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The main objective of this study is to investigate the adaptation of wind turbines at the 

Gibara II Wind Farm in Cuba, which operates in a tropical climate that differs from the 

typical conditions in which these turbines are designed and manufactured in the northern 

hemisphere. The study utilizes condition monitoring techniques supported by Big Data 

acquired through a supervisory control and data acquisition (SCADA) system. By 

statistically processing normalized databases using multiple linear regression equations, 

the study establishes mathematical models that characterize the behavior of critical 

variables such as bearing, oil and winding temperatures, electrical generation, and 

specific climatic conditions unique to the wind farm under analysis. These models are 

essential for advancing condition-based maintenance (CBM) practices and developing 

preventive measures to mitigate functional failures. The significance of this research lies 

in the historical technical performance of the equipment under investigation, highlighting 

the importance of addressing the challenges posed by different environmental conditions. 

The study was conducted using the relevant regulatory technical documentation 

pertaining to the design of the wind turbines at the Gibara II Wind Farm. 
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1. INTRODUCTION

Condition monitoring (CM) is a technique used to assess the 

condition of machines and prevent failures by recommending 

maintenance actions when necessary. It is an integral part of 

condition-based maintenance (CBM), an advanced strategy 

that relies on monitoring equipment condition data [1, 2]. CM 

measurements can include various data sources such as 

vibration, acoustic emission, and oil analysis from wind 

turbine components [3]. The main objective of CBM is to 

optimize maintenance activities and reduce costs. Unlike 

traditional preventive maintenance, CBM is based on 

monitoring and analyzing system parameters, initiating 

maintenance when a condition variable crosses a threshold 

value [4, 5]. 

An essential component for an efficient maintenance 

procedure is the Condition Monitoring System (CMS), which 

plays a crucial role in early problem detection. By identifying 

potential issues at an early stage, maintenance tasks or repairs 

can be scheduled proactively, leading to improved machine 

availability and reduced maintenance costs [6]. According to 

[7], implementing condition monitoring, along with failure 

detection systems (FDS), is a viable approach to lowering 

maintenance costs. FDS provides an early warning system that 

complements the condition-based maintenance approach by 

enabling maintenance actions to be taken before failures occur. 

Therefore, the implementation of an FDS for wind turbines 

offers various benefits [8]: 

• Early detection of faults or abnormal behavior.

• Improved equipment reliability and uptime.

• Reduction in unscheduled downtime.

• Optimal planning of maintenance activities.

• Cost savings through targeted maintenance interventions.

• Enhanced safety by preventing catastrophic failures.

• Improved performance and energy efficiency.

• Enhanced data-driven decision-making for maintenance

strategies.

• Monitoring at remote sites.

• Capacity factor improvement.

The CM and FDS are essential tools for effective 

maintenance programs, especially in the wind turbine industry, 

as they enable proactive and cost-effective maintenance 

practices. 

For the application of a correct CBM program, three 

fundamental steps must be followed [2, 9, 10]. 

• Data acquisition.

• Data processing.

• Maintenance decision making.

With favorable data acquisition and proper signal

processing techniques, it becomes possible to detect faults in 

components while they are in operation. This enables the 

implementation of timely actions to prevent damage or failure 

of the mechanisms. As a result, maintenance tasks can be 

efficiently planned and scheduled, leading to improved 

reliability, availability, capacity, and safety during downtime. 
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Ultimately, this approach reduces maintenance and operating 

costs [11]. Monitoring techniques are employed to measure 

physical variables that serve as indicators of the machine's 

condition. These variables are then analyzed by comparing 

them to a range of normal values to evaluate the presence of 

deteriorating conditions [12]. 

By employing on-line condition monitoring systems 

equipped with fault detection algorithms, mechanical and 

electrical faults in various system components can be detected 

before they become visually or acoustically evident. This 

proactive approach helps prevent major defects that could lead 

to unscheduled turbine shutdowns, thereby avoiding 

significant economic costs [13]. Sensors monitor all these 

components, and the signals they capture are transmitted to the 

monitoring unit. Based on the collected data, the monitoring 

unit makes informed decisions, including issuing alarm signals 

or initiating turbine shutdowns when necessary [14]. Detecting 

failures in advance can prevent substantial losses caused by 

generator breakage or damage to other turbine elements. 

