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The automatic human Emotion Recognition (ER) based on Electroencephalography (EEG) 

signal has gained more attention among the researcher communities with a rapid growth of 

Human Computer Interaction (HCI). Most of the prior models have not focused on the 

context-information of the EEG signals. In this research manuscript, a novel automated 

model is implemented for improving ER using EEG signals. In the initial phase, the signals 

are acquired from an online database: Database for Emotion Analysis using Physiological 

Signal (DEAP). Then, the data denoising is carried-out by implementing Empirical Mode 

Decomposition (EMD) and Variational Mode Decomposition (VMD) filters. These filters 

aim in eliminating the artifacts and noises in the acquired raw EEG signals, and further, the 

feature extraction is carried-out utilizing 20 statistical features that extracts discriminative 

feature information from the decomposed EEG signals. In the last phase, the Long Short 

Term Memory network (LSTM) is used for human ER as arousal or valence. Additionally, 

the optimal hyper-parameters of the LSTM network are selected by proposing the Improved 

Rat Swarm Optimization Algorithm (IRSOA). As denoted in the resulting and discussion 

section, the IRSOA-LSTM network achieved a mean accuracy of 84.89%, sensitivity of 

86.95%, specificity of 86%, precision of 83.68%, and f1-score of 85.28% on the DEAP 

database. The simulation outcomes state that the proposed IRSOA-LSTM network is better 

than the existing machine-learning models. 
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1. INTRODUCTION

In HCI, ER plays a vital role, where it enables machines in 

perceiving the human emotional mental state. The ER analyses 

the advantages, due to the progression of the computer-

science, cognitive science, modern neuroscience and 

psychology fields [1, 2]. Especially, in the field of computer-

science, the ER by the automated systems aims in enhancing 

the HCI over a wide range of applications like gaming, 

military, industrial, and clinical. The human-ER approaches 

are categorized into two types: (i) non-physiological signals: 

voice signal, body gesture, and facial expressions, (ii) 

physiological signals: Electromyogram (EMG), EEG and 

Electrocardiogram (ECG) signals [3, 4]. Among the available 

physiological signals, the EEG signal is the common approach 

used for human ER [5, 6], because it directly captures the brain 

cortex that effectively reflects the human mental states. The 

EEG based ER has gained increasing applications, due to the 

growth of EEG electrode techniques [7]. Usually, human 

emotions are categorized in two major ways, i.e., the 

dimension methods and the Discrete Basic Emotion 

Description (DBED) methods [8, 9]. In the DBED methods, 

the emotions are divided into six discrete emotions such as 

Joy, Disgust, Anger, Fear, Surprise and Sadness [10-12]. 

Further, the dimension method describes the human emotions 

into two-dimensional continuous forms like arousal and 

valence [13, 14]. In the present scenario, many automated 

models are implemented for ER in which deep learning models 

gained more attention among the researcher’s communities, 

because of its reliability and scalability [15, 16]. Therefore, a 

novel optimization based deep learning model is introduced in 

this research paper for enhancing the classification 

performance and solving the non-stationary characteristics of 

the EEG signals, this manuscript’s contributions are pointed 

below: 

• The input raw EEG signals are collected from the

DEAP database. Integrated EMD and VMD filters for

removing noise and artifacts from the collected EEG

signals ensures the collected EEG signals are clean and

ready to be processed and classified.

• Used 20 Statistical features like Hjorth Activity, Hjorth

Mobility, Hjorth Complexity, Sample Entropy,

Shannon entropy, standard deviation, variance, Mean-

Curve-Length, Normalized First Difference, mean

teager energy, Auto-Regressive Model, Zero cross rate,

Band power delta, Band power theta, Band power

alpha, Band power beta, Band power gamma, Ratio

Band power alpha beta, Minimum, and Maximum for

extracting features from the decomposed EEG signals.

The statistical feature extraction has the advantages

such as overfitting risk reduction, accuracy

improvement, improved data-visualization, and speed

up the training process of LSTM.

• Used LSTM for classifying the human emotions as

arousal and valence. Proposed IRSOA for selecting

optimal hyper-parameters of the LSTM that enhances

the computational effectiveness and processing time.
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• The proposed IRSOA-LSTM network’s efficacy is

validated by utilizing the performance measures such

as classification accuracy, precision, sensitivity, f1-

score, and specificity.

The research manuscripts related to EEG based emotion 

classification are surveyed in Section 2. The theoretical 

details, simulation outcomes, and the conclusion of the 

IRSOA-LSTM network is presented in Sections 3, 4, and 5.  

