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We have framed an inventory replenishment model under a finite planning horizon in 

which replenishment cycle time and replenishment cycle length are different and don’t 

repeat. The finite planning horizon for different replenishment times and cycle lengths is 

a real-life scenario. Nowadays, every manufacturing industry wants to achieve maximum 

profit at a low cost. It is very difficult to maintain the optimal level of inventory, total cost, 

replenishment time, and replenishment cycle. Along with the health of people, increasing 

carbon emission also has a dangerous effect on today’s business environment. Therefore, 

this article analyses an optimal inventory replenishment policy and carbon emission due 

to deteriorating material and refrigeration while taking into account time, emission-

dependent, and inventory-dependent quadratic demand. Materials deterioration affects a 

large and varied spectrum of business. Therefore, Material that suffers deterioration is 

considered. Shortage, some lost sales, and partial backlogging are also considered. 

Backlogging is dependent on the frequency of the waiting period for the next 

replenishment over a given finite time horizon and fluctuating replenishment cycle. The 

model has been developed theoretically. Also, a mathematical formulation has been 

obtained to find the optimal solution to the problem. Following the algorithm, a numerical 

illustration and a comparative evaluation are explained, along with a sensitivity analysis 

of each parameter. The tabular and graphical representations of sensitivity analysis were 

addressed using the Mathematica application version 12. 
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1. INTRODUCTION

In recent years, there has been a lot of discussion about 

inventory systems that emit carbon and degrade the 

environment. Carbon emissions have been triggering global 

warming for many years, which has garnered considerable 

attention. Carbon emission gases, such as carbon dioxide and 

methane, heat our planet and lead to global warming. To learn 

more about this, we can visit the page on Climate Change 

Indicators: Atmospheric Concentrations of Greenhouse Gases. 

Global warming produces considerable environmental harm 

because of its destructive, pervasive, and long-term 

consequences. It is quickly destroying our planet's biodiversity, 

ultimately causing the extinction of countless plant and animal 

species. Global warming also causes sea-level rise, ozone 

layer depletion, rising global temperatures, extreme weather 

conditions, drought, and flooding. Due to increasingly 

powerful and frequent severe weather events, global climate 

change and the greenhouse effect have received a lot of 

attention. The Paris Protocol, also known as Cap-and-Trade, 

was created to lessen the greenhouse effect. Under the carbon 

tax, companies are paid a fixed sum for every tonne of 

emissions they generate, while the cap-and-trade policy issues 

a specified number of emissions allowances per year under the 

cap-trade program [1, 2]. 

There is growing agreement that Carbon emissions from 

enterprise economic activities are increasingly being blamed 

for serious climate change and global warming. Furthermore, 

reducing a polluted environment is one of the most 

considerable economic benefits of lowering carbon emissions, 

and it is becoming a big worry for nations worldwide. Only a 

few of them consider environmental issues in supply chain 

management, which include reducing carbon emissions. To 

reduce carbon emissions, the government of any nation and 

several regulatory bodies have developed carbon emission 

programs. The primary regulatory policy is a carbon tax. A 

carbon tax is charged or imposed by various government 

agencies on commercial enterprises or businesses that create 

carbon dioxide throughout their production process and 

generate environmental destruction [3]. The primary goal of 

the government entities responsible for taxation is to prevent 

global warming and safeguard the environment. In other terms, 

the carbon tax is a cost levied on corporations that use harmful 

raw materials, such as fossil fuels, in their manufacturing 

process and transportation, and they are blamed for global 

warming. Also, a carbon tax can prevent environmental 

degradation and total cost of Inventory model [4]. 

Chen et al. investigated an emissions inventory issue using 

the EOQ model and carbon schemes such as carbon tax, cap, 

and cap-and-offset [4]. Analyzed the influence of the credit 

period and environmental policies on inventory management, 

whenever the credit period has an impact on the demand rate 

[5]. Determined the optimum lot size and emissions with two 

of the most commonly used carbon policies to reduce carbon 

emissions: cap-and-trade and carbon tax [6]. It is investigated 

that the combined price and production of various 
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commodities in the context of the carbon tax and cap-and-trade 

legislation. This report considers the joint decisions of retailers 

concerning inventory supplies and the reducing carbon 

emission investments model, taking into consideration the 

three carbon regulatory policies. In particular, it expands the 

economic quantitative order model to take into account the 

supply of carbon decreasing expenditure, in addition to 

complying with the carbon cap, price, and trade policies [7]. 

Based entirely on the EOQ model, the researcher discusses 

production lot-sizing problems under the carbon tax, cap, and 

carbon trade norms. From the previous research study, it is 

known that there is very little study on carbon emission in 

finite planning. Therefore, I have decided to focus on it in my 

work. 

Obsolescence, damage, and depreciation can all cause on-

hand inventory to deteriorate over time, resulting in lost sales, 

decreased earnings, and poorer customer satisfaction. The 

variable fraction value of on-hand inventory represents the 

proportion of total inventory that is prone to deterioration over 

time. Managing the supply chain for goods that deteriorate and 

emit carbon is difficult and risky because the utility of such 

products can decline due to spoilage, damage, or degradation 

during storage or transport. Carbon emissions and 

deterioration mostly occur due to global warming. Many 

countries are increasingly focusing on reducing greenhouse 

gas emissions and environmental devastation, employing 

pivotal methods such as carbon caps and taxes to accomplish 

this task. Researchers examined an integrated supply chain 

model for a single supplier and a single buyer manufacturing 

stock, taking into consideration imperfect output, including 

reworked products, and various governmental mechanisms for 

decarbonization, such as a carbon tax, carbon cap-and-trade, 

and item deterioration, all at the same time. They developed a 

multi-objective framework to minimize the overall cost and 

emissions simultaneously. The demand for a product is 

generally influenced by several uncontrollable factors such as 

pricing, season, time, accessibility, and so on. However, 

addressing a fuzzy demand rather than static demand is 

considered [8]. Through an EOQ model, we know that retailers 

or buyers pay a constant carbon tax, and buyers can use one of 

three forms of payment to pay: cash payment, advance 

payment, or credit payment [9]. Credit transactions seem to be 

the most economical and effective of the multiple payment 

alternatives for lowering carbon emissions and maintaining the 

environment. They also state that items deteriorate over time 

and thus can't be sold after their expiry. Researchers addressed 

a production planning problem for deteriorating items, 

considering a carbon taxation policy with preservation 

technology investment [10]. This study also focuses on two 

carbon pollution schemes: carbon cap policies and the cap-

and-trade system. It provides a single-vendor and single-buyer 

integrated supply chain stock model with decaying goods of 

inferior quality, considering carbon emissions [11]. 

