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Automated video surveillance systems (AVSs) have recently become vital for ensuring 

public safety, particularly at events with huge audiences like sporting events. Machine 

(ML) and deep learning (DL) open the way for computers to think like humans even

further by including training and learning components, which artificial intelligence (AI)

already provides. In order to evaluate and make sense of surveillance data acquired by

fixed or mobile cameras mounted indoors or outdoors, DL algorithms require data

labelling and high-performance processors. Recent advances in generative adversarial

networks (GANs) for image synthesis and creation in VSSs have made it a hot topic in

the field of study to establish if a given input is typical or atypical. Therefore, this research

presents a better GAN network to recognise human gaits and to distinguish between

human actions that are normal and pathological in VSSs. To achieve this goal, we first

combine global and local features to enhance learning in crucial local regions that include

multiple key points. Two, we use metric learning to pull out shared and unique

characteristics. After features have been retrieved, they are used as input by the

classification module in order to identify GAN-generated pictures. DMO is used in this

study to perform hyper-parameter optimization (HPO) in GAN, which provides

significant metaheuristic balance between the survey and misuse phases. The suggested

model outperformed the existing model on all three datasets (CASIA-A, B, and C) used

in the validation process. The proposed model had an accuracy of 98.48% on the A dataset

and 99.87% on the B dataset, whereas the previous model had an accuracy of almost 94%

on both datasets.
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1. INTRODUCTION

The computer vision community has become more 

interested in human gait detection from video in recent years, 

despite the task's reputation for being difficult and fraught with 

problems. Gait recognition is seen as a possible next-

generation method [1], whereas other biometric technologies 

like facial recognition and fingerprinting are seen as current-

generation techniques. Gait recognition has numerous 

advantages over other biometrics, including the fact that it 

does not require the subject's active participation or physical 

touch, and that the target data does not need to be extremely 

high-resolution or extremely close up to be effective. It is also 

hard to hide one's stride. Criminals often hide their identities 

by using disguises that render facial recognition systems 

useless. Gait recognition is the only practical and efficient 

means of identification in such cases [2]. As a result, gait 

recognition is extremely sensitive to both the functional 

structure of the human body and the dynamics of human 

walking motion. In the past decade, HGR has emerged as a 

vision. Gait recognition has various uses in industry, including 

biometrics [3, 4], which is why it is widely used in fields like 

surveillance and healthcare. Several aspects affect gait 

recognition despite the unique qualities of gait features 

themselves; they include camera viewpoints, circumstances, 

clothing variations, and beneath the feet [5]. Thus, it is 

essential for correct gait categorization [6] to develop a strong 

enough framework to overcome these challenges. Furthermore, 

some biological markers, such as electromyography (EMG) 

[7-9], inertial sensors [10, 11], and plantar pressure [12], are 

also relevant for gait analysis. Such techniques allow for the 

analysis of human gait, for instance, by tracking muscle 

activity as a person walks. In recent years, gait recognition 

procedures have advanced to the point that they may be 

employed in a variety of "real-world" settings, including video 

surveillance, crime deterrence, and forensic identification [13, 

14]. 

Gait recognition and emotional state [15]. There is still a 

long way to go before gait recognition can be considered 

solved. Creating an effective approach to gait identification 
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that is invariant to multiple alterations, such as viewing-angle 

changes and the wearing or carrying circumstances of the 

individuals, is difficult. Because of this, we view the challenge 

of gait recognition in the presence of such variables or changes 

as our primary research emphasis. These confounding factors 

are common in the real world and can have a major effect on 

gait recognition accuracy. Feature extraction is a crucial part 

of gait recognition [16], which is the process of extracting 

signals that may be used for recognition from video 

arrangements that depict a person walking. This is crucial 

since there are several potential methods for signal extraction 

from a gait video series. Therefore, it is essential that as much 

discriminating information as possible be condensed 

throughout the feature extraction process. Therefore, deep 

learning-based methods might be the answer to this 

challenging recognition issue. 

