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The performance of the classical and adaptive backstepping control schemes for the 

angular position control of a nonlinear Propeller-Driven Pendulum System (PDPS) is 

investigated in this paper. A Particle Swarm Optimization (PSO) algorithm has been 

utilized to tune the design parameters of the proposed controllers. Based on the Lyapunov 

stability analysis the classical and the Adaptive Back-Stepping Controllers have been 

constructed in order to prove the convergence of the system’s error with time. The 

Adaptive Backstepping Controller (ABSC) is designed to compensate for the variation in 

the system’s mass magnitude. In terms of system transient response, a comparison study 

of the effectiveness of both controllers has been presented in this work. The simulation 

results have been obtained based on the MATLAB software. In addition, a comparison 

study between the proposed controllers and other controllers has been listed to demonstrate 

the effectiveness of the proposed controller. The simulation results show that the PSO 

based classical Backstepping Controller (BSC) has a better performance in terms of 

reducing the settling time, the steady-state error, and the Root Mean Square Error (𝑅𝑀𝑆𝐸) 

value in comparison with the STSMC and SMC. In addition, the simulation results reveal 

that the PSO based ABSC has a better performance in terms of reducing the steady state 

error and the maximum overshoot in comparison with the PSO based BSC and ASTSMC. 
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1. INTRODUCTION

The PDPS is considered a suspended pendulum, which has 

a motorized propeller that generates a thrust force at the end of 

a pendulum rod. This thrust force has the capability of moving 

the pendulum up and down [1, 2]. Various control methods can 

be used to stabilize the pendulum at any desired position by 

utilizing this thrust force [3-5]. The PDPS is considered a 

simple plant model that is used in the education of 

mechatronics and mechanical engineering to explain the 

system dynamics and control topics. The motivation for this 

work is that this system has many applications such as 

measurement, coupled pendulum applications, special aircraft, 

entertainment purposes, etc. Thus, it is very important to know 

how to control the PDPS because this can enable us how to 

control its behavior, such as stability, overshoots, rise time etc. 

The following literature focuses on the most relevant works 

for PDPS control and application. 

Mohammadbagheri and Yaghoobi [5] applied a PID control 

design to control the angular position of the PDPS. The 

limitation of this work is that the design parameters of the PID 

controller are determined using a try-and-error procedure. 

Kizmaz et al. [6] suggested a sliding mode control method for 

controlling the angular position of this system and the 

suggested method gives good results because this method is 

based on the improvement of systems robustness. The 

limitation of this control method is the chattering problem in 

the voltage control signal and the high settling time of the 

controlled system. Raju et al. [7] proposed a Quadratic 

Dynamic Matrix Control (QDMC) method to control a PDPS. 

This work depends on linearized the model and then deriving 

the transfer function of this model. The proposed method 

shows the ability of stabilizing the PDPS. Mohamad Reza 

Khoygani et al. [8] suggested the design of many controllers 

such as a conventional PID controller, PID-based LQR 

controller, Fuzzy Logic Controller (FLC), and Self-Tuning 

Fuzzy PID controller (STFP) for controlling the position of the 

PDPS. 

An effective procedural control scheme is a backstepping 

control method, which is created in accordance with iterative 

phases that come to an end when the controller reaches the 

intended state’s channel. Simulated controllers are applied to 

transitional state variables during the design procedure control 

[9]. The idea of converging in the event of uncertainty, like an 

effort of perturbation, is going to be distinct from the certainty 

scenario, necessitating previous knowledge of both the 

systems’ characteristics and uncertainty. The primary goal of 

the present work is to use the optimal BSC and the optimal 

ABSC tightly to regulate the position angle of the PDPS to 

reach a desired position angle with the acceptable transient 

response and to calculate the disturbance. The PSO algorithm 

has been used in this work for tuning the gains of the proposed 

controllers because the try-and-error method in setting the 

parameters of these controllers is tedious and does not give a 

high-quality performance for these controllers. 

The certainty parity control is one of the many current 

adaptive techniques based on adaptive law that work to predict 

unknown variables in order to reflect the real value of the 

unidentified parameters in the ABSC. The backstepping 

control technique combined with adaptive law, based on 
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Lyapunov stability analysis, produces performance 

characteristics that are essentially identical to those of a non-

adaptive backstepping controller with resilience capabilities 

[10]. For the purpose of controlling the angular position of the 

PDPS, the functionality of the proposed ABSC is examined in 

the current study. In this paper the ABSC was used in order to 

force the PDPS to reach a steady-state angle with the desired 

transient response. The proposed method is dependent on the 

PDPS’s time domain performance. 