2. LITERATURE REVIEW

A few literatures related to ER are reviewed in this section.

Tan [17] have introduced a novel deep learning model: 

Spiking Neural Network (SNN) for human ER on the multi-

modal database. The multi-modal data utilized in this literature 

were skin conductance, skin temperature, EEG, facial 

expressions, pupil size, mouth length, and respiration signals. 

The results show that the SNN model obtained comparable 

classification accuracy related to other deep learning models, 

but it was computationally complex.  

Ullah et al. [18] have presented a novel ensemble-learning 

model to automatically compute the discriminative EEG 

channel subsets for ER. Here, the ensemble-learning model 

not only decreases the computational time and improves the 

classification accuracy and computational efficiency. 

Experiments conducted on the DEAP database demonstrated 

the efficacy of the ensemble-learning model over the prior 

models. However, the ensemble-learning model was 

expensive by means of memory space and time. 

Krishna et al. [19] have introduced Tunable Q Wavelet 

Transformation (TQWT) technique to classify emotions 

utilizing EEG signals. In this research, the TQWT technique 

decomposes the raw EEG signals into sub-bands. Then, the 

features were extracted from the sub-bands by implementing 

the models like mobility, activity, shape factor, average-

amplitude change, crest factor, clearance factor, log detector, 

absolute square root sum, root-mean square, and absolute sum. 

The extracted feature vectors were utilized as an input to the 

extreme learning machine for classifying the human emotions 

as Sad, Fear, Happy and Relax. Simulation results showed that 

the presented model obtained better 4-emotion classification-

performance related to other existing models. Due to the 

inclusion of the several models, the computational complexity 

of the developed framework was higher. 

Liu et al. [20] have developed a novel hybrid deep learning 

model for EEG based emotion classification, which integrates 

Convolutional Neural Network (CNN), sparse autoencoder, 

and Deep Neural Network (DNN). Initially, the CNN extracts 

discriminative deep features from the collected databases, and 

then, the encoding and decoding was performed on the 

extracted-features by utilizing a sparse autoencoder. Lastly, 

the redundant data were given as the input to the DNNs for 

emotion classification. Experiments carried-out on the DEAP 

database showed the effectiveness of the implemented hybrid 

deep learning model in ER. The hybrid deep learning model 

was computationally costly in the practical applications.  

Zeng et al. [21] have implemented Sinc-Net for emotion 

classification, where it contains three DNN and convolutional 

layers. The simulation outcomes confirmed that the Sinc-Net 

converges more quickly than other conventional classifiers. 

But, the Sinc-Net required an enormous amount of training 

data, which was computationally costly.  

Bajaj et al. [22] have developed a Flexible Analytic 

Wavelet-Transformation (FAWT) technique for classifying 

the human emotions as sad, relax, happy, and fear. The FAWT 

technique categorizes the EEG signals into sub-bands and 

further, the statistical features were employed to extract 

vectors from the sub-bands. Finally, the K-Nearest Neighbor 

(KNN) was implemented for emotion classification, where the 

KNN was effective in outlier removal, but it includes the issue 

of overfitting.  

Kim and Choi [23] have presented an LSTM network with 

attention mechanisms for ER by using EEG signals. As a 

future extension, the presented LSTM network needed to 

concentrate on class-imbalance problems. 

Chakladar and Chakraborty [24] have integrated Higher 

Order Statistics (HOS) with the correlation-based subset 

selection for dimensionality reduction in order to obtain better 

results in ER. In this literature, the emotions were classified 

into four classes: Harmony, Angry, negative and positive. 

Still, the implemented model needed to concentrate on the 

non-linear data by implementing a kernel-based Support 

Vector Machine (SVM).  

Yin, et al. [25] have integrated LSTM and Graph CNN 

(GCNN) for ER. In the developed framework, the GCNNs was 

applied for extracting graph-domain vectors, and the LSTM 

network was utilized for memorizing the relationship between 

the extracted temporal vectors. In this study, the dense layer 

was utilized for obtaining the emotion classification results. 

Experiments-conducted on the DEAP database demonstrated 

that the developed model achieved better classification results 

than the existing methods. In this literature study, over-fitting 

and vanishing gradients were the main concerns faced by the 

researchers.  