Researchers introduced microbes initially forming a film on 

materials such as metals, and organic biomaterials which leads 

to the final degradation of the compound. A hot and humid 

climate catalyzes the process [12]. Due to carbon emissions, 

the deterioration of anything is more obvious that can’t be 

ignored. This paper mainly focuses on materials getting 

deteriorated because of corrosion, rust, rotting along with 

carbon emission. corrosion or rust are directly related to 

deterioration but indirectly related to emission. When metal 

products are manufactured or transported, they often require 

energy to be produced or moved. Additionally, there is a 

limited amount of research that specifically examines the 

relationship between carbon emission policies and asset 

deterioration over time in inventory control and management, 

and nobody has considered carbon emission policies with 

deterioration in a finite planning horizon for unequal cycle 

length with carbon emission policies. 

The main objective is to control carbon emissions and find 

the optimal solution by considering three models: the carbon 

cap and tax model, excluding shortage, with partial 

backlogging, and full backlogging. Carbon emissions and 

carbon cap and taxes are the fundamental points of this article 

[3]. Shortages or stock-out scenarios arise in any business or 

industrial company due to many factors, such as pricing and a 

high rate of deterioration [13]. In today's scenario, taking 

stock-out into account in any inventory model is necessary. It 

is anticipated that when one merchant receives the requested 

amount from the other merchant, they would satisfy the 

customers who have been waiting and then stock the 

remaining items for their regular demand. However, due to 

their impatience or other sources accessible in the region, not 

all buyers waiting in line can wait for the supply to arrive, 

resulting in a proportion of consumers waiting to lead to lost 

sales. Shortages are therefore defined as partially backlogged. 

A model permit shortage in all iterations of replenishment 

except for the final cycle. Each cycle during which shortages 

are created begins with replenishment and finishes with a 

backlogged shortage in the final cycle [14]. Furthermore, 

presented a novel restocking approach where each cycle starts 

with shortfalls and ends with a positive inventory. Most 

researchers have considered shortage for a single cycle [15-17] 

and there was no literature on a shortage of carbon emission 

and deterioration under finite planning horizons for unequal 

cycle length.  

The significant result of using a time-dependent quadratic 

demand mechanism is that it accommodates all three forms of 

demand functions: increasing, falling, or constant, according 

to demand constants [18]. Researchers introduced a supplier-

retailer EOQ stock supply model with quadratic demand 

dependent on time and stock, as well as partial backlog 

throughout all cycles during a finite planned period [19]. Some 

researchers included a quadratic time-dependent demand 

function for both finite and infinite horizons in their inventory 

management system [20]. Furthermore, employed the 

quadratic time demand function in their research study under 

finite planning of equal replenishment cycles [21]. It is 

noticeable from the previous analysis that the discussion on 

deteriorating goods in nature has not been addressed for 

carbon tax cost and shortage along with carbon-dependent, 

time-dependent quadratic, and inventory-dependent demand 

under finite planning horizons for unequal cycle lengths 

(Table 1). 
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Table 1. For a review of the above literature 
 

Article 

Carbon 

dependent 

Demand 

Deterioration 
Inventory 

dependent 

Time-dependent 

Quadratic 

demand 

Carbon 

Emissions 

cost 

Shortages 

Finite 

Planning 

horizon 

Toptal et al. [2] × × × × ✓ × × 

Mishra et al.[3] × ✓ × × ✓ ✓ × 

Chen et al. [4] × × × × ✓ × × 

Xu et al. [7] × ✓ × × ✓ × × 

Sarkar [18] × ✓ × ✓ × ✓ ✓ 

Pushpinder Singh et al. 

[19]  
× ✓ ✓ ✓ × ✓ ✓ 

Ghosh and Chaudhuri 

[21] 
× ✓ × ✓ × ✓ ✓ 

This Paper ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 

 

1.1 Research gap 

 

So far, multiple researches on material deterioration and 

emission have already been conducted. Furthermore, neither 

of the research has considered an inventory management 

model that incorporates carbon emission measures including a 

carbon tax, covering degrading materials with emission-

dependent, nonlinear time-dependent, and inventory-

dependent demand, along with shortage. This is a significant 

and strong research gap, and the study is especially unique in 

that the issues highlighted are entirely economic and 

environmental in scope. Based on the aforementioned research, 

the authors claim that none of the other researchers has 

developed a model for managing deteriorating products, 

incorporating emission-dependent, time-dependent quadratic, 

and inventory-dependent demand over a finite horizon. Finite 

planning horizons refer to the period in which decisions about 

inventory replenishment are made. Longer planning horizons 

allow for more time to make decisions, potentially leading to 

longer replenishment cycles, while shorter planning horizons 

can result in shorter replenishment cycles. 

The remaining sections of this article are organized as 

follows: Section 2 presents a list of all the assumptions and 

notations used in the study. In Section 3, a mathematical model 

is presented, and a solution to it is provided. The optimality 

requirements for cost equations are discussed in section 4, with 

the help of a theorem and the Mathematica software. Section 

5 includes a numerical example, an algorithm for finding ti, si, 

and total cost in the Mathematica tool, as well as sensitivity 

analysis, and a comparison discussion with graphs and tables. 

In Section 6, managerial suggestions are provided. Finally, the 

conclusions of the proposed model are discussed. 

2. ASSUMPTION 

 

1. There is no lead time. 

2. Carbon emissions have effects on demand that can be 

expressed in the form: D=a+b*t+c*t2+𝜃1𝐼 . The firm's 

preliminary market demand is a which is dependent on 

carbon emissions; market demand is b, which is 

dependent on time; and c is the consumer's awareness of 

carbon emissions for each unit. That is, as time increases 

by one unit, demand increments by c, and 𝜃1 is inventory-

dependent demand. A stock-dependent demand level is a 

demand for a particular item that is influenced by its 

current available stock amount. Stock-dependent demand 

level directly influences the quantity of stock and ordering 

procedures. 

3. The stock level is initially zero or starts with the shortage. 

4. Throughout the finite planning horizon, the ordering, 

holding, and shortages costs are constant but emission 

costs are constant as well as depend on quantity and 

holding. 

5. Damaged products are neither rectified nor repaired, nor 

are they replaced. Therefore, due to the lack of inventory, 

shortages may occur. 

6. Each cycle has shortages that are partially backlogged. 

Because consumers are impatient, it is believed that a 

portion of demand given by β(φ) during the stock-out 

phase is backlogged. φ is indeed the timeframe the 

customer needs to wait until receiving orders, the rest [1-

β(φ)] is no longer available and lost. where β(φ)=1/(δφ+1) 

and δ>0. 