Several layers of a convolution neural network (CNN) are 

used to extract the underlying structure and semantics of a 

picture, making it a form of deep learning. CNN employs some 

of its layers for down sampling and others for network 

activation [17]. Some superfluous or useless characteristics are 

also removed from the raw pictures when the deep features are 

retrieved. Improved classification accuracy requires further 

development of such characteristics. Deep learning hyper-

parameter optimization has been developed by researchers to 

improve the precision of DL methods.  

Problem Statement: The primary issues that are tackled in 

this study are: 

• Recognizing gait under varying conditions, such as

when the subject is wearing a coat and carrying a bag,

presents a significant difficulty.

• While each participant has a unique gait, there are

some striking similarities between the gaits of a few

of them. Because of this problem, the system's

performance suffers and incorrect classifications are

made.

• Some studies of gait identification employ a two-

stage procedure, first involving subject detection and

then subsequently classifying the data. On the other

hand, if the subject is not properly detected in the first

place, precise gait identification will not be achieved.

The computing time also rises because of the two-

step method.

• Long coats, half-shirts, skirts, ordinary pants, jackets,

etc. When dealing with these formats, it might be

difficult to glean the necessary information for

further categorization.

• The extraction of superfluous characteristics from the

source frames has an effect on the scheme's precision

and processing time.

Contributions: To address these problems, a novel 

framework is developed that employs deep learning and an 

assortment of optimal parameters for the classifier to improve 

human gait identification. Here are some of the major 

contributions: 

• Combining global and local characteristics

strengthens learning in crucial local regions to

improve generalisation capabilities.

• Additionally, the feature learning phase makes use of

metric learning based on training loss to learn

features that are shared by faces of the same kind and

features that may be used to differentiate between

real and fake GAN-generated faces.

• As part of GAN, DMO is used for the high-

performance optimization process (HPO). 

Here's how the rest of the manuscript is laid out: In Section 

2, we will go through some of the most recent developments 

in gait recognition technology. In Section 3, we describe the 

dataset and its methods. The suggested method's findings are 

presented in Section 4, and an immediate and last thought are 

offered in Section 5. 

2. RELATED WORKS

Using video sequences, Khan et al. [18] presented a 

completely IACO method for HGR. There are primarily four 

stages to the suggested structure. The initial process included 

standardising the database within the context of a moving 

image. Second, the characteristics of the dataset are used to 

inform the selection and refinement of one of two pre-trained 

replicas, ResNet101 and InceptionV3. The two adapted 

models were then trained by transfer learning, and features 

were retrieved. The retrieved characteristics were optimised 

with the help of the IACO algorithm. The best characteristics 

were chosen using IACO and then fed into a Cubic Support 

Vector Machine for classification. Multiclass analysis is used 

by the cubic support vector machine. The accuracy was 95.2%, 

93.92%, and 98.2% across the board, respectively, when tested 

on the CASIAB dataset from 0, 18, and 180 degrees. The 

suggested method has also been compared to other approaches 

and found to be superior in terms of accuracy and computing 

time. 

The solution described by Sharif et al. [19] efficiently deals 

with real-time issues such as changing viewing angles and 

different gaits. The proposed novel framework consists of the 

following steps: (a) capturing video in real-time; (b) extracting 

features. The most cutting-edge machine learning classifiers 

are then used to categorise the characteristics with the greatest 

degree of discriminatory power. Both the CASIA B dataset 

and a real-time recorded dataset were used to fuel the 

simulation process. Specifically, the accuracy is between 

95.26 and 96.60 percent on several datasets. The findings 

demonstrate the superiority of our suggested framework over 

numerous established methods. 

The Vision Transformer (ViT) is used for gait detection in 

Gait-ViT by Mogan et al. [20], which incorporates an attention 

mechanism. When implementing the suggested Gait-ViT, we 

first averaged a series of photos taken during the gait cycle to 

produce the gait energy image. Next, flattening and patch 

embedding are used to convert the picture patches into 

sequences. In order to recover the patch positions, position 

embedding is performed on the sequence of patches alongside 

patch embedding. After receiving the vector sequence, the 

Transformer encoder was used to generate the final gait 

representation. When determining a sequence's categorization, 

the initial item was fed into a multi-layer perceptron for label 

prediction. The Vision Transformer model's superior 

performance over state-of-the-art approaches is demonstrated 

by the suggested method's results. 

