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Data recovery from Android mobile devices has become an increasingly important area of 

research in recent years. With the rise of mobile technology, accidental deletion or erasure 

of data is becoming a common problem among users. Many methods have been developed 

to recover data from such devices, but most of them are either time-consuming or require 

specialized technical skills. In this paper, we present an approach using the Aho-Corasick 

algorithm, which has been shown to be highly effective in locating strings in large datasets. 

Our proposed method aims to reduce the computational time required for data recovery, 

making it more accessible to a wider range of users. In this paper, we develop a Aho-

Corasick algorithm is the most effective method for recovering data from Android mobile 

devices after it has been erased inadvertently. The Aho-Corasick algorithm is one approach 

that can be utilised in the process of locating strings. It is a piece of software that scans a 

given document in search of occurrences of strings that have been selected from a 

dictionary. It carries out a simultaneous match on each of the strings at the same time. The 

second part of our method involves determining, with the assistance of the Aho-Corasick 

algorithm, whether files have been removed from the system. To accomplish this, the file 

types are compared to those of files that are already established as being trustworthy and 

the proposed method achieves a reduced computational time than other tools. 
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1. INTRODUCTION

Mobile phones have become an indispensable part of 

modern society, providing not only communication but also a 

wide range of services and functions, including internet 

browsing, email access, social media, and more. In recent 

years, the development of more complex telecommunications 

infrastructures has further increased the importance of mobile 

phones, particularly those with their own operating systems for 

intelligence. Android, one such operating system, has gained 

a significant market share, with millions of users worldwide. 

As such, the need for effective methods of recovering data 

from Android mobile devices, particularly after inadvertent 

erasure, has become increasingly critical. Mobile phones, 

particularly those with their own operating systems for 

intelligence, have become increasingly significant to modern 

society as a whole as a result of the development of more 

complex telecommunications infrastructures. This is 

especially true for mobile phones with advanced intelligence 

[1]. The creation of the term smart phone, which is used to 

describe a type of mobile phone like a personal computer, with 

independence from the operating system, that can install 

software, such as games from third-party service providers, by 

the users, that can expand mobile phone functions through 

such programmes constantly, and that can realise the wireless 

network through the mobile communication network [2]. 

The steady increase in the number of people using smart 

phones can be attributed, at least in part, to the numerous 

benefits offered by smart mobile phones as well as the 

marketing efforts of companies that specialise in the 

development of such devices. This is why the number of 

people using smart phones is expected to continue to rise soon. 

The ownership of a smart phone is associated with a variety of 

benefits; on the other hand, it is also associated with a variety 

of drawbacks [3]. When a traditional cell phone is analysed, 

the results are typically the same well-known collection of data; 

however, when a smart phone is analysed, the results are 

typically a wealth of information since each app stores 

application-related data [4], such as call history, text messages, 

contacts, and images. 

There has been an increase in criminal activity that makes 

use of mobile phones and various networks, and this trend is 

expected to continue. Because of the significant damage that 

may be caused to society by mobile phones and the crimes that 

can be carried out using them, the police have focused a lot of 

their attention on both of these aspects of the problem. Mobile 

phone evidence has become more significant during treatment 

for many instances. This is since mobile phones often preserve 

essential information that can provide clues and a basis to 

clarify the facts of the case [5]. Mobile phones are getting more 

and more commonplace in today culture. 

At the present time, the criminal use of a mobile phone can 

be separated into three distinct categories: first, mobile phones 

are used as communication tools during the commission of 

criminal acts; second, mobile phones serve as a kind of storage 

medium for evidence of criminal acts; and third, mobile 

phones are used as an implementation tool for criminal 

activities such as SMS fraud, SMS harassment, and the 

communication of viruses. During an inquiry, analysts may 

find the information gathered from smart phones to be highly 

helpful [6]. 

As a direct consequence of this, the primary emphasis of 
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study in the field of mobile phone forensics has shifted to 

include evidence of criminal activity. The Android system, 

which was developed by Google, is the first mobile software 

for the mobile terminal that is entirely open source. It is based 

on the Linux kernel, which serves as the foundation for the 

open-source operating system for mobile phones. Since it was 

originally presented in 2008, the new smart mobile phone 

system has shown a continuous pace of improvement ever 

since it was initially released. For this reason, the analysis of 

Android forensics will take place very soon [7, 8]. 

