansha Y. (2017). Thermodynamic mechanism of self-heat recuperative and self-heat recovery heat circulation system for a continuous heating and cooling gas cycle process. Chemical Engineering Transactions 61: 1759-1764.

[27] Kurosaka M. (1982). Acoustic streaming in swirling flow and the Ranque—Hilsch (vortex-tube) effect. Journal of Fluid Mechanics 124: 139-72.

[28] Takahama H, Yokosawa H. (1981). An experimental study of the vortex tube-Where the vortex chamber includes a divergent tube. Nagoya University Faculty Engineering Memoirs 33: 195-208.

[29] Takahama H. (1966). Studies on Vortex Tubes (3rd report, variations of velocity, temperature and energy with axial distance, and mechanism of energy separation). Transactions of the Japan Society of Mechanical Engineers 32(235): 503-10.

[30] Skye H, Nellis G, Klein S. (2006). Comparison of CFD analysis to empirical data in a commercial vortex tube. International Journal of Refrigeration 29(1): 71-80.