In order to recognise gaits captured by the Kinect, Bari and 

Gavrilova [21] suggest using a convolutional neural network 

called KinectGaitNet. Each joint's 3D coordinates are 

modified during the gait cycle to yield a new input illustration. 

As an alternative to employing hand-crafted features, the 

suggested KinectGaitNet was trained directly on the 3D input 

representation. The KinectGaitNet architecture eliminates the 

need for resampling gait cycles, and the residual learning 
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approach guarantees precision without deterioration. With an 

accuracy of 96.91 percent on the UPCV and 99.33 percent on 

the KGB dataset, the proposed deep learning architecture 

outperforms all existing algorithms for Kinect-based gait 

identification. To the best of our knowledge, this technique 

was the first deep learning-based architecture to use a novel 

3D input representation of joints. With fewer parameters and 

less time spent in inference, it outperforms both conventional 

and deep learning techniques. 

The performance under different variables was improved by 

combining a pre-trained VGG-16 model with a multilayer 

perceptron, as described by Mogan et al. [22]. First, we 

averaged the silhouettes throughout a walking cycle to get the 

gait energy picture. In order to understand the gait 

characteristics of the obtained gait energy picture, we first 

apply transfer learning and fine-tuning approaches to the pre-

trained VGG-16 model. After that, we used a multilayer 

perceptron to figure out how each gait trait was connected to 

its respective person. At last, the classification layer 

determines the topic. The CASIA-B dataset, OU-ISIR dataset 

D, and OU-ISIR big population dataset are used in 

experiments to assess all of the datasets examined. 

In this paper, Khan et al. [23] offer a lightweight DL 

approach to human gait identification. The suggested 

procedure involves a series of stages for selecting features for 

classification using pretrained deep models. As a starting point, 

we evaluate two lightweight pretrained models and make 

adjustments to them by adding or freezing layers in the centre 

of the network. Subsequently, analysis was used to accomplish 

the fusion, and subsequently, an enhanced moth-flame 

optimization approach was used to get optimal results. 

Extreme learning machines are used to classify the final 

optimal features (ELM). Experiments were run on CASIA B 

and TUM GAID, two publicly available datasets, with an 

average accuracy of 91.20 and 98.60%, respectively. The 

proposed method was found to be more precise than current 

state-of-the-art procedures. 

Lower limbs EMG-based gait identification algorithms are 

made more reliable and accurate by Cai et al. [24]. The work 

began by presenting a feature combination selection–based 

Linear Discriminant Analysis–Particle Swarm Optimization–

Long Short-Term Memory (LDA–PSO–LSTM) method, 

which was then experimentally evaluated for its identification 

accuracy. With a maximum accuracy of 97.02%, LDA-PSO-

LSTM achieved an average recognition rate of 94.89%. 

Second, we examined the LDA-recognition LSTM's accuracy 

(92.17%) and compared it to other methods. In experiments, 

the PSO optimization model demonstrated strong recognition 

capabilities. At the end, we compared LDA-LSTM to every 

possible combination of classifiers and found that LDA-

LSTM yielded the greatest recognition rate. The outcomes 

show that LDA-PSO-LSTM has clear benefits as a 

classification model for gait recognition.  

3. PROPOSED SYSTEM

3.1 Dataset 

In this study, we used the CASIA A gait dataset, the CASIA 

B gait dataset, and the CASIA C gait dataset [25], all of which 

are accessible for public use. Figure 1 displays the sample 

frames for each dataset. Here is a quick summary of several 

connected data sets: 

Figure 1. Frames representative of the gait recognition 

datasets that were chosen 

CASIA Field recordings from two consecutive days were 

used to create a gait dataset. Twenty participants walked 

through three different camera angles—lateral (0°), oblique 

(45°), and frontal (90°)—to create this dataset. With an 

average gait sequence duration of around 90 frames collected 

at 25 fps and a resolution of 352x240, the dataset has a total of 

240 gait sequences. A total of 168 video sequences were used 

in this study, some for training and some for assessment. 