 

 
 

Figure 1. Inventory level with shortage and lost sale 
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3. THE MATHEMATICAL FORMULATION FOR THE 

PROPOSED MODEL 

 

As seen in the inventory Figure 1 for finite planning along 

with shortages. Differential equation of inventory level 

besides shortages given by Eq. (1) and Eq. (5) Boundary 

condition ILi+1 (si+1)=0. 
𝑑𝐼𝐿𝑖+1 (𝑡)

𝑑𝑡
+ (𝜃1 + 𝜃2) 𝐼𝐿𝑖+1 (𝑡) = −D(t) 

𝑡𝑖  <  t < 𝑠𝑖+1 

(1) 

 

where, {i=1,2,3…………………. n1}. 

Taking θ2=αt and the differential equation's solution is 

given by: 

 

𝑑𝐼𝐿𝑖+1 (𝑡)

𝑑𝑡
= −D(t) − 𝛼𝑡𝐼𝐿𝑖+1 (𝑡) 

𝑡𝑖  <  t < 𝑠𝑖+1 

(2) 

 

𝐼𝐿𝑖+1 (𝑡) = 𝑒−
𝛼𝑡2

2
−𝑡𝜃1 ∫ D(u) 𝑒

𝛼𝑢2

2
+𝑡

𝑠𝑖+1

𝑡

du (3) 

 

𝐼𝐿𝑖+1 (𝑡) = ∫ D(u)  𝑒𝜃1(𝑢−𝑡)+
𝛼(𝑢2−𝑡2)

2

𝑠𝑖+1

𝑡

du (4) 

 

𝐼𝐿𝑖+1 (𝑡) = [(1 + 𝑡𝜃1 +
𝛼

2
𝑡2) (𝑡 − 𝑡𝑖) −

𝜃1

2
(𝑡2 − 𝑡𝑖

2)

−
𝛼

6
(𝑡3 − 𝑡𝑖

3)] 𝐷(𝑡) 

 

The instantaneous level of shortage ILSi+1(t) with the 

boundary condition ILSi+1(si)=0, is given by the following 

differential equation: 

 
𝑑𝐼𝐿𝑆𝑖+1(𝑡)

𝑑𝑡
= 𝐷(𝑡)𝛽(𝑡)      𝑤ℎ𝑒𝑟𝑒 𝑠𝑖  <  t < 𝑡𝑖 (5) 

 
𝑑𝐼𝐿𝑆𝑖+1(𝑡)

𝑑𝑡
=

𝐷(𝑡)

𝛿(𝑡𝑖 − 𝑡) + 1
 

𝐼𝐿𝑆𝑖+1(𝑡) = ∫  
𝐷(𝑡)

𝛿(𝑡𝑖 − 𝑡) + 1
 𝑑𝑡

𝑡𝑖

𝑠𝑖

 =  
𝐷(𝑡)(𝑡𝑖 − 𝑡)

𝛿(𝑡𝑖 − 𝑡) + 1
 

(6) 

 

So total amount of inventory held during the interval held 

during the [𝑡𝑖 , 𝑠𝑖+1] 
 

𝑅𝑖+1 = ∫ { ∫ D(u)  𝑒𝜃1(𝑢−𝑡)+
𝛼(𝑢2−𝑡2)

2

𝑠𝑖+1 

𝑡

du}dt

𝑠𝑖+1

𝑡𝑖

 (7) 

 

We may express Eq. (7) as below by changing the position 

of integration and skipping the higher powers of α2. 

 

𝑅𝑖+1 = ∫ {(1 + 𝜃1𝑡 +
𝛼

2
𝑡2) (𝑡 − 𝑡𝑖)

𝑠𝑖+1

𝑡𝑖

−
𝜃1

2
(𝑡2 − 𝑡𝑖

2)

−
𝛼

6
(𝑡3 − 𝑡𝑖

3)} 𝐷(𝑡)𝑑𝑡 

(8) 

 

The total amount of that quantity for which customers are 

waiting i.e., the amount of shortage during the interval [𝑠𝑖 , 𝑡𝑖]. 
After rearranging the ordering, 𝑆𝑖+1 can be given as: 

 

𝑆𝑖+1 = ∫ 𝐼𝐿𝑆𝑖+1(𝑡)    𝑑𝑡

𝑡𝑖

𝑠𝑖

= ∫ {∫
𝐷(𝑢)

𝛿(𝑡𝑖 − 𝑢) + 1
𝑑𝑢

𝑡𝑖

𝑠𝑖

} 𝑑𝑡

𝑡𝑖

𝑠𝑖

= ∫
(𝑡𝑖 − 𝑡)𝐷(𝑡)

𝛿(𝑡𝑖 − 𝑡) + 1
𝑑𝑡

𝑡𝑖

𝑠𝑖

 

(9) 

 

The total order quantity for a finite planning horizon. 

 

Q = ∑ 𝑄𝑖+1

𝑛

𝑖=1

= ∑{ 𝑅𝑖+1 + 𝑆𝑖+1}

𝑛

𝑖=1

 

𝑄𝑖+1 = ∫ {(1 + 𝜃1𝑡 +
𝛼

2
𝑡2) (𝑡 − 𝑡𝑖) −

𝜃1

2
(𝑡2 − 𝑡𝑖

2)

𝑠𝑖+1

𝑡𝑖

−
𝛼

6
(𝑡3 − 𝑡𝑖

3)} 𝐷(𝑡)𝑑𝑡

+ ∫
(𝑡𝑖 − 𝑡)𝐷(𝑡)

𝛿(𝑡𝑖 − 𝑡) + 1
𝑑𝑡

𝑡𝑖

𝑠𝑖

 

 

The total number of deteriorated components throughout 

each replenishment is as follows: 

 

𝐷𝑖+1 = ∫ 𝜃2 𝐼𝐿𝑖+1 (𝑡) 𝑑𝑡 

𝑡𝑖

𝑠𝑖

= 𝛼𝑡 {∫ (1 + 𝜃1𝑡 +
𝛼

2
𝑡2) (𝑡

𝑠𝑖

𝑡𝑖

− 𝑡𝑖) −
𝜃1

2
(𝑡2 − 𝑡𝑖

2)

−
𝛼

6
(𝑡3 − 𝑡𝑖

3) 𝐷(𝑡)𝑑𝑡} 

(10) 

 

In the cases of some materials, the Buyer can generally not 

wait for some product, so only a proportion β(φ) of the demand 

during the stock-out duration is backlogged, where φ is the 

amount of time the buyer waits for the quantity of negative 

inventory. Therefore, the leftover proportion (1-β(φ)) is lost. 