Additionally, it helps mitigate the costs associated with the 

ungenerated energy during equipment repairs. Turbine failures 

can stem from issues with the impeller, such as blade 

imbalances, torque oscillations, and flow problems, as well as 

external disturbances and transmission or coupling problems 

like shaft misalignment or gearbox failures [15]. 

The gearbox is responsible for the majority of turbine 

failures, even though electrical systems also frequently 

experience malfunctions. As a result, these components are 

considered critical within the turbine [16]. For this reason, our 

research focused on implementing condition monitoring 

techniques specifically for these components at the Gibara II 

Wind Farm. The use of CM techniques is prevalent throughout 

the industry, and their benefits are particularly evident in 

offshore wind farms. This is due to not only the high costs 

associated with offshore operation and maintenance but also 

the typically robust nature of these systems [17]. Figure 1 

illustrates the concept of the P-F (Potential-Failure) period, 

which represents the time interval between the detection of a 

potential failure and its manifestation as a functional failure. 

Point P represents the moment when the failure cause is 

detectable using the chosen technique, while F signifies the 

failure point when the equipment's performance falls below 

the lower limit of the normal range [12, 18]. 

 

 
 

Figure 1. P-F interval [12, 18] 

 

For each case, it is necessary to select the most appropriate 

technique that has the most convenient P-F interval, and to 

design the monitoring frequency appropriately, so that there is 

a time interval such that when a potential failure is detected, it 

is always possible to schedule and execute a corrective 

intervention, otherwise there is no sense in applying Condition 

Monitoring [18]. The main techniques for CM are vibration 

analysis, acoustic emission, temperature and oil residue 

analysis; these techniques are very well established in the 

industry [19]. 

Temperature monitoring is a widely used method in 

condition monitoring (CM) for identifying potential failures 

associated with temperature changes in equipment. This 

technique is frequently applied in the wind power industry to 

monitor components such as bearings, liquids, and generator 

windings. Various sensors, including optical pyrometers, 

resistive thermometers, and thermocouples, are utilized to 

measure temperatures [20]. However, due to the stochastic 

nature of wind turbines' operating environment, their 

performance and health status are significantly influenced by 

environmental and operating conditions. Therefore, gaining a 

better understanding of these factors is crucial for developing 

more reliable condition monitoring solutions for wind turbines 

[21]. Generally, there are three common approaches to 

temperature monitoring [22]: 

1. Measurement of temperatures at local points, using 

surface or embedded temperature detectors. 

2. Temperature monitoring of the larger area of the machine, 

using thermal imaging. 

3. Measurement of temperature distribution in machine or 

bulk fluids. 

Monitoring the operational temperature is a crucial aspect 

of performance monitoring. It has been observed that 

monitoring component temperatures, particularly in the 

trunnion bearing where lubrication issues may arise, is closely 

associated with wear in machine components [23]. While there 

has been an increase in wind turbine failures caused by 

excessive generator temperatures, the development of wind 

energy continues to be a prominent trend for the foreseeable 

future. Wind energy is recognized as one of the most efficient 

forms of renewable energy [24]. 

Cuba is embracing wind energy as a potential replacement 

for its conventional energy sources, taking advantage of the 

favorable wind speed conditions in the eastern region of the 

country. The Gibara II WF serves as an example of this 

transition. However, after several years of operation, 

specialists at the wind farm noticed the early occurrence of 

technical alarms detected by the SCADA system, specifically 

related to anomalies in aggregate temperatures and electricity 

generation. For this purpose, measurements of various 

parameters such as those listed in Table 1 were available, but 

the correlation between them was not known, posed a 

challenge in developing prediction models and limited the 

possible prediction models and limited their development. 