The CASIA B gait dataset is frequently employed as a 

database for multi-view gait identification. A total of 124 

participants (93 men and 31 women) were videotaped while 

walking around an indoor arena from 11 various angles 

utilising USB cameras. Each of the 18 possible directions of 

view is ordered as follows: 0 degrees, 18 degrees, 36 degrees, 

54 degrees, 72 degrees, 90 degrees, 108 degrees, 126 degrees, 

144 degrees, 162 degrees, and 180 degrees Six video 

sequences of the same person wearing a coat (WC) and two 

video sequences of the same person carrying a bag (CB) were 

captured to serve as gait sequences for multi-view. The frame 

size of the movies was 320 x 240, and the recording speed was 

25 frames per second. That means there are a total of 13,640 

video sequences in the dataset, or 1011124. Only videos with 

a 90-degree field of view were evaluated for this post, for a 

grand total of 1240 clips. The 70:30 validation method was 

used, as in the CASIA A dataset. 

The CASIA C gait dataset is a thermal camera night time 

gait data set. For the dataset, 153 participants recorded gait 

sequences in a natural setting (130 males and 23 females). 

Walk with a bag (CB), slow walk (SW), normal walk (NW), 

and fast walk (QW) are the four types of gait changes that were 

recorded in each gait sequence (QW). During the recording 

process, participants walked a total of eight times: four times 

at a normal pace, twice while carrying a bag, twice at a slower 

pace, and twice at a faster pace. As a result, 1530 gait 

sequences were captured at a rate of 320 per 240. In addition, 

the suggested system was trained and tested with 1071 video 

sequences. 

3.2 Real-time processing 

Since the well-known application of intelligent video 

surveillance monitors security in real time, utilising numerous 

cameras in defence systems, the study of HGR in real time 
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using video processing is a thriving field of study. However, a 

superior system is not yet accessible because of the significant 

difficulties in this field, such as video analysis or 

comprehension. Football and cricket, in particular, use real-

time video processing to take swift action in the face of 

violence. Although more recent real-time gait identification 

systems have been established, there are still significant 

restrictions to achieving the necessary performance [25, 26]. 

3.3 Low-quality video processing 

High-Gain Regression (HGR) in low-quality video 

arrangements is challenging because of the crowded backdrop 

and concealed information. Since the information in video is 

compressed, potentially leading to the loss of critical 

characteristics, image solidity is an essential part of video 

processing. As a result, effective improvement techniques are 

required to provide higher-quality video frames and a 

consequently higher recognition rate. 

3.4 Proposed GAN 

Most face detection algorithms that use GAN only look at 

global features. But the local characteristics have been very 

important in the field of gait recognition. So, to improve the 

ability to generalise, we recommend putting more emphasis on 

learning about important local areas and combining global and 

local features. In this section, the proposed algorithm's main 

structure is explained first, and then each of its three 

modules—the global feature extraction module and the 

classification module—is explained in detail. 

3.4.1 Main architecture 

Figure 2. Main architecture of the projected algorithm 

As shown in Figure 2, the overall construction of the 

projected algorithm comprises two steps: feature learning and 

classification learning. Notice that the cubes in Figure 2 are 

just some simple signs rather than detailed structures. The 

detailed structures of three modules are given in the following 

three subsections. In the feature learning step, firstly, the 

features from the global and local feature extraction modules 

are merged; secondly, metric learning is used to further learn 

common features in the same type of gait and discriminative 

features between natural and GANs-generated images. Metric 

learning transforms the merged features into an embedding 

feature with fixed dimensions (128 dimensions in this paper) 

via a fully connected (FC) layer. Thereafter, the training loss 

is applied to supervise the metric learning. By minimising the 

training loss defined in Eq. (1), gait images with the same label 

will have similar features after being extracted by the feature 

extraction modules. In the classification learning step, the 

features extracted from the global and local modules are fed 

into the classification module to obtain the predicted results. 

Notice that the metric learning is not considered in the testing 

phase because it needs labels to supervise the feature 

distribution and there is no label when making decisions. The 

input images are processed by the feature extraction module 

and the classification module to directly predict the result. The 

details of three modules are presented in the following three 

subsections. 

