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Agriculture is critical to human survival. Almost 70% of the population is involved in 

agriculture, either directly or indirectly. There are no technologies in the old system to 

identify diseases in diverse crops in an agricultural environment, which is why farmers are 

not interested in expanding their agricultural productivity all days. Crop diseases control 

the growth and production of their particular species; hence early detection is also essential. 

There have been many attempts to use Machine Learning (ML) methods for disease 

detection and classification in agriculture, but recent advances in a subset of ML called 

Deep Learning (DL) have given this field of study renewed hope for improved accuracy. 

The widespread spread of diseases in the tomato crop has an impact on both the quality and 

quantity of the crop. A rapid, dependable, and non-destructive way of diagnosing Tomato 

diseases early on may be useful for farmers. The approach employs two deep learning based 

algorithms, the AlexNet and the SegNet Model, with input including seven different color 

images of tomato leaves, six of which are afflicted and one of which is healthy. This 

algorithm is applicable for other plants like potato, corn diseases of bacterial, fungul 

infection leaves.  Some examples of hyperparameters that have been investigated for their 

effect on classification accuracy and execution time are mini-batch size, weights, and bias 

learning rate. 

Keywords: 

weight learning rate, tomato disease 

detection, deep learning, SegNet Model, 

mini-batch size, deep learning and Bias 

learning rate 

1. INTRODUCTION

Identification of crop diseases using digital cameras or 

mobile photographs looks to be difficult. A number of plant 

diseases and crops have benefited from the current trend of 

utilising several machine learning algorithms for disease 

diagnosis. [1]. Additionally, the progression of deep 

Convolutional Neural Network (CNN) related designs has 

greatly improved classification accuracy [2]. AlexNet, 

produced by Krizhevsky et al. [3] and worn to succeed the 

ImageNet Large Scale Visual Recognition Challenge (ILSVR 

- 2010) by correctly classifying thousand item classes from 1.3

million training pictures, was an unfortunately timed success.

In AlexNet, each of the convolution layers has its own

dynamic receptive field. Some layers use batch normalisation

and maxpooling, and there are also convolution layers and a

Rectified Linear Unit named as ReLU included. As compared

to common shallow or one-dimensional machine learning

algorithms with sufficient regularisation methodologies [4],

our stacking design achieved significantly superior results. In

order to classify images of diseases, Mohanty et al. [5]

employed a transfer learning approach, defined as "the process

of leveraging pre-trained AlexNet for categorization of new

categories of picture". It used 54,316 images to accurately

categorise 25 unique diseases across 15 crop species. With 23

layers, GoogleNet is more complex than AlexNet and has an

inception module developed with a network-in-network

architecture. AlexNet and GoogleNet were used to categorize

eight different tomato diseases by Rangarajan et al. [6]. When

compared to previous machine learning methods, that are the 

Support Vector Machine (SVM) and the random forest, the 

performance of the deep architectures was shown to be 

significantly greater. Several deep learning models [7] that are 

including the Visual Geometry Group named as VGG net, 

Inception V4, DenseNet, and ResNet, were put to the test on 

the Plant Village dataset, which contains information on 14 

different plant species and their susceptibility to disease. With 

a test accuracy of 99.75%, DenseNet produced the best 

outcomes. To classify 9 illnesses and 1 healthy tomato crop in 

the PlantVillage dataset, Durmus et al. [8] employed AlexNet 

and SqueezeNet. AlexNet achieved 95.65% accuracy whereas 

SqueezeNet achieved 94.30% accuracy with the same amount 

of processing resources. To classify tomato illnesses, Shiji et 

al. [9] utilised VGG16 to extract the features as of the fully 

connected layer and then apply those features [10-16] to SVM. 

When applied to a test set, the aforementioned model achieved 

88% classification accuracy. 

Using the publicly available Village picture dataset, this 

study classified six distinct tomato crop illnesses and a healthy 

class using two pre-trained deep learning models, AlexNet 

[17-25] and SegNet [25-30] Model. The AlexNet [31] model's 

architecture and operational flow diagram are explored in 

detail in Section 2. In section 3, we covered the SegNet Model 

architecture and a tiered explanation of the precise tuning of 

the network for illness classification, as well as the effect of 

the specified hyperparameters. Section five detailed the 

improvement in performance over time and compared 
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AlexNet and SegNet [7] models. The summary and citations 

were supplied in section 6. 