The rest of this paper is organized as follows. Section 2 

presents the mathematical modelling of the PDPS. Section 3 

suggests the design of the proposed controllers for the PDPS. 

In section 4, the PSO technique is explained. The simulation 

results of the system with the suggested controller are 

described in section 5. Finally, the conclusion of this paper has 

been given in section 6. 

 

 

2. PROPELLER-DRIVEN PENDULUM SYSTEM 
 

Figure 1 shows the simplified diagram of the PDPS. The 

motorized propeller is attached to the end of the suspended 

pendulum's arm. The position angle which is between the 

pendulum arm and the vertical axis is controlled by applying 

an input voltage to the electric DC motor. The control variable 

in this system is the angle which is located between the 

pendulum arm and the vertical axis and the control variable u 

is the input voltage to the electric DC motor. 

 
 

Figure 1. The PDPS’s schematic diagram [3] 

 

The nonlinear equation of motion for the PDPS is given in 

Eq. (1) [3, 5]: 

 

𝐽�̈�(𝑡) + 𝐶�̇�(𝑡) + 𝑚𝑑𝑔 sin(𝜃(𝑡)) = 𝑇(𝑡) + 𝜑(𝑡) (1) 

 

where, 𝜃 represents the pendulum's position angle, 𝐽 represents 

the moment of inertia, 𝐶 represents the viscous damping 

coefficient, 𝑑 represents the length between the center of mass 

and the pivot point of the pendulum arm, 𝐿 represents the 

pendulum arm length, 𝑔 represents the gravitational 

acceleration, 𝜑 represents the external torque disturbances, 𝑚 

represents the pendulum mass, and 𝑇 represents the thrust of 

the DC motor.  

The rational equation between the thrust generated from the 

motor and the control input signal 𝑢 can be expressed as in Eq. 

(2): 

 

𝑇(𝑡) = 𝐾𝑚𝑢(𝑡) (2) 

 

where, 𝐾𝑚 is considered as the motorized propeller constant. 

By using Eq. (2), Eq. (1) can be described as follows: 

 

�̈�(𝑡) =
𝐾𝑚𝑢(𝑡) + 𝜑(𝑡) − 𝐶�̇�(𝑡) − 𝑚𝑑𝑔 sin(𝜃(𝑡))

𝐽
 (3) 

 

The state 𝑥1(𝑡) and its time derivative 𝑥2(𝑡) are represented 

as below: 

 

𝑥1(𝑡) = 𝜃(𝑡) (4) 

 

𝑥2(𝑡) = 𝑥1̇(𝑡) = �̇�(𝑡) (5) 

 

Depending on Eqns. (4) and (5), Eqs. (3)-(5) are represented 

below: 

 

𝑥1̇(𝑡) = 𝑥2(𝑡) (6) 

 

𝑥2̇(𝑡) =
𝐾𝑚𝑢(𝑡) + 𝜑(𝑡) − 𝐶𝑥2(𝑡) − 𝑚𝑑𝑔 𝑠𝑖𝑛(𝑥1(𝑡))

𝐽
 (7) 

 

 

3. BACKSTEPPING CONTROLLERS DESIGN 
 

The control law of the classical BSC is improved in this 

section based on adaptive backstepping methodology. Firstly, 

the design of the classical BSC must be carried out and then 

the ABSC will be established accordingly. The BSC is 

accountable for stabilizing and regulating the angular positions 

of the PDPS relative to their respective normal positions. The 

BSC is accountable for regulating and stabilizing the angular 

position of the PDPS to the desired angular position. The 

design procedures of both controllers are explained as follows 

[11-14]: 

 

3.1 Backstepping controller 

 

Let 𝑒1 be the difference between the actual state 𝑥1 and the 

reference position 𝑥𝑑: 

 

𝑒1(𝑡) = 𝑥1(𝑡) − 𝑥𝑑(𝑡) (8) 

 

Eq. (9) can be obtained by using the time derivative of 𝑒 as 

follows: 

 

𝑒1̇(𝑡) = 𝑥2(𝑡) − 𝑥�̇�(𝑡) (9) 

 
The difference between the virtual controller (𝛼) and (𝑥2) 

can be described as follows: 

 

𝑒2(𝑡) = 𝑥2(𝑡) − 𝛼(𝑡) (10) 