Given the feature X and weight vector W, the training loss 

is presented as follow, 

𝐿𝑔𝑎𝑖𝑡 𝑙𝑜𝑠𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 =

−
1

𝑁
∑ 𝑙𝑜𝑔

𝑒
𝑠(cos (𝜃𝑦𝑖

+𝑚))

𝑒
𝑠(cos (𝜃𝑦𝑖

+𝑚))
+∑ 𝑒

𝑠 cos𝜃𝑗𝑛
𝑗=1,𝑗≠𝑦𝑖

𝑁
𝑖=1

(1) 

where, N and n signify the batch size and the sum of categories, 

correspondingly, θ denotes the angle between W and X, s 

represents the scaling factor, m represents the additive angular 

margin penalty, and yi is the label value of the i-th sample. 

3.4.2 Global feature extraction module 

SE-Residual block is a main component in the global 

feature extraction module. It embeds the SE block is presented 

in Figure 3. As exposed in Figure 3, if the input x and the 

output y have matched dimensions, we use the structure of 

Figure 3(a), otherwise Figure 3(b) (matching dimensions by 

1×1 convolution). Each architecture of SE-Residual block has 

two convolutional groups and a SE block. A convolutional 

group includes convolution (Conv), batch normalization (BN), 

and ReLU activation. In real application, the dimensions of the 

input and output of each SE-Residual block are already known 

when we design a network model, thus choosing Figure 3(a) 

or Figure 3(b) is also known in the model design phase. 

Figure 3. The input and output dimensions might be the 

same or different, depending on the architecture of the SE-

Residual blocks 

The detailed architecture of the global feature extraction 

module is shown in Figure 4. This module is composed of four 

SE-Residual blocks, a convolutional group, and four 

maxpooling layers. The SE-Residual block can extract 

inherent effectiveness of features. The global feature 

extraction module is a relatively shallow network due to the 

small size of input face and the uncomplicated classification 

task. Regarding the network parameters, the kernel size of the 

convolutional group is 7×7 with stride 1, while those of the 
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rest of convolutional layers in four SE-Residual blocks are 3×3 

with stride 1; The number of kernels in the convolutional 

group and four SE-Residual blocks is 32, 32, 64, 64, and 128, 

respectively; The kernel sizes of all maxpooling layers are 2×2 

with stride 2. 

Figure 4. Construction of the global feature extraction 

component 

3.4.3 Local feature extraction module 

The key-points are some important landmarks in the HGR 

images. So, they are utilized to determine the important local 

areas. We use the gait landmark detection code from Dlib C++ 

library to collect 68 keypoints. Then, we find that these key-

points mainly distribute in four areas, i.e., ankle points, toe 

points, shoulder points and hand points. To obtain these four 

areas, a rectangular is used to crop each area in each gait image. 

The rectangular is the smallest rectangle containing all key-

points near each area. Besides, to contain each area completely, 

each rectangular is extended around 10 pixels. Hereafter, four 

cropped patches are normalized to 32×32.  

Figure 5. Architecture of the local feature extraction 

component 

The detailed architecture of the local feature extraction 

module is shown in Figure 5. Compared with the global 

module as shown in the Figure 4, a group of SE-Residual 

blocks and a maxpooling layer are removed because of the 

following concatenation operation between the local module 

and the global module, whose outputs should have the same 

resolution. The four cropped areas obtained from the extracted 

key-points are fed into the residual attention network one by 

one to output four groups of features, i.e., F1, F2, F3, and F4. 

Then, these four groups of features are fused by an add 

operation to obtain the final feature of the local module. The 

number of kernels in the first convolutional group and three 

SE-Residual blocks is 32, 32, 64, and 128, respectively. 

3.5 Classification module 

A layer make up this component. For the convolutional 

layer, a kernel size of 3x3 and a stride of 1 is used. Two 

neurons constitute the FC layer (two categories: natural and 

generated). 