2. RELATED WORK

This section gives a succinct overview of the deep learning 

model's architecture, including hardware and software 

configurations. 

2.1 Hardware and software system configuration 

The performance of deep learning models is highly 

dependent on GPUs that have the Compute Unified Device 

Architecture (CUDA) cores activated. The research was 

conducted using a GIGABYTE Geforce GTX 1050 Ti 4GB 

gddr5 pci-e Graphic Card (GV-N105TD5-4GD) as well as 

8GB of Random Access Memory (RAM). For the purposes of 

this investigation, the AlexNet and SegNet Models included in 

MAT LAB 2017b were utilised. 

2.2 AlexNet model 

As can be seen in Figure 1, the pre-trained AlexNet model 

used in this analysis is primarily prepared up of five 

convolutional layers (conv layers) and three fully connected 

layers. In AlexNet, each of the convolution layers has its own 

dynamic receptive field. Some layers use batch normalisation 

and maxpooling, and there are also convolution layers and a 

Rectified Linear Unit named as ReLU included.  

In the first starting convolution layer, an image with 

dimensions of 227×227×3 is processed via a filter with 

dimensions of 11x11x3. This filter represents the height, 

width, and depth of the input image. Specifically, the filter is 

work on a pixel by doing the dot product of the filtered matrix 

by the value of that pixel in the receptive fields of the input 

images. The 96 filters are applied the receptive fields in the 

first layer. At the end, the same no of activation maps are 

produced by the ReLU (Rectified Linear Unit) layer of the 

initial convolution layer. Using a same method, we performed 

convolutional operations on a second layer of convolutional 

with 256 filters with a dimension of 5×5×48, a third layer of 

convolutional with a count of 384 filters pixel dimension of 

3×3×256, a fourth convolutional layer with a count of 384 

filters of pixel dimension 3×3×192, and a fifth convolutional 

layer with a count of 256 filters of pixel dimension of 

3×3×192, resulting in activation maps with distinct sets of 

neurons activated. 

The resulted output of the preceding convolution layer is 

decreased in the dimension by fully connected layers, which 

do this by preserving the receptive field's maximum value. 

Forty thousand and nighty-six (4096) neurons are related to 

each other throughout layers six and seven. It has been shown 

that increasing network performance during testing is possible 

by using the dropout layer to randomly avoid the no. of 

connectional interfaces in a network for training [11]. The 

final completely linked layers have been fine-tuned to account 

for the entire complement of classes (7 in all, including the 

healthy category). 

It was crucial that the model's main result was correct for 

the model to perform so well. GPUs, or Graphics Processing 

Units, make this possible during training while being very 

computationally costly. When it comes to convolutional neural 

networks, the hidden layers are involved of convolutional 

layers, pooling layers, fully connected layers, and normalising 

layers. 

Using a filter to transform an image or signal is known as 

convolution. It's a method of sample-based discretization. The 

primary motivation is to reduce the high dimensionality of the 

input. Therefore, inferences may be drawn about the 

characteristics present in the discarded sub-regions. 

The Convolutional Neural Network (CNN) Architecture is 

a multi-layered stack that utilises a differentiable function to 

convert an audio signal into a corresponding audio signal. That 

is to say, you may think of CNN architecture as just a 

particular stacking order for those components. Many distinct 

CNN designs have emerged over time as variants on common 

themes. 

The most common amongst them are: 

1. LeNet-5

2. AlexNet

3. ZFNet

4. GoogleNet

5. VGGNet

6. ResNet

There are five convolutional layers, three max-pooling

layers, two normalisation layers, two fully connected layers, 

and last one softmax layer in AlexNet's architecture. Each 

layer of convolutional employs convolutional filters and the 

non-linear activation function called ReLU. For maximum 

pooling, utilise the layers designated as "pooling." Over sixty 

million parameters make up AlexNet. The winning model has 

been fine-tuned for a number of factors, including: 

First, ReLU is an activation function. Second, it employed 

a technique known as a "Normalization layer," which is rarely 

used nowadays. Third, a batch sizes of 73, 173, 273, 373.  

Fourth, SGD Momentum is an effective learning method. 

Fifth, extensive data enhancement by means of flipping, 

jittering, cropping, colour normalising, etc. Model assembly 

for optimal performance at last. 