The ability to retrieve lost data is a vital component in 

mobile forensics since it permits us to look through erased data 

in search of potential evidence. The Yaffs2 file format that is 

stored in memory may be analysed, which provides us with the 

capability to search for and restore data that had been 

destroyed in the past. We need to ensure that the original file 

is secure before we can proceed with making a copy of the 

content that is saved in the memory of the mobile phone. The 

rest of the work is organized is as follows: the related work is 

discussed in section 2. Before explaining the details of our 

proposed method, we will provide a background on data 

recovery techniques and the Aho-Corasick algorithm in 

section 3. We will then describe the implementation and 

evaluation of our proposed method in section 4. Finally, we 

will conclude the paper with a discussion of the results and 

future directions for research in this area.  

2. RELATED WORKS

The process of forensic data recovery on the cloud presents 

its own unique set of problems that must be overcome. As a 

result, the use of trusted platform modules (TPM) in 

hypervisors, the implementation of multi-factor authentication 

as potential solutions to the difficulties that are associated with 

cloud forensics. Some of these problems include having 

restricted access of validating its integrity, presenting evidence, 

or making decisions on data maintained in separate locations 

[9]. 

According to the findings of an evaluation that was carried 

out as part of a cloud-related forensic investigation using both 

of these products, volatile and non-volatile data can be 

successfully retrieved from the cloud by using Guidance 

Encase and the Access Data forensic toolkit. This information 

was gleaned from the cloud. This prepares the way, from a 

forensics point of view, for the development of next-

generation data gathering strategies that are based in the cloud 

and are both dependable and safe [10]. These strategies will be 

able to collect data in a more efficient and reliable manner. It 

has been proposed that a methodical approach to the collection 

of evidence data be utilised in cloud-based forensic 

investigations to guarantee the investigation credibility [11]. 

The purpose of this study is to give a comprehensive 

reference for future research by analysing the work that has 

been done over the course of seven years on the forensic 

examination of many smartphone platforms, data gathering 

tactics, and information recovery procedures. Before the 

development of forensic technology, the traditional approach 

to memory gathering placed a significant amount of emphasis 

on the collection of physical evidence [12]. This occurred in 

the past, before the time when forensic technology was readily 

available. To complete this job successfully, you will need to 

take the memory chip out of its socket on the motherboard 

usually. During the cleaning process, it is possible that crucial 

pieces of evidence will be lost or thrown away due to the 

operation of these methods [13]. 

To carry out a forensic investigation that can be relied upon, 

it is essential to take measures to protect and retrieve the 

volatile data that is stored within the memory of the mobile 

device. These measures must be taken to conduct an 

investigation that can be relied upon. Because of this, an 

approach to backup and acquisition has been suggested that is 

suitable for use with iPhones in addition to Android Mobile 

phones and Windows Mobile phones. Investigation was done 

into a few potential methods for regaining access to and 

interpreting data that has been removed from a smart phone 

[14]. 

The findings indicate that there is no one method that can 

obtain from the device all the data that is necessary for the 

forensic inquiry to proceed. However, even though a variety 

of smartphone forensic tools have been developed because of 

ongoing studies into mobile device forensics, these studies do 

not verify the integrity of the data, which is essential for digital 

forensic investigation. In other words, even though these 

studies have resulted in the development of a variety of 

smartphone forensic tools, the research has not been successful 

[15]. 

Researchers analysed the factors that affect data integrity 

during acquisition that are related to Android device recovery 

mode variables by looking at Android device acquisition while 

the devices were in recovery mode. This allowed the 

researchers to analyse the factors that affect data integrity 

during acquisition. An Android data gathering tool was built 

as a direct consequence of this to assure the veracity of the 

information that was acquired. Everyone was made aware of 

the fact that there are now no predetermined processes in place 

for the acquisition of evidence from smartphones [16]. 

When it comes to the collection of digital evidence, forensic 

investigators make use of methods that have been shown to be 

reliable via previous research and testing. In addition to this, it 

was suggested that various versions of the software that is 

installed on cellphones may make it possible for investigators 

to access variable volumes of information that is relevant to 

the case. On the other hand, there was no attempt made to 

retrieve evidence from a formatted Android smartphone, from 

which it was reported that all the data and programmes had 

been removed. It was claimed that this piece of evidence could 

not be reclaimed in any way [17]. 

