Plasmon heating for localized desorption of cells immobilized on a biochip

Plasmon heating for localized desorption of cells immobilized on a biochip

Élodie Engel Radoslaw Bombera Loïc Leroy Roberto Calemczuk Loïc Laplatine Dieudonné R. Baganizi Patrice N. Marche Yoann Roupioz Thierry Livache 

Univ. Grenoble Alpes, INAC-SPrAM, 38000 Grenoble, France

CNRS, SPrAM, 38000 Grenoble, France

CEA, INAC-SPrAM, 38000 Grenoble, France

Institut Albert Bonniot INSERM-UJF U823, 38000 Grenoble, France

Corresponding Author Email: 
elodie.engel@ujf-grenoble.fr
Page: 
9-27
|
DOI: 
https://doi.org/10.3166/I2M.15.3-4.9-27
Received: 
N/A
| |
Accepted: 
N/A
| | Citation
Abstract: 

This work proposes a miniaturized system able to perform multiple cell capture followed by cell-type selective release from a gold-coated biochip surface. Unlabeled lymphocytes are first specifically captured onto a DNA array by antibody-DNA conjugates. Then a laser illuminates, from below the sample under total reflection conditions, the cells spots to be released. In well-defined conditions, the energy of incoming photons is absorbed by surface electron oscillations, and then heat converted and dissipated into the neighboring medium. Because of the temperature rising, the double-stranded DNA dehybridate which enables a spatially and temporaly controlled liberation of corresponding biological objects (i.e. lymphocytes) upon laser-induced local heating.

Keywords: 

surface plasmon resonance, DNA biochip, cell sorting.

1. Introduction
2. Principe de l’expérience
3. Matériel et méthodes
4. Résultats et discussion
5. Conclusion
Remerciements

Les auteurs remercient l’Agence Nationale pour la Recherche pour le financement de ce projet (Multicells, ANR-BLANC-1519-01) ainsi que la fondation Nanosciences RTRA pour le financement de la thèse de R.B. Ce travail a également été soutenu par le Labex ARCANE (ANR-11-LABX-0003-01).

  References

Adams J.D., Kim U., Soh H.T. (2008). Multitarget magnetic activated cell sorter. Proc. Natl. Acad. Sci. U. S. A., 105, p. 18165-18170

Anderson N.L., Anderson N.G. (2002). The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics, 1, p. 845-867

Bombera R., Leroy L., Livache T., Roupioz Y. (2012). DNA-directed capture of primary cells from a complex mixture and controlled orthogonal release monitored by SPR imaging. Biosensors and Bioelectronics. 33, p. 10-16. doi.org/10.1007/978-1-61779-373-8_5

Bressan G., Rampone R., Bianchi E., Ciferri A. (1974). DNA conformation in N,N-dimethyl formamide-H2O solutions. Biopolymers, 13, p. 2227-2240.

Chen Q., Fisher D.T., Kucinska S.A., Wang W.C., Evans S.S. (2006). Dynamic control of lymphocyte trafficking by fever-range thermal stress. Cancer Immunol Immunother, 55, p. 299-311.

Dexter D.L., Barbosa J.A., Calabresi P.N. (1979). N,N-dimethylformamide-induced alteration of cell culture characteristics and loss of tumorigenicity in cultured human colon carcinoma cells. Cancer Res. 39, p. 1020-1025.

Didar T.F., Tabrizian M. (2010). Adhesion based detection, sorting and enrichment of cells in microfluidic Lab-on-Chip devices. Lab Chip. 10, p. 3043-3053

Fiche J.B., Buhot A., Calemczuk R., Livache T. (2007). Temperature effects on DNA Chip Experiments from Surface Plasmon Resonance imaging: Isotherms and Melting Curves Biophys. J. 92, p. 935-946.

Fuchs J., Dell’Atti D., Buhot A., Calemczuk R., Mascini M., Livache T. (2010a). Effects of formamide on the thermal stability of DNA duplexes on biochips. Anal. Biochem. 397, p. 132-134.

Fuchs J., Fiche J.B., Buhot A., Calemczuk R., Livache T. (2010b). Salt concentration effects on equilibrium melting curves from DNA microarrays. Biophys J. 99, p. 1886-1895. doi: 10.1016/j.bpj.2010.07.002

Grunt T.W., Somay C., Ellinger A., Pavelka M., Dittrich E., Dittrich C. (1992). The differential effects of N,N-dimethylformamide and transforming growth factor-beta 1 on a human ovarian cancer cell line (HOC-7). J. Cell Physiol. 151, p. 13-22.

Guedon P., Livache T., Martin F., Lesbre F., Roget A., Bidan G., Levy Y. (2000). Characterization and optimization of a real-time, parallel, label-free, polypyrrole-based DNA sensor by surface plasmon resonance imaging. Anal. Chem. 72, p. 6003-6009.