3. PROPOSED METHOD

In the proposed paper we introduce the SegNet Model for 

image classification for better performance. Developed by a 

group of members in the University of Cambridge, the SegNet 

network is a free and open- source program for extracting the 

pixel-by-pixel boundaries of various objects in an image such 

as vehicles (cars, motorcycles), people, roads, and so on. There 

is no computational convolution or need for temporary storing 

of pixel blocks in SegNet networks. The SegNet Model 

architecture and a tiered explanation of the precise tuning of 

the network for illness classification, as well as the effect of 

the specified hyperparameters. These hyperparameters are 

used to improve the learning of the model, and their values are 

set before starting the learning process of the model. In 

Machine Learning/Deep Learning, a model is represented by 

its parameters. In contrast, a training process involves 

selecting the best/optimal hyperparameters that are used by 

learning algorithms to provide the best result. 

"Hyperparameters are defined as the parameters that are 

explicitly defined by the user to control the learning process." 

In that they are taught from beginning to finish categorizing 

collections of pixels, they are analogous to more conventional 

neural networks. One distinctive feature of the SegNet 

network model is the presence of separate the encoding layers 

and decoding layers. 
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Figure 1. AlexNet architecture 

Figure 2. Flow diagram of AlextNet Convolutional Neural Network (CNN) 

By constructing a symmetric encoder-decoder structure 

with the help of the semantic distribution of the full 

convolutional neural network, the network is able to carry out 

fully-fledged pixel-level image segmentation. This is 

accomplished by using the distribution of the full 

convolutional neural network. Downsampling is accomplished 

by the encoder through the utilization of pooling, while 

gradual restoration of the original image's spatial dimension 

and level of detail is accomplished by the decoder through the 

utilization of inverse convolution. When you're done with 

SegNet, you'll have a fully convolutional neural network. A 

coding network, a decoding network, and a pixel-level 

classification layer are the three basic components of the 

architecture. Low-resolution features can be attributed to the 

fact that the coding network's structure is identical to the 

layout of VGG16's 13 convolutional layers [14]. By reducing 

the encoding precision of the fully connected layer's output 

location, high-resolution feature maps are preserved. The low-

resolution features are mapped into the entire input image-

level resolution feature map, and the decoding network, which 

is responsible for pixel-level classification, essentially 

replaces the pooling layer in the coding network with the 

upsampling layer. 

As a rule, the network may be divided in half. On the left, 

we find the encoding layer, which combines images into a 

single one and draws out the graph's high-dimensional data 

and attribute. The right side of the model is the decoding layer, 

which performs operations like deconvolution and 

upsampling. The Upsampling operation performs the image to 

its original size whereas deconvolution enables classification 

and feature regeneration. Finally, a segmentation map is 

generated using a softmax classifier as shown in Figure 2. 

The term "pooling" refers to the process of collecting 

feature data from several locations within a defined region of 

an image. The SegNet network is downsampled using max 

pooling; the correct index position is saved during encoding, 

and the upsampled version is used during decoding. Pooling 

serves three main purposes, which are as follows: As a result 

of translational inconsistency, pooling abstracts regional 

characteristics without regard to position, thereby reducing the 

complexity and number of parameters required for 

optimization, and thereby increasing the perceptual region (as 

one pixel can correspond to an area in the original image). 
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The SegNet Model employs an upsampling strategy that 

uses a well crafted pooling index, which significantly lessens 

the amount of data that is lost as a result of the pooling process. 

To send the more information of the features since the layer 

jumping connection is used to carry the features of lower-

layer. As a conclusion, the model is able to greatly increase the 

success rate of image segmentation. 

Figure 3. A proposed SegNet Model 

One component of the encoding layer that makes use of the 

SegNet Model network. Figure 3 depicts the subsample's 

division into five halves, each containing thirteen layers [14]. 

First and second parts have two 3 3 convolution layers and a 2 

2 pooling layer, whereas third, fourth, and fifth sections have 

three 3 3 convolution layers and a 2 2 pooling layer. Activation 

functions trigger batch normalization after every convolution 

operation's output. The maximum pooling operation is used to 

extract picture features; the pooling layer stores its maximum 

index throughout each pooling operation (the location 

information of the maximum feature value, for example) and 

releases it during the upsampling process. 