 
By substituting Eq. (10) in Eq. (9), the time derivative of 𝑒1 

can be represented as follows: 

 

𝑒1̇(𝑡) = 𝛼(𝑡) + 𝑒2(𝑡) −  𝑥�̇�(𝑡) (11) 

 

According to Eq. (11), the virtual controller (𝛼) is chosen as 

follows: 

 

𝛼 (𝑡) = −𝑎1𝑒1(𝑡) + 𝑥�̇�(𝑡) (12) 

 

𝛼 (𝑡) = −𝑎1(𝑥1(𝑡) − 𝑥𝑑(𝑡)) + 𝑥�̇�(𝑡) (13) 

 

where, 𝑎1 is a constant greater than zero. 
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By substituting Eq. (12) in Eq. (11), Eq. (11) becomes as 

follows: 

 

𝑒1̇(𝑡) = −𝑎1 𝑒1(𝑡) + 𝑒2 (𝑡)  (14) 

 

Taking the time derivative of Eq. (10), gives: 

 

𝑒2̇(𝑡) = 𝑥2̇(𝑡) − �̇�(𝑡) (15) 

 

𝑒2̇(𝑡) =
𝐾𝑚

𝐽
𝑢(𝑡) −

𝐶

𝐽
𝑥2(𝑡) −

𝑚𝑑𝑔

𝐽
𝑠𝑖𝑛(𝑥1(𝑡)) +

𝜑(𝑡)

𝐽
− �̇�(𝑡)  

(16) 

 

The control signal can be defined as follows: 

 

𝑢(𝑡) =
𝐽

𝐾𝑚

 ((
𝑐

𝐽
 )𝑥2(𝑡) +

𝑚𝑑𝑔

𝐽
 𝑠𝑖𝑛(𝑥1(𝑡))  −

𝜑(𝑡)

𝐽
+ �̇�(𝑡) + 𝑒2̇(𝑡)) 

(17) 

 
Consider the following expression for the time derivative of 

(𝑒2(𝑡)) as follows: 

 

𝑒2̇(𝑡) = −𝑎2𝑒2(𝑡) − 𝑒1(𝑡) (18) 

 

where, 𝑎2 is a constant greater than zero. 

The time derivative of (𝛼) is described as follows: 

 

�̇�(𝑡) = −𝑎1𝑒1̇(𝑡) + 𝑥�̈� (19) 

 

By substituting Eqs. (19), (18), (9), (8), (10), and (13) in Eq. 

(16), the control signal can be described as follows: 

 

𝑢(𝑡) =
J

𝐾𝑚

((−𝑎1𝑎2 − 1)𝑥1(𝑡)

− (𝑎2 −
𝐶

𝐽
+ 𝑎1) 𝑥2(𝑡)

+ (𝑎1𝑎2 + 1)𝑥𝑑(𝑡)

+
𝑚𝑑𝑔

𝐽
𝑠𝑖𝑛(𝑥1(𝑡)) −

𝜑(𝑡)

𝐽
+ (𝑎1 + 𝑎2)�̇�𝑑(𝑡) + 𝑥�̈�(𝑡) 

(20) 

 

The schematic diagram of the optimal BSC for the output 

angular position control of the PDPS is illustrated in Figure 2. 

 

 

3.2 Adaptive backstepping controller 

 

Suppose the uncertainty 𝑚 is bounded and unknown, then 

by using the principle of certainty equivalence, an estimated 

�̂� is substituted for the actual value of uncertainty 𝑚. The 

difference between these two values represents the estimation 

error as follows: 

 

�̃� = 𝑚 − �̂� (21) 

 
The control signal using the uncertainty estimate value 

instead of the actual value of 𝑚 is described as follows: 

 

𝑢(𝑡) =
𝐽

𝐾𝑚

 ((
𝑐

𝐽
 )𝑥2(𝑡) +

�̂�𝑑𝑔

𝐽
 𝑠𝑖𝑛(𝑥1(𝑡))  −

𝜑(𝑡)

𝐽
+ �̇�(𝑡) + 𝑒2̇(𝑡))  

(22)  

 

The Eq. (23) is described as follows: 

 

𝑒2̇(𝑡) = −𝑐2𝑒2(𝑡) − 𝑒1(𝑡) +
�̃�

𝐽
 (23) 

 

The following Lyapunov function is chosen to develop the 

adaptive law: 

 

𝑉(𝑒1, 𝑒2, �̃�) =
1

2
𝑒1(𝑡)2 +

1

2
𝑒2(𝑡)2 +

�̃�2

2𝛽
 (24) 

 

where, 𝛽 is a design parameter. 