Hatakeyama H., Kikuchi A., Yamato M., Okano T. (2007). Patterned biofunctional designs of thermoresponsive surfaces for spatiotemporally controlled cell adhesion, growth, and thermally induced detachment. Biomaterials. 28, p. 3632-3643.

Kajiyama T., Miyahara Y., Kricka L.J., Wilding P., Graves D.J., Surrey S., Fortina P. (2003). Genotyping on a thermal gradient DNA chip. Genome Res. 13, p. 467-475.

Kim S.M., Lee SH, Suh KY. (2008). Cell research with physically modified microfluidic channels: a review. Lab Chip. 8, p. 1015-1023

Kretschmann E., Raether H. (1968). Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Zeitschrift Fur Naturforschung Part a-Astrophysik Physik Und Physikalische Chemie A23, p. 2135-2136.

Kwong G.A., Radu C.G., Hwang K., Shu C.J.Y., Ma C., Koya R.C. (2009). Comin-Anduix B, Hadrup SR, Bailey RC, Witte ON, Schumacher TN, Ribas A and Heath JR. Modular nucleic acid assembled p/MHC microarrays for multiplexed sorting of antigen-specific T cells. J Am Chem Soc. 131, p. 9695-9703. doi: 10.1021/ja9006707.

Leroy L., Bombera R., Engel E., Calemczuk R., Laplatine L., Baganizi D.R., Marche P.N., Roupioz Y, Livache T. (2014). Photo-thermal Effect for Localized Desorption of Primary Lymphocytes Arrayed on an Antibody/DNA-based Biochip. Lab Chip. 14, p. 1987-1990.

Li X.N., Du ZW, Huang Q., Wu J.Q. (1997). Growth-inhibitory and differentiation-inducing activity of dimethylformamide in cultured human malignant glioma cells. Neurosurgery. 40, p. 1250-1258; discussion p. 1258-1259.

Liotta LA, Ferrari M, Petricoin E. (2003). Clinical proteomics: Written in blood. Nature. 425, p. 905. doi:10.1038/425905a

Liu J., Bombera R., Leroy L., Roupioz Y., Baganizi D.R., Marche P.N. Haguet V., Mailley P., Livache T. (2013). Selective individual primary Cell capture Using locally bio-Functionalized Micropores, Plos One. 8, DOI 10.1371/journal.pone.0075717

Livache T., Roget A., Dejean E., Barthet C., Bidan C., Teoule R. (1994). Preparation of a DNA matrix via an electrochemically directed copolymerization of pyrrole and oligonucleotides bearing a pyrrole group. Nucleic Acids Res. 22, p. 2915-2921.

Mailley P., Roget A., Livache T. (2005). Electrochemistry of Nucleic Acids and Proteins Perspectives in Bioanalysis. Palecek E., Scheller F., Wang J. (Eds), Elsevier. vol. 1, p. 297-330.

Niemeyer CM, Sano T, Smith CL, Cantor CR. (1994). Oligonucleotide-directed self-assembly of proteins: semisynthetic DNA--streptavidin hybrid molecules as connectors for the generation of macroscopic arrays and the construction of supramolecular bioconjugates. Nucleic Acids Res. 22, p. 5530-5539.

Pozhitkov A.E., Stedtfeld R.D., Hashsham S.A., Noble P.A. (2007). Revision of the Nonequilibrium Dissociation Approach For Identifying Mixed Microbial Communities Using Oligonucleotide DNA Arrays, Nucleic Acids Res. 35, e70.

Roupioz Y., Berthet-Duroure N., Leïchlé T., Pourciel J.B., Mailley P., Cortes S., Villiers M.B., Marche P.N., Livache T., Nicu L. (2009). Individual Blood‐Cell Capture and 2D Organization on Microarrays. Small. vol. 5, n° 1, p. 493-1497

Urakawa H., Noble PA, El Fantroussi S, Kelly JJ, Stahl DA. (2002). Single-Base-Pair Discrimination of Terminal Mismatches by Using Oligonucleotide Microarrays and Neural Network Analyses. Appl. Environ. Microbiol., 68, p. 235-244.

Wang Y., Phillips C., Xu W., Pai J.H., Dhopeshwarkar R., Sims C.E., Allbritton N. (2010). Micromolded arrays for separation of adherent cells. Lab Chip. 10, p. 2917-2924. doi: 10.1039/c0lc00186d

Xiao X.J., Gao Y., Xiang J.A., Zhou F.M. (2010). Laser-Induced Thermal Effect in Surface Plamson Resonance. Anal. Chim. Acta, 676, p. 75-80.

Yeo W.S., Mrksich M. (2006). Electroactive Self-Assembled Monolayers that Permit Orthogonal Control over the Adhesion of Cells to Patterned Substrates. Langmuir, 22, p. 10816-18820.

Zhu H., Yan J., Revzin A. (2008). Catch and release cell sorting: electrochemical desorption of T-cells from antibody-modified microelectrodes. Colloids Surf B Biointerfaces. 64, p. 260-268. doi: 10.1016/j.colsurfb.2008.02.010.