The decoding layer makes use of a mapping approach to 

convert the particular high-order, less resolution feature graph 

into a high resolution quality map. During the reverse of 

decoding is encoding process, the layer that keeps track of 

indices logs the highest value found in the pool. Figure 4 

demonstrates how the decoding network accomplishes 

nonlinear upsampling on the picture using a pooled index in 

the biggest pooling layer, which does not need learning [15]. 

Figure 4 depicts the five-step decoding procedure that mirrors 

the five-step encoding process. The first and second parts are 

made up of a 2 2 deconvolution layer and two 3 3 

convolutional layers, respectively. Following a 2 2 

deconvolution layer and three 3 3 convolutions in the third, 

fourth, and fifth stages, a softmax classifier makes predictions 

for each pixel in the resultant feature picture in the sixth stage. 

The encoder has the potential to enhance edge 

characterization, decrease the number of network training 

parameters, and speed up the training process. 

4. DATA SET

Experts in the fields of plant biology, epidemiology, and 

computer science are constantly developing new machine 

learning and deep learning strategies to combat a wide variety 

of plant diseases and improve crop yields. The researchers 

used the PlantVillage dataset [13] to get pictures of plants 

grown in a laboratory setting. Computer vision and deep 

learning have been used to develop very accurate systems for 

the autonomous detection of plant diseases. Combining pre-

existing photos with well-known deep learning methods, 

image augmentation creates novel visuals in a wide range of 

settings. Tomatoes, potatoes, grapes, apples, maize, 

blueberries, raspberries, soybeans, squash, and strawberries 

are just a few of the 14 crops included in the over 50,000 

images contained in the collection. Tomatoes will be our main 

produce. There are six main groups of tomato infections: 1) 

Late blight 2) Target Spot 3) Leaf Mold 4) Yellow Leaf Curl 

Virus 5) Mosaic virus 6) Spider mites: Two-spotted spider 

mite. In this proposed study, we use 6 different tomato leaf 

disease datasets in addition to 1 healthy tomato leaf as shown 

in Table 1, with a total of 16,000 pictures over the three 

datasets (10,000 for training, 7,000 for validation, and 500 for 

testing). Among the training set of 10,000 images, 1571 were 

assigned to the "healthy" group, while the remaining 15432 

were assigned to each of the illness categories for tomatoes. 

While there are 700 photographs of each class in the validation 

set, there are 73, 173, 273, 373 images in the test set. For 

comparisons only we take the test sets for convenient and easy 

calculations. 

We selected 73 images at random from each category in the 

training set before running the tests. Using the leftover training 

dataset, we divided the images evenly between classes and 

used it to create our project training dataset. When there were 

fewer than a thousand images available for any given category, 

we used data augmentation to create some more images.  

The Python Augmentor package was used to accomplish the 

augmentation, which involved the rotation, flipping, cropping, 

and scaling of existing photographs to produce visually 

identical new ones. We picked the first 1000 images from each 

category in the training dataset when there were more than 

1000 pictures in that category. On the validation set, we 

followed the identical steps and distributed 700 images to each 

category. This procedure is essential for CNN training to occur 

without discrimination toward a certain class. All the images 

are JPEGs with a 256x256 pixel resolution. 

Table 1. The no. of tomato leaf images for healthy and unhealthy classes 

Class Unhealthy Healthy 

Fungi Bacteria Mold Virus Mite 

Sub Class 

Late blight-1910 Target spot-2127 
Leaf Mold 

(1771) 

Yellow Leaf curl 

virus-5357 

Two spotted 

spidermite-1676 
Healthy-1591 

Tomato Mosaic 

Virus-1000 

418



Figure 4. The complete diagram of the detailed SegNet 

network 

The Plant Village dataset [13] was used to collect tomato 

photos for six distinct illnesses as well as healthy tomato crop 

samples. To conduct this test, we segmented the dataset by 

setting the entire background pixels in the three different 

colour channels that are Red, Green, and Blue to 0 (as shown 

in Figure 5). There were 15432 segmented images in the 

dataset, including both those with diseases and those without 

diseases. To train the AlexNet model, we raised the input 

picture size to 227×227, while the SegNet Model used an even 

smaller image at 224×224. Increased noise in the original 

picture caused by signal oscillations is shown in Figure 6. The 

median filter averages out pictures by swapping out each pixel 

for its median. The main benefit of the median filter is that it 

maintains edges while reducing spikes. 