Sarkar et al. [18], the amount has become lost during the 

interval [𝑠𝑖 , 𝑡𝑖] is given as: 

 

𝐿𝑖+1 = ∫   {𝐷(𝑡) − 𝐷(𝑡)𝛽(𝜑)} 𝑑𝑡

𝑡𝑖

𝑠𝑖

= ∫  {(1 − 𝛽(𝜑)) 𝐷(𝑡)} 𝑑𝑡

𝑡𝑖

𝑠𝑖

= ∫ {𝛿
(𝑡𝑖 − 𝑡)𝐷(𝑡)

𝛿(𝑡𝑖 − 𝑡) + 1
}  𝑑𝑡

𝑡𝑖

𝑠𝑖

 

(11) 
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Amount of Carbon emission cost during the interval [ti, si+1] 

can be expressed as: 

 

𝐶𝑒 = ∑ cˆ + �̂�𝑟  ∗  𝑅𝑖+1  +  ℎ�̂�  ∫ 𝐼𝐿𝑖+1 (𝑡) 𝑑𝑡

𝑠𝑖+1

𝑡𝑖

𝑛1−1

𝑖=0

 

𝐶𝑒 = ∑ cˆ + �̂�𝑟 ∗ 𝑄𝑖+1

𝑛1−1

𝑖=0

+ ℎ�̂� ∫ {∫ D(u)𝑒𝜃1(𝑢−𝑡)+
𝛼(𝑢2−𝑡2)

2

𝑠𝑖+1 

𝑡

du}𝑑𝑡

𝑠𝑖+1

𝑡𝑖

 

 

The amount of CO2 emissions from refrigeration systems is 

influenced by factors like refrigerant type, energy efficiency, 

usage frequency, system size, and power source. Usage of 

fossil fuels leads to higher emissions while energy-efficient 

technologies and smaller systems result in lower CO2 

emissions. According to researchers, the total cost of Carbon 

emission cost/carbon tax during the interval [𝑡𝑖 , 𝑠𝑖+1] can be 

expressed as [22]: 

 
𝐶𝑒

= 𝜏 { ∑ cˆ 

𝑛1−1

𝑖=0

+ �̂�𝑟 ∫ {(1 + 𝜃1𝑡 +
𝛼

2
𝑡2) (𝑡 − 𝑡𝑖) −

𝜃1

2
(𝑡2 − 𝑡𝑖

2)

𝑠𝑖+1

𝑡𝑖

−
𝛼

6
(𝑡3 − 𝑡𝑖

3)}  𝐷(𝑡)𝑑𝑡

+ ∫
(𝑡𝑖 − 𝑡)𝐷(𝑡)

𝛿(𝑡𝑖 − 𝑡) + 1
𝑑𝑡

𝑡𝑖

𝑠𝑖

+ ℎ�̂� ∫  {∫ D(u)  𝑒𝜃1(𝑢−𝑡)+
𝛼(𝑢2−𝑡2) 

2

𝑠𝑖+1 

𝑡

du}𝑑𝑡 

𝑠𝑖+1

𝑡𝑖

} 

(12) 

 

Total cost = Replenishment cost + Stock holding cost + 

purchasing cost + Deteriorating cost + Storage cost + Lost sale 

cost + Carbon emission cost+ Transportation cost. 

 
TCR(𝑡𝑖 , 𝑠𝑖 , 𝑛1) =  𝑛1 ∗ 𝑂𝑟z

+ ∑ 𝐻 ∫ 𝐼𝐿𝑖+1 (𝑡) 𝑑𝑡

𝑠𝑖+1

𝑡𝑖

 + ∑ 𝑊ℎ ∗ 𝑄𝑖+1

𝑛1−1

𝑖=0

𝑛1−1

𝑖=0

+ ∑ 𝐷𝑡 ∗

𝑛1−1

𝑖=0

𝜃2 ∫ 𝐼𝐿𝑖+1 (𝑡) 

𝑠𝑖+1

𝑡𝑖

 𝑑𝑡

+ ∑ 𝑠 ∫ 𝐼𝐿𝑆𝑖+1(𝑡)    𝑑𝑡

𝑡𝑖

𝑠𝑖

𝑛1−1

𝑖=0

+ ∑ 𝑙 ∫  {𝛿
(𝑡𝑖 − 𝑡)𝐷(𝑡)

𝛿(𝑡𝑖 − 𝑡) + 1
}  𝑑𝑡

𝑡𝑖

𝑠𝑖

𝑛1−1

𝑖=0

+ ∑ cˆ + �̂�𝑟  𝑄𝑖+1 

𝑛1−1

𝑖=0

+ ℎ�̂�  ∫  𝐼𝐿𝑖+1 (𝑡) 𝑑𝑡 

𝑠𝑖+1

𝑡𝑖

 

 

TCR(𝑡𝑖 , 𝑠𝑖 , 𝑛1) =  𝑛1 ∗ 𝑂𝑟

+ ∑ 𝐻 ∫ 𝐼𝐿𝑖+1 (𝑡) 𝑑𝑡

𝑠𝑖+1

𝑡𝑖

 + ∑ 𝑊ℎ ∗ 𝑄𝑖+1

𝑛1−1

𝑖=0

𝑛1−1

𝑖=0

+ ∑ 𝐷𝑡 ∗

𝑛1−1

𝑖=0

𝛼 𝑡 ∫ 𝐼𝐿𝑖+1 (𝑡) 

𝑠𝑖+1

𝑡𝑖

 𝑑𝑡

+ ∑ 𝑠 ∫ 𝐼𝐿𝑆𝑖+1(𝑡)    𝑑𝑡

𝑡𝑖

𝑠𝑖

𝑛1−1

𝑖=0

+ ∑ 𝑙 ∫  {𝛿
(𝑡𝑖 − 𝑡)𝐷(𝑡)

𝛿(𝑡𝑖 − 𝑡) + 1
}  𝑑𝑡

𝑡𝑖

𝑠𝑖

𝑛1−1

𝑖=0

+ ∑ cˆ + �̂�𝑟  

𝑛1−1

𝑖=0

{𝑅𝑖+1 + ∫ 𝐼𝐿𝑆𝑖+1(𝑡) 𝑑𝑡
𝑡𝑖

𝑠𝑖

}

+ ℎ�̂�  ∫  𝐼𝐿𝑖+1 (𝑡) 𝑑𝑡

𝑠𝑖+1

𝑡𝑖

 

 

TCR(𝑡𝑖 , 𝑠𝑖 , 𝑛1) =  𝑛1 ∗ 𝑂𝑟 + ∑  

𝑛1−1

𝑖=0

{𝐻 +  𝜏ℎ�̂�} ∫ 𝐼𝐿𝑖+1 (𝑡) 𝑑𝑡

𝑠𝑖+1

𝑡𝑖

 