This study looked at five different forensic scenarios and 

offered a method to obtain data from smartphone, regardless 

of the physical design of the device. The research was carried 

out by the authors [18]. The purpose of this investigation was 

to discover an answer to the problems that were discussed 

earlier. Investigations into mobile devices based on the 

operating systems Symbian and Windows substantiated these 

architecture-related challenges, which suggests that forensic 

investigation methods for smartphone mobile devices will 

perpetually encounter challenges due to the ever-evolving 

nature of technology. Both issues occurred even though these 

files had not been deleted. However, the results of the inquiry 

showed that not all instruments are made in the same way and 

are therefore not comparable. 

The evidence that was gathered and analysed from a Nexus 

4 phone revealed a vulnerability that gave hackers full access 

to the phone even after the bootloader had been unlocked, 

which in most cases deleted all user data. The vulnerability 

was discovered through the discovery of a vulnerability that 

gave hackers full access to the phone. Because of this 
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vulnerability, the hackers were able to access the phone even 

after the bootloader had been successfully unlocked. It does 

not yet have a mechanism for forensic examination, the 

difficulties of smartphone forensics are continuing to get more 

difficult [19, 20]. 

3. THE PROPOSED METHOD

In this section, we create our technique for retrieving 

information from a database that has been deleted in the past. 

Before making any attempt to retrieve data from a mobile 

device, it is strongly recommended that a backup of all the 

information that has been saved on the device be produced. 

The original data does not need to be altered in any way for 

the data recovery procedure to be successful because it can be 

performed entirely on the image copy. The journal and the 

inodes together form the backbone of the system, which is 

supported by the file system, which is where all the system 

folders and files are stored. The file system is supported by the 

journal. 

Read all the entries that are in the file system journal and 

inodes, extract all the metadata, and then save it (file type, file 

name, size, data, file addresses, created date, last modified date, 

flag whether the file is deleted, etc.). 

Following the processing of each file, a CRC-32 checksum 

is subsequently produced for that file. To certify that the 

recovered file is in usable condition, this checksum is 

compared with the checksum that is computed after the 

damaged files have been rebuilt. 

To determine which files and directories were removed, 

read the properties of those that were deleted from the journal 

and inodes of the file system. This will allow you to identify 

the files and directories that were removed. 

Give the user your best guess as to what happened to the 

files after they were deleted and explain why you reached that 

conclusion. It possible that a deleted file fingerprint and data 

type won't be able to be recovered at all. When this occurrence 

takes place, our system immediately moves on to the 

subsequent phase. During this phase, it initiates the process of 

parsing the second copy of the metadata to recover the 

information that was omitted before. 

This method provides a user-friendly interface for entering 

search terms, determines whether the entered terms match the 

metadata for the deleted files, the Aho-Corasick technique is 

then used to decide whether or not the entered terms match the 

metadata for the deleted files. This occurs after our method 

determines whether the entered terms match the metadata for 

the deleted files. Following the conclusion of this step, the user 

will be shown with a list of the files that have recently been 

removed so that they may confirm that the procedure was 

successful. 

Rebuilding and recovering the files that correspond to the 

user input and the metadata will result from this action. In 

order to accomplish this goal, first create new files that have 

the same size as the ones that were destroyed, and then copy 

the contents of the deleted files into the new files. 

At this stage, we do a comparison between the CRC-32 

value of the restored file and the value of the original file to 

determine whether the two values are same. If the two numbers 

match up, then the file in question does not have any tainted 

information and can be viewed in the usual manner as in 

Figure 1. 

Figure 1. Data recover process 

3.1 Aho-Corasick algorithm 

The fact that the computation time for the AC algorithm is 

linear with the length of the input stream and that it does not 

depend on the signature strings that lends credence to the idea 

that it could be a viable contender for finding a solution to the 

string-matching problem.  

The ability of the AC algorithm to find a match for a string 

in a time that is proportional to the stream length is one of the 

most appealing features of the approach. This ability makes 

the method one of the most desirable candidates for use. This 

is done to maintain the same level of consistency in the 

processing time (DFA). The fact that the AC technique needs 

a sizeable amount of memory to hold the NFA transition rules 

is the most important drawback associated with using this 

approach. 