As can be seen in Figure 7(a), the best method for dealing 

with random and unequal noise is to apply filters to the images. 

Salt and pepper noise is present in the majority of the images 

in the collection, according to the analysis. Research utilizing 

a median filter to decrease these sounds yielded the results 

shown in Figure 7(b). Both the SegNet Model's encoding 

layers and the Max pooling levels get the filtered picture as 

input. 

Figure 5. Diagram of the unsampling process 

1.Tomato late blight 2. Tomato leaf mold

3. Tomato two spotted

spider-mite attack
4. Tomato target spot

5.Tomato mosaic virus
6. Tomato yellow leaf

curl virus 

Figure 6. Different diseases of tomato leaves dataset 

Figure7(a). Original 

image 

Figure7 (b).  Filtered 

image 

5. PERFORMANCE EVOLUTION AND COMPARISON

Using deep learning models that have already been trained, 

a technique called "transfer learning," is used to create new 

categories of objects. Initial analysis involved feeding the 

altered images into models of AlexNet and SegNet that had 

already been trained. To accommodate the models' training on 

the 1000 classes present in the village plant dataset, the last 

layer was swapped out for an output layer with the same 

amount of classes. There are seven categories total, with six 

different diseases and one category of healthy images. At last 

added a one softmax layer and one fully connected layer has 

been added to this design. The final three layers of both models 

were consequently revised as a consequence. The all-inclusive 
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learning rate for both models is 0.0001. The last three layers 

of the classification network are fine-tuned with a bias learning 

rate of 20 and a weight learning rate of 10. 

In other words, the learning rates for bias and weight are 20 

and 10 times, respectively, faster than the total learning rate 

for the fully connecter layer 8, which is itself 10 times faster. 

It is a pre-trained network optimised for the classification of 

ImageNet datasets, therefore only the most basic of training 

parameters are used for the first few layers. Stochastic gradient 

descent with momentum is used to make the necessary 

adjustments to the weights, and it does so by averaging the 

gradients with an exponential weight. Minibatch size was 32 

and the epoch number was set at 10. The minibatch size is 

shorthand for the lesser batches generated by partitioning the 

trained datasets into sections and updating the model's 

coefficients via gradient descent. The first step of developing 

weights for unequal selection is pretty straight forward. 

Adjusting Weights for Non Response The second step in 

weight development is about compensating for a unit or 

complete non-response. Making Addition Adjustments with 

Auxiliary Data. Checking Variability in Estimated Weights. 

Using AlexNet and SegNet Models, we were able to acquire 

a classification accuracy of 97.49% and 97.23%, respectively, 

on a dataset of 13,264 images. In the next part of the research, 

the model performance was analysed by changing both the 

sample size and the hyperparameter. The performance and 

time required to run 10 epochs were examined after varying 

minibatch size, weight, and bias learning rate. Each class's 

accuracy was evaluated by having it classify the same amount 

of images. There were a total of 373 images in the tomato 

mosaic virus disease category. As a result, the AlexNet and 

SegNet Models can only take in as much as 373 image files 

per class as their input. Classification accuracy is shown in 

Figure 8; in each trial, 100 fewer images were used in the 

research. 

Figure 8. Comparing the SegNet Model to Alex Net’s 

classification accuracy 

It proves the SegNet Model is superior to the AlexNet in 

almost every scenario. Both models improved when 373 

images were included from each group. The SegNet Model 

achieved 96.19% accuracy in classification, whereas AlexNet 

only managed 95.81%, a slight decrease from the prior model. 

Figure 8 shows that as sample group reduces, prediction 

accuracy reduces. A comparison of the two architectures' 

performance on a dataset consisting of varied amounts of 

images for each class is shown in Figure 9. The AlexNet and 

SegNet Models can only take in as much as 373 image files 

per class as their input. In my model maximum data set must 

be 373 images. 

Figure 9(a). SegNet Model classification accuracy for a class 

of images 

Figure 9(b). Alex Net’s classification accuracy for a class of 

images 

Both models achieved a maximum accuracy of 89.33% 

when classifying the target location from a set of 373 pictures. 