Softmax loss, the most common classification loss function, 

is taken into account for its ability to efficiently oversee the 

classification module, 

𝐿𝑠𝑜𝑓𝑡𝑚𝑎𝑥 = −
1

𝑁
∑ 𝑙𝑜𝑔

𝑒
𝑊𝑦𝑖

𝑇 𝑥𝑖+𝑏𝑦𝑖

∑ 𝑒
𝑊𝑗

𝑇𝑥𝑖+𝑏𝑗𝑛
𝑗=1

𝑁
𝑖=1  (2) 

where, N is the sum of samples in a batch, n is the sum of 

categories, x i is a sample from deep feature x, y i is a sample's 

label, W is a weight vector, and b is a bias factor. Loss L 

softmax should be kept as small as possible. DMO, defined in 

Section 3.5.1, is the ideal choice for the weight and bias terms 

specified by HPO. 

3.5.1 Dwarf mongoose optimization algorithm 

Unlike foraging, which is done in groups of dwarf 

mongooses, food seeking is a solitary activity. These creatures 

are seminomadic, so when they construct a sleeping sound, 

they do it near an especially rich food source. To find optimal 

solutions, the system simulates the behaviour of this creature 

statistically. 

Initialization is a random process in all population-based 

optimization techniques. After then, all solutions converge on 

the global best optimum as a result of the intensification and 

diversification criteria. In a similar vein, the DMO begins its 

solution by seeding the network with a random set of 

candidates. This sample population is produced at random 

between the minimum and maximum allowable values for a 

given issue. 

𝑋 = [

𝑥1,1 𝑥1,2 ⋯ ⋯ 𝑥1,𝑑−1 𝑥1,𝑑

𝑥2,1 𝑥2,2 ⋯ ⋯ 𝑥2,𝑑−1 𝑥2,𝑑

⋮
𝑥𝑛,1

⋮
𝑥𝑛,2

⋮
⋯

⋰
⋯

⋮
𝑥𝑛,𝑑−1

⋮
𝑥𝑛,𝑑

] (3) 

where, X represents the current candidate population that has 

been produced at random using Eq. (4), x (i,j) represents the 

location of the ith population along the jth dimension, n 

represents the total size of the population, and d denotes the 

problem's dimension. 

𝑥𝑖,𝑗 =  𝑢𝑛𝑖𝑓𝑟𝑛𝑑(𝑉𝑎𝑟𝑀𝑖𝑛, 𝑉𝑎𝑟𝑀𝑎𝑥, 𝑉𝑎𝑟𝑆𝑖𝑧𝑒) (4) 

where, unifrnd is a uniformly distributed random integer, 

VarMin is the minimum bound, VarMax the maximum bound, 

and VarSize the size of the problem space. After each iteration, 

the best solution is the best one found so far. 

Exploitation (each mongoose conducts a comprehensive 

search in each search region), also known as bountiful food 

source or new resting mound), also known as diversification, 

are the two phases of the DMO. The DMO's alpha group, scout 

group, and babysitters are the three main social institutions 

responsible for implementing the aforementioned stages. 

The apex female () is the primary decision maker in the 

household and is chosen using the Eq. (5). 

𝑎 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖
𝑛
𝑖=1

(5) 

The sum of n and bs is equal to the number of mongooses 

that are in the alpha group. The symbol for the number of 

babysitters is "bs," and the sound made by the female alpha to 

direct the attention of the other members of the unit is 
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represented by the letter "peep." 

The presence of ample food is what determines the sleeping 

mound, as seen in the Eq. (6). 

𝑋𝑖+1 = 𝑋𝑖 + 𝑝ℎ𝑖 ∗ 𝑝𝑒𝑒𝑝 (6) 

At the end of each cycle, the sleeping sound is evaluated 

using Eq. (7), where phi is a random value in the range [ 1,1]. 

𝑠𝑚𝑖 =
𝑓𝑖𝑡𝑖+1−𝑓𝑖𝑡𝑖

𝑚𝑎𝑥{|𝑓𝑖𝑡𝑖+1,𝑓𝑖𝑡𝑖|}
(7) 

Once a sleeping sound is discovered, the mean is calculated 

using Eq. (8) 

𝜑 =
∑ 𝑠𝑚𝑖

𝑛
𝑖=1

𝑛
(8) 

Once the criteria for switching babysitters have been met, 

the scouting phase begins, during which the next sleeping 

sound is evaluated based on an alternate food source. 