 

Table 1. SCADA-monitored parameters chosen for CM 

studies at WT 

 
 Parameters U Correlation 

1 
Temperature of generator bearing 1 

(T1) 
℃ 

¿? 

2 
Generator Bearing 2 Temperature 

(T2) 
℃ 

3 Winding temperature (T3) ℃ 

4 Gearbox oil temperature (T4) ℃ 

5 
Temperature of gearbox high shaft 

bearing (T5) 
℃ 

6 Power (G) kW 

7 Wind speed (Vv) m/s 

8 Ambient temperature (T6) ℃ 

9 Month (Month)  

10 Time (Hour)  
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Temperature monitoring is a common practice in wind 

turbines, particularly for specific areas such as the stator core 

and cooling fluids in large electrical machines like WTGs. 

While these measurements can provide general indications of 

changes occurring within the machine, their effectiveness is 

greatly enhanced when strategically placed and continuously 

monitored. Generator temperatures are directly influenced by 

electrical loads and environmental conditions. Therefore, 

when temperature measurements are combined with 

information about the system's condition, it enables effective 

condition monitoring [25]. Various mathematical methods are 

employed to construct the normal operating model for wind 

turbine generator temperature. This model is then utilized to 

predict the generator temperature at each time step, facilitating 

ongoing monitoring of its behavior [26]. 

The rest of the document is structured as follows: Section 2 

describes the proposed methodology. Section 3 presents the 

results and discussion, with the application of models to 

prevent functional failures. Finally, Section 4 shows the 

conclusions. 

 

 

2. MATERIALS AND METHODS 
 

The researchers at the Gibara II Wind Farm implemented 

condition monitoring (CM) techniques to investigate changes 

in the cooling system behavior of the Goldwind WT Model 

S50/750 turbines. The aim was to identify the underlying 

causes of temperature-related failures and prevent more 

significant failures from occurring. By detecting early warning 

signs of impending failures, prompt action can be taken to take 

the affected machine offline for repair. This proactive 

approach helps minimize the extent of damage to the 

components, thereby reducing repair costs. However, it is 

important to consider the cost of implementing and 

maintaining the monitoring system, ensuring that the potential 

savings outweigh the associated expenses [27]. It should be 

noted that temperature monitoring methods do not directly 

detect faults or their causes. Instead, they provide indications 

of potential failures that require attention [28]. In the studied 

WT model, six PT 100 sensors are used to measure 

temperatures, including gearbox oil temperatures, bearing 

temperature, and ambient temperature, at ten-minute intervals 

[29]. 

The bearing temperature should be in a certain range during 

normal wind turbine operating conditions. IEEE 841 states that 

stabilized bearing temperature increases at rated load should 

not exceed 45℃ [30]. An unforeseen rise in component 

temperature can be an indication of factors such as excessive 

load, inadequate lubrication, or potentially ineffective cooling 

mechanisms [26]. Furthermore, a sudden temperature increase 

during regular operation frequently signifies a failure in wind 

turbine bearings [31]. Similarly, gearbox oil temperature 

should be in a certain range during nominal wind turbine 

operating conditions [32]. Therefore, temperature monitoring 

can reveal the health status of wind turbine bearings and 

gearboxes [33]. 

CBM facilitates a shift from reactive maintenance to 

proactive strategies, leading to improved maintenance time 

optimization and the prevention of early system failures. The 

use of SCADA systems for monitoring wind turbines has 

gained increased prominence, primarily due to the availability 

of data without incurring additional costs [34]. Modern wind 

turbines are equipped with remote monitoring systems 

facilitated by SCADA, enabling continuous surveillance. 

Through these systems, operators can monitor various 

variables measured within the turbines, including alarms, 

warnings, and statuses, either in real-time or by accessing 

historical records [35]. 

A comprehensive overview of CM methods for various 

wind turbine components is presented in the study [36]. 