+ ∑ 𝐷𝑡 ∗

𝑛1−1

𝑖=0

𝛼 𝑡 ∫ 𝐼𝐿𝑖+1 (𝑡) 

𝑠𝑖+1

𝑡𝑖

 𝑑𝑡

+ {𝑊ℎ + 𝜏�̂�𝑟} ∑ 𝑄𝑖+1

𝑛1−1

𝑖=0

+ {𝑠 + 𝑙𝛿} ∑ ∫ 𝐼𝐿𝑆𝑖+1(𝑡)    𝑑𝑡

𝑡𝑖

𝑠𝑖

𝑛1−1

𝑖=0

+ 𝜏cˆ 

 

TCR(𝑡𝑖 , 𝑠𝑖 , 𝑛1) =  𝑛1 ∗ 𝑂𝑟 + ∑  

𝑛1−1

𝑖=0

(𝐻 +  𝜏ℎ�̂�) ∫ 𝐼𝐿𝑖+1 (𝑡) 𝑑𝑡

𝑠𝑖+1

𝑡𝑖

 

+ ∑ 𝐷𝑡 ∗

𝑛1−1

𝑖=0

𝛼 𝑡 ∫ 𝐼𝐿𝑖+1 (𝑡) 

𝑠𝑖+1

𝑡𝑖

 𝑑𝑡

+ {𝑊ℎ + 𝜏�̂�𝑟} ∑ (𝑅𝑖+1 + 𝑆𝑖+1)

𝑛1−1

𝑖=0

+ (𝑠 + 𝜏�̂�𝑟 + 𝑙𝛿) ∑ ∫ 𝐼𝐿𝑆𝑖+1(𝑡)    𝑑𝑡

𝑡𝑖

𝑠𝑖

𝑛1−1

𝑖=0

+ 𝜏cˆ 

 
TC(𝑡𝑖 , 𝑠𝑖 , 𝑛1) =  𝑛1 ∗ 𝑂𝑟

+ ∑  

𝑛1−1

𝑖=0

(𝐻 +  𝜏ℎ�̂�) ∫ 𝐼𝐿𝑖+1 (𝑡) 𝑑𝑡

𝑠𝑖+1

𝑡𝑖

 

+ ∑ 𝐷𝑡 ∗

𝑛1−1

𝑖=0

𝛼 𝑡 ∫ 𝐼𝐿𝑖+1 (𝑡) 

𝑠𝑖+1

𝑡𝑖

 𝑑𝑡

+ {𝑊ℎ + 𝜏�̂�𝑟} ∑ 𝑅𝑖+1

𝑛1−1

𝑖=0

+ (𝑠 + 𝑊ℎ + 𝜏�̂�𝑟

+ 𝑙𝛿) ∑ ∫ 𝐼𝐿𝑆𝑖+1(𝑡)    𝑑𝑡

𝑡𝑖

𝑠𝑖

𝑛1−1

𝑖=0

+  𝜏cˆ 
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TC(𝑡𝑖 , 𝑠𝑖 , 𝑛1) =  𝑛1 ∗ 𝑂𝑟

+ ∑  

𝑛1−1

𝑖=0

(𝐻

+ 𝜏ℎ�̂�) ∫ ∫ D(u) 𝑒𝜃1(𝑢−𝑡)+
𝛼(𝑢2−𝑡2)

2

𝑠𝑖+1 

𝑡

du 𝑑𝑡

𝑠𝑖+1

𝑡𝑖

 

+ ∑ 𝐷𝑡

𝑛1−1

𝑖=0

∗𝛼 𝑡 ∫ ∫ D(u) 𝑒𝜃1(𝑢−𝑡)+
𝛼(𝑢2−𝑡2)

2

𝑠𝑖+1 

𝑡

du

𝑠𝑖+1

𝑡𝑖

𝑑𝑡

+ {𝑊ℎ + 𝜏�̂�𝑟} ∑ 𝑅𝑖+1

𝑛1−1

𝑖=0

+ (𝑠 + 𝑊ℎ + 𝜏�̂�𝑟 + 𝑙𝛿) ∑ ∫ 𝐼𝐿𝑆𝑖+1(𝑡)    𝑑𝑡

𝑡𝑖

𝑠𝑖

𝑛1−1

𝑖=0

+ 𝜏cˆ

TC(𝑡𝑖 , 𝑠𝑖 , 𝑛1) = 𝑛1 ∗ 𝑂𝑟

+ ∑  

𝑛1−1

𝑖=0

(𝐻 +  𝜏ℎ�̂� + 𝑊ℎ

+ 𝜏�̂�𝑟) ∫ [(1 + 𝑡𝜃1 +
𝛼

2
𝑡2) (𝑡 − 𝑡𝑖)

𝑠𝑖+1

𝑡𝑖

−
𝜃1

2
(𝑡2 − 𝑡𝑖

2) −
𝛼

6
(𝑡3 − 𝑡𝑖

3) ]𝐷(𝑡)𝑑𝑡

+ ∑ 𝐷𝑡 ∫ 𝛼 𝑡 {(1 + 𝜃1𝑡 +
𝛼

2
𝑡2) (𝑡 − 𝑡𝑖)

𝑠𝑖+1

𝑡𝑖

𝑛1−1

𝑖=0

−
𝜃1

2
(𝑡2 − 𝑡𝑖

2) −
𝛼

6
(𝑡3 − 𝑡𝑖

3)}  𝐷(𝑡)𝑑𝑡

+ (𝑠 + 𝑊ℎ + 𝜏�̂�𝑟

+ 𝑙𝛿) ∑ ∫
(𝑡𝑖 − 𝑡)𝐷(𝑡)

𝛿(𝑡𝑖 − 𝑡) + 1
𝑑𝑡

𝑡𝑖

𝑠𝑖

𝑛1−1

𝑖=0

+ 𝜏cˆ

(14) 

The objective is that the fundamental values of ti and si must 

be determined to reduce the total variable cost TC of the stock 

control and management. The requirements to find the values 

of to ti and si are given below: 

𝜕𝑇𝐶(𝑡𝑖, 𝑠𝑖 , 𝑛1)

𝜕𝑡𝑖
= 0 

𝜕𝑇𝐶(𝑡𝑖, 𝑠𝑖 , 𝑛1)

𝜕𝑠𝑖

= 0 

By neglecting 𝛼2 and the higher terms of 𝛼, because α have

a negligible value then we get: 

𝜕𝑇𝐶(𝑡𝑖 , 𝑠𝑖 , 𝑛1)