Figure 9(a) and 9(b) represents that the overall performance of 

the algorithms was negatively impacted by the class target 

point. In the instance of the SegNet Model, which consisted of 

373 images for every class, healthy leaves and target spot 
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disease had disturb on the performance of the SegNet Model. 

The following example examines the effect of varying a 

hyperparameter, minibatch size, on both classification 

precision and runtime. Comparison of the two models' 

runtimes was performed using 373 images and 10 epochs. 

Changing the minibatch size had a major impact on the 

execution time, as seen in Figures 10(a) and 10(b). The 

execution time rose as the minibatch size was increased in the 

SegNet Model, but it decreased in the AlexNet Model. It takes 

more time for the SegNet Model to process an image than it 

does for the AlexNet Model. 

Figure 10(a). SegNet execution time analysis for different 

minibatch size 

Figure 10(b). AlexNet execution time analysis for different 

minibatch size 

The SegNet Model obtains a maximum accuracy of 99.24% 

with a minibatch size of 2, whereas the AlexNet Model 

achieves a maximum accuracy of 96.51% with a size of 

minibatch is 12 (shown in Figures 11(a) and 11(b)). The target 

site consistently has low categorization accuracy relative to the 

other categories. The inability to tell the aforementioned class 

apart visually from the others may be to blame for its low 

accuracy. For the SegNet Model, if the minibatch size was 

more than 32, the algorithm could not be executed because of 

a memory allocation fault. 

As shown in Figures 12(a) and 12(b), the subsequent portion 

of the experiment involved varying the weight and bias 

learning rate (b). If you use the SegNet Model and increase the 

bias and learning rate by a factor of 0 to 40 times the networks 

total learning rate, the accuracy of classification drops from 

97.33% to 96.19%. But AlexNet's performance dropped until 

it reached a learning rate of 30, at which point it obtained a 

best classification accuracy of 96.38%. The SegNet Model 

accuracy was diminished by the rapid learning rate 

implemented in the final three layers. 

Figure 11(a). SegNet classification accuracy analysis for 

different minibatch size 

Figure 11(b). AlexNet classification accuracy analysis for 

different minibatch size 

As a result, using the SegNet Model, the size of a minibatch 

is 2 and a learning rate that is just ten times the global learning 

rate yields the best results. However, AlexNet is effective 

since it is shallower, whereas the SegNet Model is 

computationally costly. Max accuracy of 96.38% is achieved 

with AlexNet using a size of a minibatch is 32 and a 40 is the 

used learning rate.  

Images from the PlantVillage dataset were used for disease 

classification in the tomato crop, together with pre-trained 

deep learning architectures like AlexNet and the SegNet 

Model. In a test employing 13,269 images, the SegNet Model 

achieved a 97.29% accuracy in classification, while the 

AlexNet Model achieved a 97.49% accuracy. By adjusting the 

training set size, minibatch size, and weight and bias learning 

rates, we were able to evaluate the models' accuracy. The 

quality of the models was greatly affected by the number of 

images taken. For maximum precision, 373 images are used. 

Classification accuracy did not seem to decrease as a result of 

improvement the minibatch size in AlexNet, but it did 

decrease in the SegNet Model. When the minibatch size is less 

the SegNet Model is best. In a similar vein, Alex Net's 

accuracy dropped until it reached 30, and once the learning 
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rate for weight and bias was fine-tuned. The accuracy of the 

SegNet Model improved with increasing weight and bias 

learning rates. The deep SegNet Model in terms of accuracy is 

also improved when compared to AlexNet and also less time 

to run, making it a more attractive option for use in production 

environments.  

Figure 12(a). SegNet classification analysis using different 

weight and learning rate 

Figure 12(b). AlexNet classification analysis using different 

weight and learning rate 

6. CONCLUSION AND FUTURE WORK

The article describes a new method for identifying and 

categorizing different tomato plant leaf diseases based on their 

color, texture and shape. The study compares this method to 

existing models like AlexNet and SegNet, and found that the 

new model was more accurate at detecting diseases. The 

research focused on biotic diseases caused by fungal and 

bacterial pathogens such as blight, mold, and browns. In the 

future the researchers plan to expand the model to include 

abiotic diseases caused by nutrient deficiencies in the plant. 

They hope together more data on different plant diseases and 

use new technology to improve the accuracy of their model. 
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