Temperature is commonly recognized as a crucial indicator for 

assessing the health of many wind turbine components and is 

often recorded automatically. It is widely agreed upon that 

SCADA-generated databases are essential for constructing the 

normal operating model [25, 37, 38]. However, there is a 

limitation to the reliability of these models due to the wide 

range of SCADA data values observed under varying 

operating conditions. Detecting early faults solely from 

SCADA data without appropriate data analysis tools can be 

challenging [39]. Consequently, for the specific study 

conditions, where ample data and measurements are available, 

twelve distinct operating conditions are identified. These 

conditions closely correspond to the four climatic seasons 

experienced throughout the year and the three variations in 

environmental conditions occurring within a day. 

In the research [26], multiple linear regression analysis is 

recognized as a commonly employed statistical method for 

analyzing complex data involving multiple factors. It is 

utilized to examine and establish the relationship between 

various variables. To ensure dependable outcomes, it is crucial 

to carefully select and include logical variables in the analysis. 

Hence, MLRM can serve as a fundamental framework for a 

novel approach to accurately predict and monitor temperatures 

within WTs. This is achieved by calculating the correlation 

between observed and predicted values of the target variable, 

which is influenced by historical generator temperatures. By 

utilizing MLRM, it becomes possible to forecast temperature 

changes efficiently and reliably within WTs. With the use of 

professional software, the data collected was processed, 

allowing the following results to be obtained. 

Overall, the research focuses on the importance of 

temperature monitoring, the role of SCADA systems in wind 

turbine monitoring, and the utilization of multiple linear 

regression analysis to predict and monitor temperatures 

effectively within wind turbines. 

 

 

3. RESULTS AND DISCUSSION 

 

To ensure the accuracy of the condition monitoring CM 

models and establish suitable models, the initial step was to 

examine the correlation between parameters. This process 

helped identify dependencies among variables. Based on these 

findings, closely related models were developed, which 

allowed for the identification of potential failure points, 

detection of potential failures, and establishment of conditions 

for functional failures. 

Table 2 demonstrates a strong correlation between bearing 

temperatures and wind speed, highlighting the significant 

impact of wind speed on the monitored temperatures. 

Additionally, there is a positive correlation among variables 

such as electrical generation, winding temperature, gearbox oil 

temperature, gearbox bearing temperature, and wind speed. 

Conversely, researchers observed no relationship between 

ambient temperature and wind speed, as well as between time 

and month. 
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Table 2. Correlation between monitored variables 

 

  T1 T2 T3 T4 T5 G Vv T6 Month Hour 

T1 1.00          

T2 0.82 1.00         

T3 0.84 0.70 1.00        

T4 0.86 0.68 0.90 1.00       

T5 0.86 0.72 0.83 0.95 1.00      

G 0.77 0.64 0.85 0.82 0.85 1.00     

Vv 0.77 0.64 0.83 0.81 0.84 0.99 1.00    

T6 0.10 0.16 -0.26 -0.09 0.04 -0.01 0.00 1.00   

Month -0.20 -0.10 -0.30 -0.22 -0.23 -0.28 -0.26 0.13 1.00  

Hour 0.15 0.11 0.08 0.12 0.08 -0.03 -0.02 -0.12 0.00 1.00 

 

 

It is apparent that there exists a complex interplay between 

temperatures and factors like time, month, and ambient 

temperature. From these observations, it is inferred that any 

predictive model should consider the monitored variables that 

influence the variable to be predicted. This highlights the 

importance of including relevant factors in the development of 

comprehensive predictive models. 

This underlined the significance of analyzing the correlation 

between parameters in order to establish effective CM models. 

The findings demonstrated the strong influence of wind speed 

on bearing temperatures and identified several variables that 

exhibit interdependencies. These insights emphasize the need 

to consider relevant monitored variables when constructing 

predictive models to ensure their accuracy and reliability. 

As in any entity dedicated to energy production, the first 

question that could be answered with the CM was the behavior 

of generation as a function of wind speed, an analysis of which 

is shown in Figure 2.  