𝜕𝑠𝑖
= (𝐻 +  𝜏ℎ�̂� + 𝑊ℎ

+ 𝜏�̂�𝑟) [(𝑠𝑖  𝜃1 +
𝛼

2
𝑠𝑖

2 + 1) (𝑠𝑖

− 𝑡𝑖 − 1) −
𝜃1

2
(𝑠𝑖

2 − 𝑡𝑖−1
2 )

−
𝛼

6
(𝑠𝑖

3 − 𝑡𝑖−1
3 )] 𝐷(𝑠𝑖)

+ 𝐷𝑡 𝛼 𝑠𝑖  [(𝑠𝑖  𝜃1 + 1)(𝑠𝑖 − 𝑡𝑖 − 1)

−
𝜃1

2
(𝑠𝑖

2 − 𝑡𝑖−1
2 )]𝐷(𝑠𝑖)

+ (𝑠 + 𝑊ℎ + 𝜏�̂�𝑟

+ 𝑙𝛿) [
(𝑡𝑖 − 𝑠𝑖)

𝛿(𝑡𝑖 − 𝑠𝑖) + 1
]  𝐷(𝑠𝑖) 

(15) 

𝜕𝑇𝐶(𝑡𝑖 , 𝑠𝑖 , 𝑛1)

𝜕𝑡𝑖
= (𝐻 +  𝜏ℎ�̂� + 𝑊ℎ

+ 𝜏�̂�𝑟) ∫ [𝜃1(𝑡𝑖 − 𝑡) +
𝛼

2
(𝑡𝑖

2 − 𝑡2)

𝑠𝑖+1

𝑡𝑖

− 1]𝐷(𝑡)𝑑𝑡

+ 𝐷𝑡 ∫ 𝛼 𝑡[𝜃1(𝑡𝑖 − 𝑡) − 1]

𝑠𝑖+1

𝑡𝑖

 𝐷(𝑡)𝑑𝑡

+ (𝑠 + 𝑊ℎ + 𝜏�̂�𝑟

+ 𝑙𝛿) [∫
𝐷(𝑡)

𝛿(𝑡𝑖 − 𝑡)2 + 1
𝑑𝑡

𝑡𝑖

𝑠𝑖

] 

(16) 

𝜕2𝑇𝐶(𝑡𝑖 , 𝑠𝑖 , 𝑛1)

𝜕𝑠𝑖
2

=
1

6
 {(𝐻 +  𝜏ℎ�̂� + 𝑊ℎ + 𝜏�̂�𝑟)(𝑠𝑖

− 𝑡𝑖 − 1)[6(𝜃1 + 𝛼𝑠𝑖)(𝑎 + 𝑏𝑠𝑖 + 𝑐𝑠𝑖
2)

+ (3(2𝑠𝑖𝜃1 + 𝛼𝑠𝑖
2 + 2) − 3𝜃1(𝑠𝑖 + 𝑡𝑖 − 1)

− 𝛼(𝑠𝑖
2 + 𝑡𝑖−1

2 + 𝑠𝑖𝑡𝑖−1))(𝑎 + 𝑏𝑠𝑖 + 𝑐𝑠𝑖
2)]

+ 3𝐷𝑡𝛼(𝑠𝑖

− 𝑡𝑖−1)[(2 − 𝜃1𝑡𝑖−1 + 𝜃1𝑠𝑖)(𝑏 + 2𝑐𝑠𝑖)
+ (2 − 𝜃1𝑡𝑖−1 + 𝜃1𝑠𝑖)(𝑎 + 𝑏𝑠𝑖 + 𝑐𝑠𝑖

2)]

+ 6(𝑆ℎ + 𝑊ℎ + 𝜏𝑃𝑟
^

+ 𝐼𝛿)[
(𝑡𝑖 − 𝑠𝑖)

1 + 𝛿(𝑡𝑖 − 𝑠𝑖)
(𝑏 + 2𝑐𝑠𝑖)

−
1

1 + 𝛿(𝑡𝑖 − 𝑠𝑖)
2
(𝑎 + 𝑏𝑠𝑖 + 𝑐𝑠𝑖

2)]} 

(17) 

𝜕2𝑇𝐶(𝑡𝑖 , 𝑠𝑖 , 𝑛1)

𝜕𝑡𝑖
2 = (𝐻 +  𝜏ℎ�̂� + 𝑊ℎ + 𝜏�̂�𝑟)  ∫ (𝜃1

𝑠𝑖+1

𝑡𝑖

+ 𝛼𝑡𝑖)(𝑎 + 𝑏𝑡 + 𝑐𝑡2)𝑑𝑡

+ (𝐻 +  𝜏ℎ�̂� + 𝑊ℎ + 𝜏�̂�𝑟) (𝑎 + 𝑏𝑡𝑖
+ 𝑐𝑡𝑖

2)

+ 𝐷𝑡 ∫ 𝛼 𝑡𝜃1

𝑠𝑖+1

𝑡𝑖

(𝑎 + 𝑏𝑡 + 𝑐𝑡2)𝑑𝑡

+ 𝐷𝑡𝛼𝑡𝑖(𝑎 + 𝑏𝑡𝑖 + 𝑐𝑡𝑖
2)

− 2(𝑠 + 𝑊ℎ + 𝜏�̂�𝑟

+ 𝑙𝛿) [∫
(𝑎 + 𝑏𝑡 + 𝑐𝑡2)

(𝛿(𝑡𝑖 − 𝑡)2 + 1)2 𝑑𝑡

𝑡𝑖

𝑠𝑖

] 

(18) 

The sufficient requirement, the Hessian matrix with TC has 

to be positive definite for TC to be minimum for a fixed n1. 

Moreover, Theorem proves that TC is positive. Therefore, By 

the iterative method and using Mathematica software the 

optimal value of ti and si for a given positive integer n1 may be 

calculated from the above Eqns. (16) and (17). 

Theorem: - 

If ti and si satisfy the inequality, (i) 
𝜕2𝑇𝐶(𝑡𝑖,𝑠𝑖,𝑛1)

𝜕𝑡𝑖
2 ≥ 0, (ii) 

𝜕2𝑇𝐶(𝑡𝑖,𝑠𝑖,𝑛1)

𝜕𝑠𝑖
2 ≥ 0, (𝑖𝑖𝑖) 

𝜕2𝑇𝐶(𝑡𝑖,𝑠𝑖,𝑛1)

𝜕𝑡𝑖
2 − |

𝜕𝑇𝑐(𝑡𝑖,𝑠𝑖,𝑛1)

𝜕𝑡𝑖 𝜕𝑠𝑖
| ≥ 0 and (iv) 

𝜕2𝑇𝐶(𝑡𝑖,𝑠𝑖,𝑛1)

𝜕𝑠𝑖
2 − |

𝜕𝑇𝐶(𝑡𝑖,𝑠𝑖,𝑛1)

𝜕𝑠𝑖 𝜕𝑡𝑖
| ≥ 0 for all i = 1, 2,..., n then TC 

will be positive definite. 