The time derivative of the chosen Lyapunov function is 

given as follows: 

 

�̇�(𝑒1, 𝑒2, �̃�) = −𝑒1(𝑡)2 − 𝑒2(𝑡)2 + �̃�(
𝑒2(𝑡)

𝐽
−

�̇̂�

𝛽
) (25) 

 

To ensure that the preceding equation is negative-definite, 

the following adaptive law is derived. 

 

�̇̂� =
𝛽𝑒2(𝑡)

𝐽
 (26) 

 

The schematic diagram of the optimal ABSC for the output 

angular position control of the PDPS is depicted in Figure 3. 

 

Figure 2. The scheme of the optimal BSC for controlling the output angular position of the PDPS. 
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Figure 3. The scheme of the optimal ABSC for controlling the output angular position of the PDPS. 

 

4. PARTICLE SWARM OPTIMIZATION 

 

The PSO is an evolutionary optimization technique that was 

first introduced in 1995. In this technique, a particle represents 

a potential solution to the problem. Each particle's (bird) flight 

is adjusted based on its own flying experience and the flying 

experience of its companion. The following equations 

represent the updating of each bird’s velocity and position [15, 

16]: 

 

𝑉𝑖
𝑘+1 = 𝑤𝑉𝑖

𝑘 + 𝑐1𝑟𝑛1(𝑝𝑏𝑒𝑠𝑡𝑖

𝑘 − 𝑋𝑖
𝑘) + 𝑐2𝑟𝑛2(𝑔𝑏𝑒𝑠𝑡

𝑘 − 𝑋𝑖
𝑘) (27) 

 

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1 (28) 

 

where, 𝑖 = 1, 2, … , 𝑁𝑝 , 𝑁𝑝  is the population size, 𝑘 =

1, 2, … , 𝑘𝑚𝑎𝑥, 𝑘𝑚𝑎𝑥 is the maximum number of iterations, 𝑉𝑖
𝑘 

is the velocity of the 𝑖𝑡ℎ  bird, 𝑤  is the inertial weight 

coefficient, 𝑐1 and 𝑐2 are the learning factors, 𝑟𝑛1 and 𝑟𝑛2 are 

random numbers between [0,1], 𝑋𝑖
𝑘 is the location of the 𝑖𝑡ℎ 

bird. 

As a cost function, 𝑅𝑀𝑆𝐸  is selected and is defined as 

follows [17]: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑥1 − 𝑥𝑑)2𝑛

𝑖=1   (29) 

 

where, 𝑥1 is the actual position, 𝑥𝑑 is the desired position, and 

𝑛 is the number of acquired samples. 

The pseudocode of the PSO technique for tuning the design 

parameters of the proposed controllers is described below: 

 

Pseudocode of PSO algorithm 

Step 1: Set Parameters. 
(a) Set the PSO parameters, including the value of the inertia 
factor (w), population size (Np), learning factors (c1 and c2), 

dimension of the problem (𝑑𝑖𝑚), and the maximum iterations 
limit (𝑘𝑚𝑎𝑥). 
(b) for each bird 𝑖 = 1, …, 𝑁𝑝, do 

Initialize the birds’ velocity and position randomly:  𝑉𝑖(0) and 
𝑋𝑖(0). 
(c) Calculate the 𝑅𝑀𝑆𝐸 cost function for all birds using Eq. 
(29). 
(d) For all birds, evaluate  𝑝𝑏𝑒𝑠𝑡  to their initial position: 
𝑝𝑏𝑒𝑠𝑡𝑖

=  𝑋𝑖(0). 

(e) Put the 𝑔𝑏𝑒𝑠𝑡  value to the position of the bird with the 
lowest 𝑅𝑀𝑆𝐸 value among all birds. 

end for 

Step 2: Repeat the process until the maximum iterations limit 

is attained. 

While (𝑘 < 𝑘𝑚𝑎𝑥  ) do 

for each bird  𝑖 = 1, 2, … , 𝑁𝑝, do 

Update the velocity of each bird using Eq. (27). 

Update the position of each bird using Eq. (28). 

Calculate the 𝑅𝑀𝑆𝐸𝑖  cost function using Eq. (29). 

if   RMSE (Xi
k+1) < RMSE (Xi

k). 

pbesti
= Xi

k+1. 

end if 

if  min(RMSE(Xk+1) < min(RMSE(Xk) 

gbest = Xmin (RMSE)
k+1  

end if 

end for 

k = k + 1  

end while 

Step 3: Output the best solution found (𝑔𝑏𝑒𝑠𝑡). 

