Effect of temperature dependent viscosity on ferrothermohaline convection saturating an anisotropic porous medium with Soret effect using the Galerkin technique

Effect of temperature dependent viscosity on ferrothermohaline convection saturating an anisotropic porous medium with Soret effect using the Galerkin technique

K. Raju

Department of Mathematics, Achariya Arts and Science College, Villianur, Puducherry 605 110, India

Corresponding Author Email: 
rajumaths1987@gmail.com
Page: 
439-446
|
DOI: 
https://doi.org/10.18280/ijht.360208
Received: 
12 July 2017
| |
Accepted: 
28 April 2018
| | Citation

OPEN ACCESS

Abstract: 

In the present paper, the effect of temperature dependent viscosity on a Soret driven ferrothermohaline convection heated from below and salted from above subjected to a transverse uniform magnetic field in the presence of an anisotropic porous medium using Brinkman model is studied. For the case of two free boundaries, an exact solution is obtained using a linear stability analysis and normal mode technique is applied. The effect of salinity has been included in magnetization and density of the fluid. The critical thermal magnetic Rayleigh number Nsc for the onset of instability is calculated numerically for sufficiently large values of the buoyancy magnetization parameter M1 using the method of computational Galerkin technique. It is found that non-buoyancy magnetization parameter, permeability of the porous medium, anisotropy effect and temperature dependent viscosity stabilizes the system.

Keywords: 

thermohaline convection, ferrofluid, anisotropy porous medium, Soret effect, brinkman model, temperature dependent viscosity, Galerkin technique

1. Introduction
2. Mathematical Formulation
3. Exact Solution for Free Boundaries Using Galerkin Technique
4. Discussion of Results
5. Conclusion
Acknowledgement
Nomenclature
  References

[1] Berkovsky B, Bastovoy V. (1996). Magnetic Fluids and Application Handbook. Begell House Publishers, New York.

[2] Gazeau F, Baravian C, Bacri JC, Perzynski P, Shiomis M.I. (1997). Energy conversion in ferrofluids: Magnetic nanoparticles as motors or generators. Physics Reviews – E 56: 614. https://doi.org/10.1103/PhysRevE.56.614

[3] Odenbach S, Thurm S. (2012). Magnetoviscous effects in ferrofluids. eStefan Odenbach, Springer-Verlag, Berlin, Heidelberg.

[4] Rosensweig RE. (1985). Ferro hydrodynamics, Cambridge University Press, Cambridge.

[5] Chandrasekhar S. (1981). Hydrodynamics and Hydromagnetic stability. Dover Publication, New York.

[6] Finlayson BA. (1970). Convective instability of ferromagnetic fluids. International Journal of Fluid Mechanics 40: 753-767. https://doi.org/10.1017/S0022112070000423

[7] Schwab L, Hildebrandt U, Stierstadt K. (1983). Magnetic Bénard convection. Journal of Magnetism and Magnetic Materials 39: 113-114. https://doi.org/10.1016/0304-8853(83)90412-2

[8] Stiles PJ, Kagan M. (1990). Thermoconvective instability of a horizontal layer of ferrofluid in a strong vertical magnetic field. Journal of Magnetism and Magnetic Materials 85: 196-198. https://doi.org/10.1016/0304-8853(90)90050-Z

[9] Ursino N, Roth K, Gimmi T, Flühler H. (2000). Upscaling of anisotropic in unsaturated Miller-similar porous media. Water Resources Research 36: 421-430. https://doi.org/10.1029/1999WR900320

[10] Epherre JF. (1975). Critere d’ apparition de la convection naturelle dans une couche poreuse anisotrope. Revue Générale de Thermique 168: 949 – 950.

[11] Vaidyanathan G, Sekar R, Balasubramanian R. (1991).  Ferroconvective instability of fluids saturating a porous medium. International Journal of Engineering Sciences 29: 1259-1267. https://doi.org/10.1016/0020-7225(91)90029-3

[12] Ramanathan A, Muchikel N. (2006). Effect of temperature dependent viscosity on ferroconvection in a porous medium. International Journal of Applied Mechanics and Engineering 11: 93-104. 

[13] Suresh G, Vasanthakumari R, Radja P. (2012). Numerical study on the effect of temperature dependent viscosity on ferroconvection in an anisotropic porous medium. International Journal of Engineering Technology and Advanced Engineering 2: 51-55. 

[14] Nanjundappa CE, Shivakumara IS, Arunkumar R. (2010). Bénard-Marangoni ferroconvection magnetic field dependent viscosity. Journal of Magnetism and Magnetic Materials. 322: 2256-2263. https://doi.org/10.1016/j.jmmm.2010.02.021

[15] Nanjundappa CE, Shivakumara I., Arunkumar R. (2013). Onset of Marangoni-Bénard ferroconvection with temperature dependent viscosity. Microgravity Sci. Technol 25: 103-112. https://doi.org/10.1007/s12217-012-9330-9.

[16] Siddheshwar PG. (2004). Thermorheological effect on magneto convection in weak electrically conducting fluids and 1g or   Pramana J. Phy 62: 61-68. https://doi.org/10.1007/BF02704425

[17] Baines PG, Gill SE. (1969). On thermohaline convection with linear gradients. Journal of Fluid Mechanics 37: 289-306. https://doi.org/10.1017/S0022112069000553

[18] Vaidyanathan G, Sekar R, Ramanathan A. (1995). Ferrothermohaline convection in a porous medium. Journal of Magnetism and Magnetic Materials 149: 137-142. https://doi.org/10.1016/0304-8853(95)00356-8 

[19] Vaidyanathan G, Sekar R, Ramanathan A. (1997). Ferrothermohaline convection. Journal of Magnetism and Magnetic Materials 176: 321-330. https://doi.org/10.1016/S0304-8853(97)00468-X

[20] Vaidyanathan G, Sekar R, Hemalatha R, Vasanthakumari R, Senthilnathan S. (2005). Soret-driven ferro thermohaline convection. Journal of Magnetism and Magnetic Materials 288: 460-469. https://doi.org/10.1016/j.jmmm.2004.09.137

[21] Sekar R, Vaidyanathan G, Hemalatha R, Senthilnathan S. (2006). Effect of sparse distribution pores in a Soret-driven ferro thermohaline convection. Journal of Magnetism and Magnetic Materials 302: 20–28. https://doi.org/10.1016/j.jmmm.2005.08.008

[22] Sekar R, Raju K, Vasanthakumari R. (2013). A linear analytical study on Soret-driven ferrothermohaline convection in an anisotropic porous medium. Journal of Magnetism and Magnetic Materials 331: 122–128. https://doi.org/10.1016/j.jmmm.2012.10.028

[23] Sekar R, Raju K, Vasanthakumari R. (2013). Linear stability analysis of coriolis force on ferrothermohalineconvection saturating an anisotropic porous medium with Soret effect. Global Journal of Mathematical Analysis 1(2): 37-47. https://doi.org/10.14419/gjma. v1i2.858

[24] Sekar R, Raju K. (2013). Effect of magnetic field dependent viscosity on Soret-driven thermoconvective instability of ferromagnetic fluid in the presence of rotating anisotropic porous medium of sparse particle suspension. International Journal of Mathematical Sciences 12: 13-31.