Subasi et al. [26] have implemented a new light-weighted 

human ER framework. First, the Multi-Scale Principal 

Component Analysis (MSPCA) and Discrete Wavelet 

Transformation (DWT) technique were employed for 

artifacts-removal. Further, the TQWT and six statistical 

techniques were implemented for feature extraction and 

dimensionality reduction. Finally, the human ER was 

accomplished utilizing several machine-learning classifiers in 

that rotation forest ensemble with SVM classifier has attained 

higher classification results than other classifiers. However, 

the trade-off between the information loss and dimensionality 

reduction was a main problem in the MSPCA technique. 

Salankar et al. [27] initially used EMD technique for signal 

decomposition and then the feature extraction was 

accomplished by implementing 2nd order difference plots. 

Further, Wilcoxon test was carried-out for ensuring the 

statistical implication of the extracted features with p-value 

less than 0.05. Lastly, the multi-class and binary-class 

classification was carried-out by implementing two hidden 

layer Multilayer Perceptron’s (MLP) and SVM. Hence, the 

developed model’s efficacy was validated using statistical 

measures like accuracy, specificity and classification 

accuracy. However, the MLP was sensitive to feature scaling 

and requires a hyper-parameters tuning by means of iteration 

number, neurons and number of hidden layers.  

Gao et al. [28] have initially performed feature extraction 

using Power Spectral Density (PSD), sample entropy, 

differential entropy, Hjorth feature and GoogleNet. The 

extracted spatial and contextual feature information were fed 

to the SVM for classifying the human emotions. As indicated 

earlier, the SVM supports only binary-classification and it was 

inappropriate for multi-class ER.  

Sharma et al. [29] have combined a deep learning model 
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with HOS for automatic ER. In addition, Yang et al. [30] 

developed a CNN model for ER using EEG signals. The deep 

learning models were computational costly, where it needed 

high-end systems in order to achieve significant classification 

performance.  

Mert and Akan [31] have integrated Multivariate EMD 

(MEMD) with the frequency domain features like PSD, Hjorth 

parameters, power ratio, and entropy for ER as arousal or 

valence. In addition, Song et al. [32] have implemented a 

dynamic GCNN model for multi-channel EEG based emotion 

classification. The extensive experimental investigation 

confirmed that the dynamic-GCNN model achieved superior 

recognition performance than the existing models. However, 

the developed dynamic GCNN model comprises two main 

issues such as vanishing gradients and overfitting.  

Chen et al. [33] have combined EMD with approximation 

entropy for signal decomposition and feature extraction. The 

extracted feature values were given as the input to the hybrid 

classification model: SVM + Deep Belief Networks (DBN) to 

classify emotions as fear, sad, calm, and happy. However, the 

DBN model was computationally costly, because it needs a 

huge amount of data to perform superior classification.  

Chao et al. [34] used Capsule Networks (CapsNet) for ER 

by utilizing EEG signals. In the practical application, the 

presented CapsNet model was computationally expensive. 

Zhang et al. [35] integrated kernel matrix with DNNs for ER. 

The extensive experimental analysis showed that the presented 

model effectively captures the relation between multi-model 

physiological EEG signals that gains better recognition results. 

Pan et al. [36] have used Wavelet packet entropy, Fuzzy 

entropy, Sample entropy, and approximate entropy for feature 

extraction. The extracted features were given to the ensemble 

machine classification technique that integrates SVM, extreme 

learning machine and decision tree for emotion classification. 

The integration of numerous machine-learning classifiers was 

computationally complex.  

To address aforementioned issues, a new framework is 

introduced in the present research manuscript for effective 

emotion classification using EEG signals. 

3. METHODS

In the EEG based emotion classification, the developed 

framework includes four phases such as signal collection: 

DEAP, pre-processing: EMD-VMD techniques, feature-

extraction: 20 statistical features, ER: IRSOA- LSTM 

network. The block-diagram of the developed framework is 

depicted in Figure 1. 

Figure 1. Block-diagram of the developed framework 

3.1 Database description 

The proposed IRSOA-LSTM network’s efficacy is 

validated on an online DEAP database. It has 32 subjects’ 

physiological EEG signals, and the subjects rated every video 

in light of the valence and arousal levels. Out of 32 subjects, 

22 subject’s physiological EEG signals are recorded with 

frontal facial videos. In the DEAP database, the EEG signals 

have sampling frequency of 512 Hz, which are recorded from 

32 dissimilar locations such as O1, Fp1, AF4, FC2, CP5, FC1, 

Fp2, PO3, PO4, Fz, FC6, O2, CP1, CP2, Cz, T8, FC5, F4, C4, 

Oz, CP6, AF3, T7, P4, F8, P7, F3, P3, Pz, P8, C3, and F7. 