 

 

5. SIMULATION RESULTS 

 

The simulation results are conducted using MATLAB 

software to show the effectiveness of the optimal controllers 

in controlling the angular position of the PDPS. The 

performances of the optimal proposed backstepping 

controllers are compared with that of the other controllers in 

this study. The initial values of the variables 𝑥1 , 𝑥2, and 𝜑 are 

equal to 0, 0, and 0.1 respectively. The nominal parameters of 

the PDPS are illustrated in Table 1 [3]. 

The try-and-error method in setting the parameters of the 

proposed controllers is tedious and does not give a high-

quality performance of the proposed controllers. Therefore, in 

this study, a PSO technique is used to find the optimal 

parameters of these controllers. The parameters of the PSO 

algorithm are described in Table 2.  

 

Table 1. The nominal parameters of the PDPS [3] 

 

Parameter and Symbol Value and Unit 

Pendulum Mass (𝑚) 0.36 𝑘𝑔 

Motor constant (𝐾𝑚) 0.0296 

Length between the suspending 

point and the center of mass (𝑑) 
0.03 𝑚 

Acceleration due to gravity (𝑔) 9.81 𝑚/𝑠2 

Moment of inertia (𝐽) 0.0106 𝑘𝑔. 𝑚2 

Viscous damping coefficient (𝐶) 0.0076 𝑁𝑚𝑠/𝑟𝑎𝑑 

DC motor input voltage (𝑢) ±24 𝑉 
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Table 2. The PSO algorithm parameters 

Parameter Value 

Population size (𝑁𝑝) 25 

Maximum number of iterations (𝑘𝑚𝑎𝑥) 100 

The cognitive learning factor (𝑐1) 1.49618 

The social learning factor (𝑐2) 1.49618 

the inertial weight coefficient (𝑤) 0.7298 

Dimension of the problem 2 

 

Table 3 shows the gains of the proposed optimal controllers 

by using the PSO technique for the PDPS controlled. Figure 4 

reveals the cost function plots with respect to iteration for the 

angular position of the PDPS. This figure shows that the PSO 

technique could reduce effectively the cost function in relation 

to iteration to achieve the controlled system’s optimal 

performance. 

 

 
 

Figure 4. The cost function plots for the proposed optimal controllers 

 

Table 3. The gains of the proposed optimal controllers using 

the PSO technique 

 

Controller Parameter Value 

PSO based BSC 
𝑎1 25.359 

𝑎2 45.025 

PSO based ABSC 

𝑎1 14.652 

𝑎2 44.7 

𝛽 −0.155 

 

Scenario I: Control without mass uncertainty and external 

disturbance 

In this part, the ABSC has been discarded because of the 

absence of mass uncertainty and external disturbance 

problems. The angular output position and velocity of the 

PDPS controlled by the optimal BSC are shown in Figures 5 

and 6, respectively. It is clear that the dynamic response of this 

controlled system is better than that of (which was used in the 

study [3]) the other controller, especially in terms of reducing 

the settling time, steady state error and cost function (𝑅𝑀𝑆𝐸) 

value as shown in Table 4. The corresponding control effort 

due to the optimal BSC is illustrated in Figure 7. This control 

effort is smooth and did not exceed the saturation voltage of 

the DC motor. 

 

 

Figure 5. The dynamic behaviour of the PDPS using PSO based BSC 
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Figure 6. The angular velocity of the PDPS using PSO based BSC 

 

 
 

Figure 7. The voltage control signal of the controlled system based PSO based BSC 

 

 
 

Figure 8. The dynamic behaviours of the PDPS using the proposed optimal controllers under the mass uncertainty and external 

disturbance 

 

 
 

Figure 9. The angular velocities of the PDPS using the proposed optimal controllers under the mass uncertainty and external 

disturbance 
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Figure 10. The voltage control signals of the controlled system using the proposed optimal controllers under the mass uncertainty 

and external disturbance 

 

Table 4. The nominal controlled system dynamic 

performance using the proposed controllers 

 

Controller 
Settling 

time (sec) 

Steady state 

error (degree) 
RMSE 

PSO based BSC 0.35 0 0.00827 

STSMC [3] 1.26 0.1 0.1206 

SMC [3] 0.88 0.13 0.08097 

 

Scenario II: Control with mass uncertainty and external 

disturbance 

In this part, the PSO based BSC and PSO based ABSC have 

been assessed under the presence of mass uncertainty and 

external disturbance problems. The angular output position 

and velocity of the PDPS controlled by the PSO based BSC 

and PSO based ABSC are depicted in Figures 8 and 9. Figure 

8 illustrates that both optimal controllers are capable of 

tracking the desired trajectory while the PSO based ABSC has 

a better dynamic performance compared to other controllers as 

shown in Table 5.  