 

 
Figure 2. Generation behavior as a function of wind speed 

 

Considering that each wind speed range corresponds to a 

specific range of generation, the research suggests that 

anomalies in the functional state of the wind turbine WT occur 

when the expected condition for each wind speed range is not 

met. The graph above illustrates the behavior of generation 

throughout the monitored period, showing a higher frequency 

of anomalies during the afternoon. A polynomial function can 

be used to predict the behavior of electric generation based on 

wind speed, as indicated by the trend of normal behavior. It is 

evident that the trend line predicted by the manufacturer for 

generations contradicts the actual behavior. Consequently, the 

researchers derived a mathematical model using the 

advantages of Excel. This model allows for the establishment 

of condition monitoring in generation and facilitates behavior 

prediction. 
 

y(x) = 0,0107x5 - 0,5917x4 + 11,732x3 - 103,01x2 + 

465,77x - 825,94 
 

The fifth order polynomial equation determined allows 

predictions with an R2= 0.99, guaranteeing a high level of 

accuracy. Previous research [37, 40, 41], established the 

relationship between T1 temperature and potential failures and 

failure points in the WT of the Gibara II WF, but the existing 

relationships with the rest of the parameters monitored by the 

SCADA system were not exposed.  

Hence, condition monitoring (CM) is necessary for T3 and 

T4, crucial variables in understanding the heat dynamics 

within the nacelle. These variables are influenced by wind 

speed and power generation, which in turn impact the 

variations of T1. The mathematical models developed through 

MLRM in this study enable WF specialists to compare actual 

behaviors with established patterns and identify any abnormal 

behaviors. Following several months of data collection and 

analysis, Table 3 provides the coefficients and models for 

predicting the behavior of T1, a critical parameter indicative 

of the operational state of the studied wind turbines. 

With the coefficients of the previous table and the following 

model, T1 CM can be performed for the four seasons of the 

year in Cuba for the most unfavorable schedule. 
 

y(T1)℃=(B+(B
1
X

1
)+(B

2
X

2
)+(B

3
X

3
)+(B

4
X

4
)+(B

5
X

5
)+ 

(B
6
X

6
)+ (B

7
X

7
)+(B

8
X

8
)+(B

9
X

9
)) 

 

The coefficients for predicting T3 are presented in Table 4, 

indicating that the estimated values have an adjusted quadratic 

error exceeding 0.94. This suggests a remarkably accurate 

estimation of the actual behavior, with potential discrepancies 

only occurring in cases of temperature variations exceeding 

10℃ and wind speeds surpassing 11.5 m/s. Such instances 

would be recognized and investigated as potential starting 

points for failures due to the frequent occurrence of anomalous 

behaviors during afternoon hours, as well as the strong 

correlation observed between T3 and variables Vv, G, and T4. 

The CM of T3 based on the mathematical model obtained, 

made it possible to identify potential faults in the winding of 

two generators, which during capital maintenance showed the 

development of some failure points. 

kW/h 

Wind speed (m/s) 

 

Trend line 

according to 

manufacturer 

Trend line according to 

actual generation 
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y(T3)℃=(B+(B
1
X

1
)+(B

2
X

2
)+(B

3
X

3
)+(B

4
X

4
)+(B

5
X

5
)+ 

(B
6
X

6
)+(B

7
X

7
)+(B

8
X

8
)) 

Table 5 shows the coefficients corresponding to the model 

for the calculation of T4. 

 

Table 3. Coefficients to calculate T1 using a model based on MLRM 

 
 Coef 1 Quarter Coef 2 Quarter Coef 3 Quarter Coef 4 Quarter 

Intercept B 8.143573 0.704019 -12.8766 -28.8062 

Variable X1 (T2) B1 0.243525 0.352493 0.110034 0.250373 

Variable X2 (T3) B2 0.407339 0.433852 0.565685 0.286583 

Variable X3 (T4) B3 0.815199 0.148774 0.677963 0.709729 

Variable X4 (T5) B4 0.377585 0.081446 -0.289872 0.003187 

Variable X5 (T6) B5 0.045615 0.596639 0.7842845 0.688820 

Variable X6 (Vv) B6 0.041979 0.372969 -0.142988 -0.980194 

Variable X7 (G) B7 0.010003 0.013355 -0.008785 0.008218 

Variable X8 (Mouth) B8 -0.54017 2.831710 -2.803893 0.029041 

Variable X9 (Hour) B9 0.019288 0.261460 0.713358 0.078044 

Adjusted R2 0.98 0.93 0.94 0.84 

 