Some statistical information of the DEAP database is 

represented as follows: sampling-rate is 512 Hz frequency, 

number of subjects and channels is 32, labels are arousal and 

valence, and number of videos is 40 [37]. The DEAP database 

content summary (physiological experiments and online 

subjective annotations) is stated in Table 1. In addition to this, 

the sample DEAP database signals are denoted in Figure 2. 

DEAPdatabase: 

https://www.eecs.qmul.ac.uk/mmv/datasets/deap/. 

Figure 2. Sample acquired EEG signals 
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Table 1. Content summary of the DEAP database 

Physiological experiments 

Rating values Familiarity: discrete scale ranges from 1 to 5 and 

others: continuous scale ranges from 1 to 9 

Rating scales Valence and arousal 

Number of videos 40 

Number of 

subjects 

32 

Recorded signals  Facial videos (22 subjects), 32-channels, and 512 

Hz physiological EEG signals 

Online subjective annotations 

Rating values Discrete scale ranges from 1 to 9 

Rating scales Valence and arousal 

Number of ratings 

per video 

14 to 16 

Selection 

approach 

60 manually selected and 60 selected via affective 

tags 

Video duration One minute 

Number of videos 120 

3.2 Pre-processing and feature extraction 

Figure 3. Sample-decomposed EEG signal of EMD 

technique 

After acquiring the EEG signals from the DEAP database, 

the EMD/VMD are utilized for decomposing the non-static 

and non-linear signals to remove unwanted noise and artifacts. 

In the initial step, the EMD categorizes the collected EEG 

signals into many Inherent Functions (IMFs). Each IMF is 

utilized as a sub-band signal, which is utilized for 

decomposing the sub-strip signal. The EMD splits the EEG 

signals into two dissimilar types of frequencies like low and 

high frequencies. The filter recognizes the wave pattern in the 

high frequency that sharps the wave edges. The wave will be 

clearer and understandable for the classifiers after applying the 

smoothing filters; also, there will be no data loss [38, 39]. The 

sample-decomposed signal of EMD technique is depicted in 

Figure 3. In addition, the VMD splits the collected EEG 

signals into several modes (sub-signals). The Hilbert 

transformation technique is applied on every mode in VMD 

for measuring the mode’s frequency ranges and unilateral 

spectrum of frequencies [40]. The modes frequency range is 

transferred to a measured middle frequency by integrating it 

with the exponential [41]. In this study, the Gaussian 

smoothness of the demodulated signal is used for measuring 

Bandwidth. Both EMD-VMD filters result in the denoised 

signal, which is cleaned from noise, artifacts, and outside 

effects during recording. The sample-decomposed signal of 

hybrid technique is represented in Figure 4. Next, the hybrid 

feature extraction is carried-out to extract vectors from the 

cleaned signals. In this reaserch manuscript, the hybrid feature 

extraction includes statistical techniques: hjorth activity, band 

power theta, sample entropy, hjorth mobility, hjorth 

complexity, shannon entropy, standard deviation, band power 

gamma, variance, band power delta, mean-curve-length, 

normalized first difference, auto-regressive model, band 

power beta, zero cross rate, mean teager energy, band power 

alpha, ratio band power alpha beta, minimum, and maximum 

[42]. In the two dimensional emotion classification, the hybrid 

feature extraction extracts feature length of 74 in both arousal 

and valence classes. The hybrid feature extraction includes the 

benefits like accuracy improvement, over-fitting risk 

reduction, improved data-visualization and speed up the 

training process of LSTM network. 

Figure 4. Sample-decomposed EEG signal of hybrid: 

EMD+VMD technique 

3.3 Emotion classification 

The extracted feature length of 74 in both arousal and 

valence classes are given to the LSTM network for two-

dimensional emotion classification. Compared to other 

classification-techniques, the LSTM network has the 

capability in retaining important information, and has the 

benefit of managing long-term dependence by performing a 

self-feedback method. Here, the memory cells in the LSTM 

network have three gates: output, forget, and input that stores 

the information to manage long-term problems. The steps 

involved in the LSTM network are listed as follows: 

• The memory cell 𝑔𝑡̃  in the LSTM network is

mathematically depicted in Eq. (1). In that, 𝑊𝑔 denotes

weight matrix, 𝑏𝑔 states bias, 𝑔𝑡 specifies the value of

the memory cell, ℎ𝑡−1 indicates the LSTM cell’s output

value, 𝑡𝑎𝑛ℎ represents tangent activation-function and

𝑥𝑡 denotes input units at time step t.