 

Table 5. The dynamic performance of the uncertain 

controlled system using the proposed controllers 

 

Controller 

Settling 

time 

(sec) 

Steady 

state error  

(degree) 

Maximum 

overshoot 
RMSE 

PSO based 

ABSC 
0.35 0 0 0.00761 

PSO based 

BSC 
0.205 0.0005 9.5% 0.00827 

ASTSMC 

[3] 
0.44 0.13 0 0.0682 

 

The control signals behaviour using the proposed optimal 

controllers are described in Figure 10. It is evident that the 

responses of the control signals are smooth and within the 

acceptable voltage range of the pendulum system’s DC motor. 

The estimation behaviour of the pendulum mass and the 

external torque disturbance are shown in Figures 11 and 12, 

respectively. It is evident that the estimation error of the 

pendulum mass may reach zero as time tends to 2.5 sec. 

 

 
 

Figure 11. Pendulum estimation mass (𝐾𝑔) 

 

 
 

Figure 12. External torque disturbance (𝑁. 𝑚)
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6. CONCLUSIONS 

 

This work presents the design of the optimal BSC and 

optimal ABSC for controlling the angular position of the 

PDPS. A controlled system’s stability analysis has been 

presented using the Lyapunov function. The simulation 

results demonstrated that the PSO technique could 

significantly improve the proposed controllers’ dynamic 

performance. A comparison study has been conducted 

between the proposed optimal controllers and other 

controllers. The simulation results reveal that the PSO based 

BSC has a better dynamic performance in comparison with 

the other controllers’ performance such as SMC and STSMC 

in reducing the settling time, steady state error and 𝑅𝑀𝑆𝐸 

value [3]. In addition, the PSO based ABSC has been 

designed to estimate bounded mass uncertainty and to 

compensate for the effect of the external torque disturbance. 

The transient characteristics of the PSO based ABSC are 

better than those using PSO based BSC and ASTSMC in 

reducing the settling time, steady state error, maximum 

overshoot and 𝑅𝑀𝑆𝐸 value. 

For future work, this study can be extended by including 

different optimization algorithms for the purpose of 

comparison with the PSO technique [18-21]. In addition, 

another extension of this study could be by using other 

embedded hardware designs such as Raspberry Pi or FPGA 

or by using LabVIEW programming software in order to 

implement the proposed controller in a real-time 

environment [22-25]. 
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NOMENCLATURE 

 

𝑎1  dimensionless constant greater than zero 

𝑎2  dimensionless constant greater than zero 

𝐶  viscous damping coefficient, N.m.s. rad-1  

𝑐1  dimensionless cognitive learning factor 

𝑐2  dimensionless social learning factor 

𝑑  the length between the center of mass and 

the pivot point of the pendulum arm, m 

𝑒1  difference between the actual state 𝑥1  and 

the reference position 𝑥𝑑, rad 

𝑒2  difference between the virtual controller (𝛼) 

and (𝑥2), rad. s-1 

𝑔  gravitational acceleration, m. s-2 

𝐽  moment of inertia, kg.m2 

𝐾𝑚  dimensionless motorized propeller constant 

𝐿  pendulum arm length, m 

𝑚  actual pendulum mass, kg 

�̂�  an estimated mass, kg 

�̃�  difference between the actual and estimated 

pendulum mass, kg 

𝑛  dimensionless the number of acquired 

samples 

𝑇  the thrust generated from the motor, N 

𝑢  Voltage control action, V 
𝑉  particles velocities, m. s-1 
𝑤  dimensionless inertial weight coefficient 

𝑋  particles positions, m 

𝑥𝑑  desired position, rad 

𝑥1  actual position, rad 

𝑥2  actual velocity, rad. s-1 

 

Greek symbols 

 

α virtual controller, rad. s-1 

𝛽  dimensionless design parameter 

𝜑  external torque disturbances, N. m 

𝜃  pendulum's position angle, rad 
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