Magnetic Field Effect on Natural Convection in a Nanofluid filled Enclosure with Non-Uniform Heating on Both Side Walls

Page:

127-133

DOI:

https://doi.org/10.18280/ijht.320118

OPEN ACCESS

Abstract:

This paper examines the natural convection in a square enclosure filled with a water-Al_{2}O_{3} nanofluid and is subjected to a magnetic field. The side walls of the cavity have spatially varying sinusoidal temperature distributions. The horizontal walls are adiabatic. Lattice Boltzmann method (LBM) is applied to solve the coupled equations of flow and temperature fields. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number of the base fluid, Ra=10^{3} to 10^{5}, Hartmann number varied from Ha=0 to 90, phase deviation (γ=0, π/4, π/2, 3π/4 and π) and the solid volume fraction of the nanoparticles between φ = 0 and 6%. The results show that the heat transfer rate increases with an increase of the Rayleigh number but it decreases with an increase of the Hartmann number. Also it is observed that the Phase deviation control the heat transfer rate.

1. Introduction

2. Mathematical Formulation

3. Results and Discussion

4. Conclusions

Nomenclature

References

[1] Ostrach, S., Natural convection in enclosures (1988) Journal of Heat Transfer, Part B 110 (4), pp. 1175-1191. doi: 10.1115/1.3250619

[2] Moreau, M. (1990) Magnetohydrodynamics. Kluwer Acadamic Publishers, The Netherlands

[3] Ozoe, H., Okada, K., The effect of the direction of the external magnetic field on the three-dimensional natural convection in a cubical enclosure (1989) International Journal of Heat and Mass Transfer, 32 (10), pp. 1939-1954. doi: 10.1016/0017-9310(89)90163-4

[4] Nemati, H., Sedighi, K., Farhadi, M., Pirouz, M.M., Fattahi, E., Numerical simulation of fluid flow of two rotating side-by-side circular cylinders by Lattice Boltzmann method (2010) International Journal of Computational Fluid Dynamics, 24 (3), pp. 83-94. doi: 10.1080/10618562.2010.491793

[5] Mehravaran, M., Hannani, S.K., Simulation of buoyant bubble motion in viscous flows employing lattice Boltzmann and level set methods (2011) Scientia Iranica, 18 (2 B), pp. 231-240. doi: 10.1016/j.scient.2011.03.018

[6] Martínez, D.O., Chen, S., Matthaeus, W.H., Lattice Boltzmann magnetohydrodynamics (1994) Physics of Plasmas, 1 (6), pp. 1850-1867. doi: 10.1063/1.870640

[7] Nemati, H., Farhadi, M., Sedighi, K., Fattahi, E., Darzi, A.A.R., Lattice Boltzmann simulation of nanofluid in lid-driven cavity (2010) International Communications in Heat and Mass Transfer, 37 (10), pp. 1528-1534. doi: 10.1016/j.icheatmasstransfer.2010.08.004

[8] Lai, F.-H., Yang, Y.-T., Lattice Boltzmann simulation of natural convection heat transfer of Al 2O3/water nanofluids in a square enclosure (2011) International Journal of Thermal Sciences, 50 (10), pp. 1930-1941. doi: 10.1016/j.ijthermalsci.2011.04.015

[9] Mahmoudi, A.H., Shahi, M., Shahedin, A.M., Hemati, N., Numerical modeling of natural convection in an open cavity with two vertical thin heat sources subjected to a nanofluid (2011) International Communications in Heat and Mass Transfer, 38 (1), pp. 110-118. doi: 10.1016/j.icheatmasstransfer.2010.09.009

[10] Nemati, H., Sedighi, K., Farhadi, M., Pirouz, M.M., Fattahi, E., Numerical simulation of fluid flow of two rotating side-by-side circular cylinders by Lattice Boltzmann method (2010) International Journal of Computational Fluid Dynamics, 24 (10), pp. 83-94.

[11] Mehravaran, M., Hannani, S.K., Simulation of buoyant bubble motion in viscous flows employing lattice Boltzmann and level set methods (2011) Scientia Iranica, 18 (2 B), pp. 231-240. doi: 10.1016/j.scient.2011.03.018

[12] Martínez, D.O., Chen, S., Matthaeus, W.H., Lattice Boltzmann magnetohydrodynamics (1994) Physics of Plasmas, 1 (6), pp. 1850-1867. doi: 10.1063/1.870640

[13] Nemati, H., Farhadi, M., Sedighi, K., Fattahi, E., Darzi, A.A.R., Lattice Boltzmann simulation of nanofluid in lid-driven cavity (2010) International Communications in Heat and Mass Transfer, 37 (10), pp. 1528-1534. doi: 10.1016/j.icheatmasstransfer.2010.08.004

[14] Deng, Q.-H., Chang, J.-J., Natural convection in a rectangular enclosure with sinusoidal temperature distributions on both side walls (2008) Numerical Heat Transfer; Part A: Applications, 54 (5), pp. 507-524. doi: 10.1080/01457630802186080