𝑔𝑡̃ = 𝑡𝑎𝑛ℎ⁡(𝑊𝑔 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑔) (1) 

• The input gate 𝑖𝑡 controls the input data in the memory

cell and it is stated in Eq. (2). Where, 𝜎  indicates

sigmoid activation function. Corresponding the forget

gate⁡𝑓𝑡 calculates the state value of the historical data

that is stored in the memory cell, where the forget gate

is mathematically represented in Eq. (3).

𝑖𝑡 = 𝜎(𝑊𝑖 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2) 

𝑓𝑡 = 𝜎(𝑊𝑖 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3) 
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• The unit state value of the LSTM network is denoted as

𝑔𝑡−1 and the present memory cell 𝑔𝑡 is mathematically

determined in Eq. (4). Where, ‘×’ states dot product.

𝑔𝑡 = 𝑓𝑡 × 𝑔𝑡−1 + 𝑖𝑡 × 𝑔𝑡̃ (4) 

• The output gate 𝑜𝑡 is computed on the basis of memory

cell state, and it is controlled by⁡𝑜𝑡 . The output gate is

mathematically stated in Eq. (5). In the LSTM network,

the output of 𝑜𝑡 is ℎ𝑡 and it is computed by Eq. (6).

𝑜𝑡 = 𝜎(𝑊0 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏0) (5) 

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ⁡(𝑔𝑡) (6) 

The LSTM network reset, read, and easily update the long-

term information by using the control gates and memory cell 

that helps in achieving superior two-dimensional emotion 

classification [43]. The parameter settings of the LSTM are 

indicated as follows: maximum epochs is 100, gradient decay 

factor is 0 to 1, initial learning rate is 0.001 to 0.01, minimum 

batch size is 27, optimizer is adam, gradient threshold is 1, 

execution environment is auto and L2- regularization is 0.1. 

These hyper-parameters of the LSTM network are selected by 

using IRSOA. 

3.3.1 Hyper-parameter optimization 

In recent decades, the RSOA is an effective metaheuristic 

optimization technique, which mimics the attacking and 

following rat behaviours. In the RSOA, the aggressive and 

following rat actions are modelled for performing hyper-

parameter optimization. The RSOA starts with a random 

solution similar to other population based metaheuristic 

optimization techniques. In this technique, the rat’s position is 

considered as a random solution in the search space and it is 

repeatedly evaluated by an objective function and improved 

on the basis of aggressive and following rat behaviours [44]. 

In the RSOA, the initial positions of the eligible solutions 

(rat’s positions) are randomly estimated in the search space, 

and it is mathematically represented in Eq. (7).  

𝑥𝑖 = 𝑥𝑖⁡𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 × (𝑥𝑖⁡𝑚𝑎𝑥 − 𝑥𝑖⁡𝑚𝑖𝑛), 𝑖 = 1,2, …𝑁 (7) 

where, 𝑥𝑖⁡𝑚𝑎𝑥 and 𝑥𝑖⁡𝑚𝑖𝑛 states the upper and lower bounds of

the 𝑖𝑡ℎ  variable and 𝑁  denotes total agents. Hence, the

attacking procedure of the rat is mathematically modelled in 

Eq. (8) that generates the updated rat’s positions. 

𝑃⃗ 𝑖(𝑥 + 1) = |𝑃⃗ 𝑟(𝑥) − 𝑃⃗ | (8) 

where, 𝑃́𝑖(𝑥 + 1) states updated positions of the 𝑖𝑡ℎ rats, and

𝑃⃗ 𝑟(𝑥)  indicates the best optimal solution. The term 𝑃́  is 

computed by utilizing Eq. (9). 

𝑃⃗ = 𝐴 × 𝑃⃗ 𝑖(𝑥) + 𝐶 × (𝑃⃗ 𝑟(𝑥) − 𝑃⃗ 𝑖(𝑥)) (9) 

where, 𝑃⃗ 𝑖(𝑥)  indicates the position of 𝑖𝑡ℎ  rats, and the

parameters 𝐴 and 𝐶 are computed by utilizing Eqns. (10) and 

(11) 

𝐴 = 𝑅 − 𝑥 × (
𝑅

𝐼𝑡𝑒𝑟𝑚𝑎𝑥

) , 𝑥 = 1,2,3, … 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 (10) 

𝐶 = 2 × 𝑟𝑎𝑛𝑑 (11) 

where, 𝐼𝑡𝑒𝑟𝑚𝑎𝑥  denotes maximum iteration, 𝑥  represents

current iteration, 𝑅  denotes random number [1⁡,5] , and 𝐶 

indicates random number⁡[0,2]. The parameters assumed in 

the RSOA are listed as follows: population size is 30, 

maximum iteration is 100, and dimension is 4.  