Since mongoose are not known to return to their previous 

sleeping sound, the scouting party must always be on the 

lookout for new ones. In DMO, the mongoose is known to 

forage and scout at the same time, presumably because the 

further the unit forages, the greater its chances of discovering 

the next sleeping sound. With the help of Eq. (9). 

𝑋𝑖+1 =

{
𝑋𝑖 − 𝐶𝐹 ∗ 𝑝ℎ𝑖 ∗ 𝑟𝑎𝑛𝑑 ∗ [𝑋𝑖 − 𝑚⃗⃗ ]   𝑖𝑓 𝜑𝑖+1 > 𝜑𝑖

𝑋𝑖 + 𝐶𝐹 ∗ 𝑝ℎ𝑖 ∗ 𝑟𝑎𝑛𝑑 ∗ [𝑋𝑖 − 𝑚⃗⃗ ]                  𝑒𝑙𝑠𝑒
(9) 

where, rand is a random number among [0, 1], 𝐶𝐹 =

(1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)
(2−

𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)

shows the parameter that guides 

iterations. 𝑀⃗⃗ = ∑
𝑥𝑖×𝑠𝑚𝑖

𝑥𝑖

𝑛
𝑖=1  indicates the direction of force 

that drives a mongoose to a new den. 

4. RESULTS AND DISCUSSION

In this part, we show how our proposed system has been 

tested with many data sets and evaluated with various metrics. 

In order to do this, we used a 70:30 split for training and testing 

on three publicly available datasets. After data partitioning, a 

pre-trained model was loaded, and activation was determined 

using cross entropy. The DMO algorithm decided on a 

learning rate of 0.001 and an initial mini batch size of 64. This 

procedure was built in Matconvnet, a deep learning toolkit in 

MATLAB2018a. The sensitivity, precision rate, false-

negative rate, false-positive rate, area under the curve (AUC), 

F1-score, and accuracy were used to evaluate the system. The 

total amount of time needed by the suggested system to do a 

categorization was also determined. 

4.1 Performance metrics 

The confusion matrix for the binary classification was 

created to assess the efficacy of the suggested technique for 

labelling human anomalies. Comparisons were made between 

the GAN-DMO model's results and those of similar pre-

existing models based on HGR. The effectiveness of the 

proposed method was evaluated using four statistical indices 

(True Positive [TP], False Positive [FP], False Negative [FN], 

and True Negative [TN]) computed from the resultant 

confusion matrix (TN). Statisticians used these numbers to 

determine things like accuracy, sensitivity, specificity, and the 

F1-Score. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
(10) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
(11) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
(12) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃+𝑇𝑃
(13) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
(14) 

Area Under Curve (AUC) and Receiver Operating 

Characteristics (ROC) curves were created to quantitatively 

estimate the performance of the proposed GAN-DMO model. 

Tables 1 and 2 compare the proposed GAN model with and 

without optimization (DMO) on three separate datasets. 

Table 1. Comparison of the average performance metrics of 

GAN without DMO 

Metric CASIA B CASIA C CASIA A 

Precision 95.73% 66.74% 95.42% 

F1-score 96.73% 79.73% 95.41% 

Accuracy 96.74% 90.66% 95.42% 

Sensitivity 94.73% 92.00% 95.40% 

Specificity 94.95% 88.74% 98.85% 

AUC 97.71% 93.67% 96.35% 

Figure 6. Graphical comparison of Proposed GAN model 

without DMO 

In the analysis of accuracy, the GAN model achieved 

95.40% on A dataset, 96.73% on B dataset and 90.65% on C 

dataset. When the GAN model is tested with three datasets 

such as A, B and C, it achieved 95.40%, 94.73% and 92% of 

sensitivity. In the A dataset, the GAN model achieved 98.85% 

of specificity, 95% of precision and F1-score and 96.35% of 

AUC, where the GAN model achieved nearly 94% to 97% of 

specificity, precision, F1-score and AUC on CASIA B dataset. 