Table 4. Coefficients to calculate T3 using a model based on MLRM 

  

Coef 1 Quarter Coef 2 Quarter Coef 3 Quarter Coef 4 Quarter 

Intercept B -4.35189 -39.6000 -17.91224 6.320143 

Variable X1 (T2) B1 0.061094 0.151660 0.133250 0.164532 

Variable X2 (T3) B2 0.812575 0.335468 0.246464 0.323034 

Variable X3 (T4) B3 2.920794 0.015358 2.274582 3.210162 

Variable X4 (T5) B4 -1.39507 2.243055 -0.392217 -1.424929 

Variable X5 (T6) B5 -1.28480 -0.13296 -0.395577 -0.492166 

Variable X6 (Vv) B6 0.388847 -0.01631 0.003767 0.003767 

Variable X7 (G) B7 0.042179 -8.23043 -9.501416 -9.501416 

Variable X8 (Mouth) B8 -9.81310 2.556498 0.727049 0.727049 

Adjusted R2 0.97 0.95 0.94 0.94 

 

Table 5. Coefficients to calculate T4 using a model based on MLRM 

  

Coef 1 Quarter Coef 2 Quarter Coef 3 Quarter Coef 4 Quarter 

Intercept B 5.680592 20.18035 7.947909 1.103971 

Variable X1 (T2) B1 -0.00497 -0.02560 -0.022952 -0.016165 

Variable X2 (T3) B2 0.059067 0.008406 0.030974 0.024013 

Variable X3 (T4) B3 -0.03202 -0.01394 -0.008316 0.003645 

Variable X4 (T5) B4 0.078348 0.161162 0.176715 0.099341 

Variable X5 (T6) B5 0.660395 0.417801 0.500191 0.702797 

Variable X6 (Vv) B6 0.100671 -0.13554 0.001922 0.052038 

Variable X7 (G) B7 0.143553 1.723730 1.411983 0.710072 

Variable X8 (Mouth) B8 0.148088 -0.84591 -0.311128 0.057597 

Variable X9 (Hour) B9 0.004126 0.013589 0.006997 0.003888 

Adjusted R2 0.97 0.97 0.95 0.96 

 

 

4. CONCLUSIONS 

 

After acquiring the mathematical models using MLRM and 

processing the data obtained from the SCADA system, it was 

able to diagnose and predict technical behaviors. This 

breakthrough enabled informed decision-making in 

maintenance, going beyond the preventive maintenance plans 

suggested by the manufacturer. It marked the initiation of new 

Condition-based Maintenance activities at the Gibara Wind 

Farm. These CBM tasks were supported by a combination of 

condition monitoring and the Statistical Data Fusion technique 

applied to the cooling system of the Goldwind WT model 

S50/750. This combination ensured a reliable assessment of 

the wind turbine (WT) status and enhanced the prevention of 

failures. The study's outcome was the successful development 

of mathematical models using MLRM and the utilization of 

SCADA data. This provided valuable insights into the 

technical behavior of the WT and facilitated maintenance 

decision-making. By implementing CBM strategies beyond 

traditional manufacturer recommendations, the study paved 

the way for more effective and targeted maintenance actions 

at the Gibara WF. The integration of CM and SDF techniques 

specifically targeted the cooling system of the Goldwind WT 

model S50/750, resulting in improved evaluation of WT 

conditions and a proactive approach to failure prevention. 

In essence, the research delves into the tropicalization of 

wind turbines by investigating their operational performance 

and establishing mathematical models to understand and 

predict critical variables. This knowledge enables condition-

based maintenance strategies and serves as a foundation for 
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preventing functional failures. The study recognizes the 

importance of adapting wind turbine technologies to different 

climatic conditions, especially in tropical regions like Cuba, in 

order to optimize their performance and longevity. 
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