The sufficient condition for TC to be minimum for a fixed 

n1 is that the Hessian matrix with TC has to be positive definite. 

Theorem proves that TC is positive. Hence, by utilizing the 

iterative method and Mathematica software, the optimal 

values of ti and si for a given positive integer n1 may be 

calculated from the above Eqns. (16) and (17). 
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∇2(𝑡𝑖 , 𝑠𝑖 , 𝑛1)

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
∂2(𝑡𝑖, 𝑠𝑖 , 𝑛1)

∂t1
2

∂2(𝑡𝑖, 𝑠𝑖 , 𝑛1)

∂t1 ∂s1

0 0 0 0 0 0 0

∂2(𝑡𝑖, 𝑠𝑖 , 𝑛1)

∂s2 ∂t1

∂2(𝑡𝑖, 𝑠𝑖 , 𝑛1)

∂s1
2

∂2(𝑡𝑖 , 𝑠𝑖 , 𝑛1)

∂s1 ∂t2
0 0 0 0 0 0

0
∂2(𝑡𝑖, 𝑠𝑖 , 𝑛1)

∂t2 ∂s1

∂2(𝑡𝑖 , 𝑠𝑖 , 𝑛1)

∂t2
2

∂2(𝑡𝑖 , 𝑠𝑖 , 𝑛1)

∂t2 ∂s2

0 0 0 0 0

… … … . … … … … . … …
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
∂2(𝑡𝑖, 𝑠𝑖 , 𝑛1)

∂t𝑛1−1 ∂s𝑛1−1

∂2(𝑡𝑖 , 𝑠𝑖 , 𝑛1)

∂s𝑛1−1
2

∂2(𝑡𝑖 , 𝑠𝑖 , 𝑛1)

∂s𝑛1−1 ∂t𝑛1

0 0 0 0 0 0 0
∂2(𝑡𝑖 , 𝑠𝑖 , 𝑛1)

∂𝑡𝑛1
∂s𝑛1−1

∂2(𝑡𝑖 , 𝑠𝑖 , 𝑛1)

∂t𝑛1
2 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

4. ALGORITHM 

 

1. The initial step involves assigning constant values to all 

the given parameters, namely 𝑊ℎ;P; a; b; c; θ, G. 

2. The proposed model aims to identify the optimal cost and 

ordering replenishment strategy, which can be achieved 

through the following steps: 

i. If we will set, 𝑛1 = 1  then 𝑠1 = 0, 𝑠2 = T.  Initializing 

with the parameter's value t1, determine t1 with the help 

of Eq. (17).  

ii. If we take 𝑛1 = 2, then by initializing the value of the ti 

taking s0 =0 and s2=T. After that, we can calculate 𝑠2 by 

using Eq. (1) 

iii. From Eq. (17), find 𝑡2 using the calculated values of t1 

and s2 in the previous step. 

iv. By using Eq. (16), Again, taking the values of t2 and s2, 
calculate  𝑠3. Trying to continue in this manner until all 

unique and optimal values of ti and si are obtained for all 

n1. 

v. Having the values of 𝑠𝑛1−1 and 𝑡𝑛1−1nearly equal to T 

(horizon planning), and the values of si and ti are 

satisfying the theorem of the Hessian matrix. 

vi. For each 𝑛1 = 1; 2; 3; :::: we will calculate the unique and 

optimal values of ti and si. 

3. By using Eq. (10), TC (𝑛1) is collected to calculate the 

optimum total cost value of the system (TC)( 𝑛1 ) by 

using the following condition: 

i. For n1=1 then TC=TC(n1) and stop. For n1>1, and if 

TC(n1) ≤  TC(n1-1) and TC(n1) ≤ TC(n1+1) then 

TC(n1) = Optimal (TC) And stop otherwise go to the 

previous step. Similarly, we can calculate carbon 

emissions cost and the total quantity. 

 

4.1 Numerical illustration for the proposed model 

 

Example 1. b=10unit/yr, c=5unit/yr, a=25 unit/yr, α=0.001, 

S=2$/unit, τ=0.003$/ton emission, hc
^ = 0.1ton CO2/

unit, Pr
^ = 0.030.1ton CO2/unit, Dt = 0.01 ,Wh = 0.3$/

unit, S = 2$/unit, l = 10$/unit, H = 4$/unit/yr, α =
0.001, δ = 4, θ1 = 0.002, A = 60$/order, T = 4 . The 

mathematical calculation tool Mathematica version-12 is used 

to solve the nonlinear equation systems Eq. (16) and Eq. (17). 

The optimality of the total system cost and replenishment 

cycles time can be observed in Table 2, Table 3, Figure 2, and 

Figure 3 for all values mentioned in the example1, respectively, 

for all the values mentioned in Example 1. In a finite planning 

horizon with unequal cycles length that is a real time scenario. 

Finite planning horizon for unequal cycles length can be 

observed in Table 3. 

 

4.2 Tables and figures 

 

Table 2. Table for TC for Example 1 

 

 
n 

Qi+1 CE TC 

1 145.964 0.0504865 1525.31 

2 140.436 0.0521384 1079.27 

3 121.986 0.0465045 862.14 

4 101.422 0.0390947 756.45 

5 41.5876 0.0056345 711.40 

6* 71.8061 0.0279307 700.19 

7 62.2117 0.0242669 709.07 

 

Table 3. Optimal strategy for Example 1 

 

n 
ti  si 

1 0.174496  0.979947 

2 1.10192  1.76505 

3 1.85751  2.4267 

4 2.50212  3.00571 

5 3.07019  3.52535 

6* 3.58222  4.000000 

 

 
 

Figure 2. Proposed 3-D graphic representation 

 

 
 

Figure 3. Proposed graphic representation 
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Replenishment cycles can be observed in Tables 2 and 3, 

respectively, for all the values mentioned in Example 1. 