While comparing with all datasets, CASIA C provides low 

performance on GAN model, i.e., it achieved 88.74% of 

specificity, 66.74% of precision, 79.73% of F1-score and 

93.67% of AUC. Figure 6 presents the graphical comparison 

of proposed GAN without DMO for three datasets. 
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Table 2. Analysis of GAN model with DMO 

Metric CASIA B CASIA C CASIA A 

Precision 99.848 75.00 98.557 

F1-score 99.872 85.525 98.457 

Accuracy 99.78 93.75 98.482 

Sensitivity 99.864 99.632 98.523 

Specificity 99.969 92.426 99.579 

AUC 99.85 95.05 99.78 

When the GAN model is tested with DMO, it achieved 

better performance on three different datasets such as A, B and 

C. In the CASIA A dataset, the GAN-DMO model achieved

nearly 98% to 99% of accuracy, sensitivity, specificity,

precision, F1-score and AUC. In the analysis of CASIA C

dataset, the proposed GAN-DMO model achieved 93% of

accuracy, 99% of sensitivity, 92% of specificity, 75% of

precision, 85.52% of F1-score and 95% of AUC. In the CASIA

B dataset, the proposed model achieved 99% on all metrics

such as accuracy, precision, sensitivity, specificity, F1-score

and AUC. Figure 7 presents the graphical analysis of proposed

GAN-DMO for all dataset.

Figure 7. Analysis of GAN-DMO model for three datasets 

4.2 Comparative analysis of proposed model 

Table 3 presents the techniques in terms of all datasets. The 

existing techniques such as IACO [18] on CASIA B, ResNet 

[19] on CASIA B, ViT [20] on CASIA-B, VGG-16 [22] on

CASIA-B, ELM [23] on CASIA-B are considered, but the

proposed GAN-DMO model uses three datasets. Therefore,

the techniques from [18-23] are implemented with these

datasets and results are averaged.

Table 3. Comparative analysis of GAN-DMO with various 

techniques 

Techniques CASIA A CASIA B CASIA C 

IACO 0.8863 0.8775 0.8207 

ResNet 0.8997 0.8925 0.8297 

ViT 0.9111 0.9098 0.8775 

VGG-16 0.9088 0.9095 0.8525 

ELM 0.9437 0.9449 0.8965 

GAN-DMO 0.9848 0.9987 0.9377 

In the CASIA-A dataset, the existing techniques such as 

IACO, ResNet achieved 88% to 89%, VGG and ViT achieved 

90% to 91%, ELM achieved 94% and proposed model 

achieved 98.48%. The reason for better performance is that the 

GAN’s HPO is optimized by DMO, where existing techniques 

didn’t focus on tuning the parameters for high classification 

accuracy. Likewise, the analysis of CASIA B dataset, the 

existing techniques achieved nearly 87% to 94% and 82% to 

89% of accuracy on CASIA C, where proposed model 

achieved 99% and 93% of accuracy on CASIA-C dataset. 

Figure 8 provides the graphical representation of proposed 

model with existing techniques. 

Figure 8. Analysis of accuracy on three datasets 

5. CONCLUSION

Our suggested general method combines global and local 

characteristics with metric learning based on the training loss 

of gait prediction to enhance the generalisation potential of 

existing GAN-generated gait image recognition systems. The 

experimental findings show that the suggested approach 

outperforms several pre-existing algorithms and provides an 

acceptable generalisation capacity, with average accuracy 

values exceeding 0.99 across all three testing datasets. Here 

are some of the more important ones: By combining global and 

local features extracted by the residual attention network, a) 

the learning on crucial local areas is reinforced, and b) the 

metric learning is applied to obtain common features in the 

same type of gait images and discriminative features between 

natural and GAN-generated gait in the feature learning phase. 

There is little doubt that the suggested method greatly benefits 

from HPO optimization since its performance is greatly 

enhanced. Possible future actions are listed here. 

• The optimum fusion method can be chosen

depending on the accuracy of the methods used.

• In addition, the OU-MVLP, OU-LP-BAG, and

TUM-GAID datasets will be taken into account

throughout the experimentation phase.

• Increase your recognition precision by using a two-

pronged strategy that combines techniques like

optical flow with raw picture analysis.

• Get in-depth information by utilising cutting-edge

deep models, such as Efficient Net, for feature

extraction.
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