To further improve the effectiveness and optimization 

performance of RSOA, an improved version of this 

optimization technique is implemented based on the 

opposition-based learning concept. As indicated earlier, the 

RSOA is one of the effective population-based optimization 

techniques, where it initially sets the random solutions, and 

then improves the results towards the best solutions. The 

random initialization technique is utilized for generating the 

candidate solutions based on Eq. (7) in the absence of previous 

knowledge about the solution. The convergence speed and its 

performance are directly proportional to the distance between 

the best solutions and the initial solutions. If the randomly 

generated solution has a limited value of the objective 

function, the RSOA has better optimization performance.   

Based on this idea, an improved version of this technique is 

proposed named IRSOA for improving the convergence speed 

and the change of identifying the global optimal solution of the 

traditional RSOA. In the IRSOA, the opposite positions of 

every solution are computed on the basis of the opposite 

number concept. It is essential to define the opposite number 

concept for describing the new population initialization. N-

dimensional vector 𝑋 is mathematically depicted in Eq. (12). 

𝑋 = (𝑥1, 𝑥2, … . 𝑥𝑁) (12) 

where, 𝑥𝑖𝜖[𝑥𝑖𝑚𝑖𝑛 , 𝑥𝑖𝑚𝑎𝑥] , and the opposite point of 𝑥𝑖  is

represented as 𝑥̅𝑖 and it is mentioned in Eq. (13).

𝑥̅𝑖 = (𝑥𝑖𝑚𝑎𝑥 , 𝑥𝑖𝑚𝑖𝑛) − 𝑥𝑖 , 𝑖 = 1,2, … . , 𝑁 (13) 

On the other hand, the worst solution is replaced by a new 

solution based on Eq. (14) for increasing the search capability 

and exploration in the IRSOA at every iteration.  

𝑥𝑤𝑜𝑟𝑠𝑡 = {
𝑟𝑎𝑛𝑑1 × 𝑃⃗ 𝑟(𝑥), 𝑖𝑓⁡𝑟𝑎𝑛𝑑3 ≤ 0.5

(𝑥𝑖𝑚𝑎𝑥 − 𝑥𝑖𝑚𝑖𝑛) − 𝑥𝑖 , 𝑖𝑓⁡𝑟𝑎𝑛𝑑3 > 0.5
(14) 

where, 𝑟𝑎𝑛𝑑1, 𝑟𝑎𝑛𝑑2, and 𝑟𝑎𝑛𝑑3 are denoted as the random

numbers, which range between 0 to 1, and 𝑥𝑤𝑜𝑟𝑠𝑡 indicate the

solution with a higher value of the objective function. Hence, 

the following concepts improve the hyper-parameter 

optimization results by exchanging the position vectors of the 

least ranked rats with the best solutions achieved so far 𝑃⃗ 𝑟(𝑥)
in every generation. 

4. EXPERIMENTAL RESULTS AND DISCUSSION

The IRSOA-LSTM network is simulated by using Matlab 

R2020b with Intel core i7 10th generation processor and 16 GB 

RAM. In this study, the IRSOA-LSTM network effectiveness 

is analysed using different evaluation metrics like sensitivity, 

precision, f1-score, specificity and classification accuracy. 

Generally, the specificity evaluates the implemented IRSOA-

LSTM network’s ability in predicting true- negatives of every 

category. Similarly, the sensitivity evaluates the IRSOA-

LSTM network’s ability in predicting true positives of every 
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available category. In binary classification (valence and 

arousal), the f1-score is a measure of test accuracy, and it is 

stated as a harmonic mean value of recall and precision. In the 

EEG-based ER, the evaluation metric: accuracy directly 

reflects the proposed IRSOA-LSTM networks efficiency. On 

the other hand, the evaluation metric: precision is determined 

as the ratio of total positive observations to the total 

observations that are accurately classified as positive. 

Mathematical-formula of the undertaken evaluation metrics is 

depicted in Eqns. (15) and (19). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑃+𝐹𝑁
× 100 (15) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100 (16) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100 (17) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100 (18) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
× 100 (19) 

where, False Positive is stated as FP, True Positive is denoted 

as TP, False Negative is stated as FN, and True Negative is 

indicated as TN.  