4.3 Sensitivity analysis and observations 

As we are aware, uncertainties and unpredictable market 

conditions can lead to variations in some parameters' values in 

decision-making scenarios. Therefore, it is essential to 

examine the resulting changes in the total cost, emission 

values, and optimal replenishment cycle. Table 5 presents a 

comprehensive sensitivity analysis that illustrates how 

alterations in parameter values can impact the results or 

outcomes. Hence, in this section, we will analyze the 

sensitivity level of the total cost and carbon emission cost-

optimal solution of the previous Example 1 by changing 

various system component values. This analysis is carried out 

using graphical illustrations. Each parameter's value is 

modified by varying a, b, c, τ, δ, α and θ1 in -50%, -25%, +25%, 

and +50%, focusing on one parameter at a particular time and 

keeping the remaining values constant. The optimal solutions 

for n, TC, and CE are determined in each scenario with the aid 

of Mathematica software version-12. 

1. As a result of the study, it was shown that the value of

n1*(optimal number of cycles) is more flexible in the

selection of a parameter such as 'a', slightly sensitive to

those of subset 𝜏, and almost insensitive to other parameters 

such as b, c, δ, α and θ1. 

2. The level of emissions produced (CE) appears to be highly

sensitive to changes in the parameters of collection τ and a,

moderately sensitive to variations in selection parameters,

and virtually insensitive to changes in the remaining

parameters.

3. The total cost of the entire supply chain TC is highly

sensitive to the selection parameters a, b, and c, moderately

reactive to the subset P parameters, including τ and δ, and

practically insensitive to any changes in the remaining

parameters.

4.4 Some exceptional cases 

The following are the important exceptional circumstances 

that impact the optimum current value of total cost. See Table 

4 for couplet analysis. 

1. When inventory-dependent demand is not taken into

account, that is θ1=0.

2. The deterioration of inventory items is not considered that

is, α=0.

3. When carbon emission cost is neglected that is, τ=0.

Table 4. Comparison chart for some expectational 

Some 

expectational 

condition 

Replenishment 

cycle(n*} 

Carbon 

emission cost 

Time intervals 

(years) 
Q* Order 

Quantity 

Total Cost of the 

system (TC*) 
ti  si 

θ1=0 6 0.0279 

0.174335 0.980015, 

71.7926 716.013 

1.10189 1.76513 

1.85753 2.42678 

2.50215 3.00577 

3.07021 3.52538 

3.58222 4.0000 

α=0 6 0.0279 

0.174395 0.979762 

71.7904 716.0054 

1.10166 1.76484 

1.85724 2.42653 

2.5019 3.00559 

3.07003 3.52529 

3.58212 4.00000 

τ=0 6 0 

0.174476 0.979942 

71.8081 716.103 

1.1019 1.76504 

1.85749 2.4267 

2.50211 3.00571 

3.07018 3.52535 

3.5820 4.00000 

Table 5. Shows the following facts of the comprehensive analysis for changing different parameters 

Parameters % Changes Optimal Replenish cycle Carbon emission cost Total cost 

a {

−50
−25
+25

+50

5
6
6

7

0.0257227
0.0251208
0.0306681

0.0289431

 

628.6262
666.5544
733.2927

765.3499

 

B {

−50
−25
+25

+50

6
6
6

6

0.0242241
0.0260827
0.0297682

0.0315958

 

653.7005
676.9800
723.3610

746.4673

 

C {

−50
−25
+25

+50

5
6
6

6

 

0.0273340
0.0256152
0.0302138

0.0324689

 

641.0577
671.4946
728.5855

756.7115
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τ {

−50
−25
+25

+50

6
6
6

6

0.0139655
0.0209481
0.0349130

0.0418954

 

700.1862
700.1928
700.2059

700.2125

 

δ {

−50
−25
+25

+50

6
6
6

6

0.0230894
0.0260249
0.0292711

0.0302667

 

668.4622
688.3219
708.1282

713.8058

 

α {

−50
−25
+25

+50

6
6
6

6

0.0279279 

0.0279293 

 0.0279321      0.0279335 

698.5433 

699.3714 

701.0273 

701.8553 

θ1 {

−50
−25
+25

+50

6
6
6

6

0.0279283
0.0279295
0.0279319

0.0279331

 

709.6992
704.9493
695.4496

690.7000

 

Table 6. Represent the comparision between existing model and proposed model 

Parameters 

→ 
a1 b1 c1 H Pr Or S I Dt θ1 α 𝑷𝒓

^ T τ 𝒉𝒄
^ δ 

Total Cost of the 

system 

Sarkar et al. 

[18] 

25 10 5 4 1.2 60 2 10 □ □ 0.001 □ 4 □ □ 4 513.409 

Proposed model 25 10 5 4 1.2 60 2 10 0.01 0.002 0.001 0.03 4 0.003 0.1 4 502.19 

Figure 4. Graphic representation of sarkar model 2012 

Figure 5. Proposed graphic representation 

Further, Table 6, Figure 4, Figure 5 provide a comparison 

between proposed and existing model [18]. Moreover, it 

reveals that this supply chain inventory model can help the 

manufacturing or retail industries to reduce costs by 

optimizing inventory levels, and optimising replenishment 

time, while optimizing replenishment cycles to remain the 

same. Reduced costs ultimately lead to an increase in the 

profits. 

5. CONCLUSIONS

The focus of the study is on a supply chain inventory system 

that deals with goods that deteriorate at a constant rate. This 

system includes practical and realistic characteristics that are 

often associated with various inventory types for a 

manufacturing company or retail company. The first kind, 

deterioration over time is a natural characteristic of anything. 

Second, inventory shortages are a natural phenomenon in real-

world circumstances. Third, it has been discovered carbon 

emission cost that put an impact on the overall system cost.  

Moreover, the study highlights the impact of carbon 

emission costs on the overall system cost. The proposed 

approach is particularly relevant to the retail industry or 

manufacturing industry. It may be utilized for metals, organic 

biomaterials, household items, and other things that have the 

preceding features. 

The study provides an analytical framework for addressing 

the aforementioned issue and presents an optimal solution 

approach for determining the optimal replenishment strategy 

and total cost. The findings reveal that the carbon dioxide 

emissions significantly impact the total cost of the system. 

Additionally, the study examines the sensitivity of the solution 

to variations in various parameter values. 

5.1 Managerial suggestions and future extension 

The management has the flexibility to determine the optimal 

timing for replenishment and to halt the ordering process. 

Upon cessation of replenishment or ordering, the customer's 

demands are met by utilizing the existing inventory. The 

management has an understanding of the ideal moment, 

denoted as T, at which the inventory level will reach zero and 

the order should be placed to avoid stockouts. 

There is potential for further expansion of this model by 

incorporating an inventory system with alternative carbon 

emission policies. Additionally, the degradation rate of the 

Weibull distribution may be taken into account. The cost of 

the manufacturing process, transportation, and refrigeration 
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could also be considered. This model can be easily modified 

to account for lead time uncertainties. 
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