4.1 Quantitative investigation on the DEAP database 

In this section, the simulation results of the proposed 

IRSOA-LSTM network are tested on the DEAP database. The 

results are validated with five-fold cross validation technique 

(20% testing and 80% training). By viewing Table 2, the 

IRSOA-LSTM network has high results than the comparative 

machine learning classifiers such as random forest, decision-

tree, KNN, and Multi-SVM (MSVM). Here, the experimental 

results are evaluated for individual classes such as valence and 

arousal. As denoted in Table 2, the IRSOA-LSTM network has 

83.54% of classification accuracy, 86.99% of sensitivity, 

84.10% of specificity, 84.45% of f1-score, and 82.05% of 

precision in arousal-class. Additionally, the IRSOA-LSTM 

network has 86.25% of classification accuracy, 86.92% of 

sensitivity, 87.91% of specificity, 86.11% of f1-score, and 

85.31% of precision in valence-class. The attained simulation 

result of the proposed IRSOA-LSTM network is better related 

to the conventional machine learning models. The extensive 

experimental results shows that the proposed IRSOA-LSTM 

network effectively minimized the information loss. Graphical 

analysis of the proposed IRSOA-LSTM network and other 

comparative classifiers is depicted in Figure 5. By viewing 

Table 3, the proposed IRSOA-LSTM network has achieved 

higher classification results related to other meta-heuristic 

optimization techniques: Grey Wolf Optimizer (GWO), 

Particle Swarm Optimizer (PSO) and Firefly Optimization 

Algorithm (FOA). In both classes: arousal and valence, the 

proposed IRSOA-LSTM network attained higher 

classification score related to other optimizers. In arousal-

class, the IRSOA-LSTM network has achieved 83.54% of 

accuracy, 86.99% of sensitivity, 84.10% of specificity, 

84.45% of f1-score, and 82.05% of precision. In valence-class, 

the IRSOA-LSTM network has achieved 86.25% of 

classification accuracy, 86.92% of sensitivity, 87.91% of 

specificity, 86.11% of f1-score, and 85.31% of precision. On 

the other hand, the selection of optimal hyper-parameters by 

IRSOA effectively reduces the training time of the LSTM. The 

proposed IRSOA-LSTM network consumed 34.5 seconds of 

computational time, which is limited related to other 

classification techniques.

Table 2. Results of the proposed IRSOA-LSTM network and other comparative classifiers 

Classes Classifiers Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) Precision (%) 

Arousal Random forest 80.13 84.67 83.92 83.76 82.86 

KNN 81.65 75.59 79 82.20 90.08 

Decision tree 50 51.51 53.08 50.38 49.30 

MSVM 68.44 69.74 69.07 69.29 68.85 

LSTM 83.54 86.99 84.10 84.45 82.05 

Valence Random forest 82.81 80.01 79.60 81.56 83.16 

KNN 80.17 80.86 81.95 82.02 83.22 

Decision tree 50 49.27 51 49.11 48.95 

MSVM 82.29 79.37 80.68 79.88 80.38 

LSTM 86.25 86.92 87.91 86.11 85.31 

Figure 5. Graphical analysis of the proposed IRSOA-LSTM network and other comparative classifiers 
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Table 3. Results of the proposed IRSOA-LSTM network and other hyper-parameter optimizers 

Classes Optimizers Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) Precision (%) 

Arousal PSO 80.57 82.28 84.01 81.18 80.12 

GWO 76.44 73.43 74.22 73.27 73.10 

FOA 73.45 74.86 72.55 73.12 71.47 

IRSOA 83.54 86.99 84.10 84.45 82.05 

Valence PSO 82.32 82.50 85.93 83.92 85.38 

GWO 80.95 79.77 81.83 79.56 79.35 

FOA 81.18 84.60 80.44 84.51 84.43 

IRSOA 86.25 86.92 87.91 86.11 85.31 

Figure 6. Graphical analysis of the proposed IRSOA-LSTM network and other hyper-parameter optimizers 

Table 4. Results of the proposed model for four classes 

Classifiers Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) Precision (%) 

Random forest 83.25 85.54 82.69 84.55 85.49 

KNN 82.46 79.72 81.28 83.14 80.42 

Decision tree 54.98 52.97 52.99 55.05 52.75 

MSVM 70.38 71.36 72.33 69.91 74.89 

LSTM 88.42 89.22 85.05 88.65 89.45 

The assumed parameters of PSO are: dimension is 4, 

maximum iteration is 100, population size is 30, threshold is 

0.5, inertia weight is 0.9, social factor is 2, and cognitive factor 

is 2. In addition, the assumed hyper-parameters of GWO are: 

threshold is 0.50, maximum iteration is 100, dimension is 4 

and population size is 30. The following parameters are 

considered in the FOA: threshold is 0.5, dimension is 4, alpha 

is 1, theta is 0.97, gamma is 1, population size is 30, beta is 1, 

and maximum iteration is 100. The graphical analysis of the 

proposed IRSOA-LSTM network and other comparative 

hyper-parameter optimizers is specified in Figure 6. 

In addition, the results of the proposed and the comparative 

classifiers for four classes (Arousal low, valence low, valence 

high, and Arousal high) are depicted in Table 4. As 

represented in Table 4, the proposed IRSOA-LSTM network 

has maximum results related to the comparative classifiers by 

means of sensitivity, precision, f1-score, specificity and 

classification accuracy. Here, the LSTM network provides an 

enormous range of parameters like input biases, learning rates 

and output biases, where it does not require any fine-

adjustments. This is the reason behind the LSTM network to 

achieve higher classification results than the existing 

classifiers. 

4.2 Comparative investigation 

The comparative results between the proposed IRSOA-LSTM 

network and the existing models is represented in Table 5. H. 

Ullah et al. [18] introduced an ensemble-learning model for 

computing the discriminative EEG channel subset for ER. The 

extensive experiments demonstrated that the ensemble-

learning model attained 77.40% and 70.10% of classification 

accuracy in the valence and arousal classes. Gao et al. [28] 

have performed hybrid feature extraction: PSD, sample 

entropy, differential entropy, Hjorth feature and GoogleNet for 

extracting discriminative feature vectors. Then, the two-

dimensional emotion classification was carried-out using the 

SVM classifier. The simulation outcome demonstrated that the 

CNN+SVM model obtained 75.22% and 80.52% of accuracy 

in the valence and arousal classes. Zhang et al. [35] have 

combined a kernel matrix with DNNs for ER. The extensive 

experimental investigation showed that the Kernel matrix with 

DNN model obtained 63.10% and 64.50% of accuracy in the 

valence and arousal classes. In the two-dimensional ER, the 

IRSOA-LSTM attained superior performance compared to 

these traditional models with the accuracy of 83.54% and 

86.25%, which is graphically specified in Figure 7. 

Figure 7. Graphical diagram of comparative results between 

the proposed IRSOA-LSTM network and the existing models 
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Table 5. Comparative results between the proposed IRSOA-

LSTM network and the existing models 

Models Classification accuracy (%) 

Arousal Valence 

Ensemble-learning model [18] 70.10 77.40 

CNN+SVM [28] 80.52 75.22 

Kernel matrix with DNN [35] 64.50 63.10 

IRSOA-LSTM network 83.54 86.25 

5. CONCLUSION

In this research, a novel IRSOA-LSTM network is 

implemented for effective EEG-based emotion classification. 

In recent decades, classifying human emotions based on EEG 

signals has been a complex application. In this research, an 

online DEAP database is used for finding and classifying 

human emotions. The developed IRSOA-LSTM network 

includes four major-steps such as pre-processing, feature 

extraction, classification, and optimization. In the signal pre-

processing segment, two dissimilar methods are utilized, 

which includes EMD and VMD for eliminating noise from the 

raw EEG signals in order to retrieve best possible detail. Next, 

around 20 statistical feature extraction techniques are used for 

obtaining refined data (feature-values). In the last phase, the 

refined data are fed as the input to the LSTM for classifying 

and defining human feelings: arousal and valence, and further, 

the optimum hyper-parameters are selected by proposing 

IRSOA. As represented in the resulting segment, the proposed 

IRSOA-LSTM network’s performance is evaluated by 

utilizing numerous valuation measures. The obtained 

simulation result states that the proposed IRSOA-LSTM 

network has achieved mean accuracy of 84.89%, sensitivity of 

86.95%, specificity of 86%, f1-score of 85.28%, and precision 

of 83.68%. In addition, the proposed IRSOA-LSTM network 

is effective by means of processing time. In future work, the 

developed IRSOA-LSTM network is evaluated on other 

databases for e-learner’s emotion classification. The real time 

alternative databases give more insights in ER. 
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