Take into consideration a signature set in which there are n 

total strings, L is the average length of the strings, and L is the 

total number of strings. On the AC state graph, the variable n 

L, which represents the maximum number of states that can be 

achieved, indicates the maximum number of states that can be 

reached. There are 256 different routes that can be used to get 

from one state to another across the country.  

It is possible for the state graph to contain a maximum of 

25.6 million transition edges if the value of n is set to 5,000 

and L is set to 20. Because of the little size of embedded 

devices, it is safe to infer that it would be impractical to create 

such a comprehensive transition rule table for these kinds of 

devices. 

A tree-like form has been created from the NFA state graph, 

which has been compacted. When NFA is employed, there is 

a risk that the automaton will go through a significant number 

of state changes for each character that is entered. This is 
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something that need to be avoided wherever possible. to 

properly process each character that is entered into a memory 

based NFA implementation, a variety of different table look-

up operations will need to be carried out. 

We see a particularly difficult aspect of the NFA in terms of 

the string-matching problem. Comparable to the various 

pattern substrings that comprise the signature set, the nodes of 

the state graph are what make up the graph itself.  

This is the case even if there are multiple states in the state 

graph. It makes no difference whether the state graph is 

dynamic; this is always the case. We illustrate how this trait 

may be exploited to boost processing performance in a 

pipelined design while simultaneously reducing the size of the 

state graph. This can be accomplished by leveraging the 

property inherent pipelined nature. 

In theory, the pipeline will cycle through a single state for 

each character that is present in the input stream. This is the 

case even if in practise it will cycle through multiple states. If 

we are going to process one character each cycle, then each 

table look-up operation needs to be finished within of only one 

cycle. The process of hashing data is the procedure that is used 

most frequently while building the framework for the 

execution of huge LUTs.  

When dynamic signature sets are utilised, collisions are an 

unavoidable and unavoidable outcome. When collisions occur, 

the number of memory visits that need to be carried out to 

complete a database lookup can skyrocket, depending on the 

severity of the collision. The throughput of the system will be 

negatively affected because this is the case. The underlying 

AC approach uses a DFA model to represent the system in its 

analysis. If we refer to the AC automaton for a signature set as 

M()=(Q, q0, δ, F), 

where,  

q0-initial state, 

Q-states,

δ-transition function, and

F⊆Q-output state set represents the AC automaton for this

signature set. 

When we discuss the transition function, we are talking to 

any mapping that moves from one Q×→Q. The transition 

function is synonymous with Q mapping. One way to express 

the automaton M is by writing it down as the graph.  

G=(Q, E), 

where, 

Q-nodes and

E-edges.

E={(u, x, v)|u∈Q∧x∈∧v=δ(u, x)}.

where, 

x-input symbol,

u-current state,

v-future state,

E-expression

The position 0 is where the system operation is initiated for

the first time. It performs an analysis of the currently active 

state in conjunction with the character that was input during 

each cycle and then modifies the state in accordance with the 

findings. When considered in this setting, the terms edge and 

transition, as well as state and node, are interchangeable with 

one another. 

A representation of the AC state graph for the string 

combination apple, past is presented in Figure 1. The label for 

each node u in the state graph is a string value that begins with 

the prefix U, which is short for some string Y. This prefix 

identifies the string Y. The empty string stands in for the 

starting state, which is indicated by the q0 value. This value is 

denoted by the string. To make the process simpler and clearer 

to comprehend, reverse transitions have had their input 

symbols masked, and their values have been set to q0.  

The character that appears at the end of the string is the one 

that is utilised as the input symbol for a transition, and the node 

that the transition is bound to is responsible for representing 

this character. By analysing the length of the text that is 

associated with a certain node in the state graph, it is possible 

to ascertain the level of a node in the state graph.  

Since q0 level number is zero and its state value is (a string 

with no characters), we can deduce that its level number is 0. 

Let call the collection of nodes that are situated on the i-th level 

of the state graph the Ni group for now. It is hypothesised that 

the edge formed by the coordinates (u, x, v) is forward if u and 

v are both positive integers, and if x does not have a negative 

value.  

The remaining edges, which are called cross-edges and are 

indicated by dashed lines, are not connected to any of the other 

edges in the diagram. There are two distinct types of cross-

edges: those that are unsuccessful and those that are successful. 

Both types are possible. In the scenario in which v=q0, the 

cross edge given by e=(u, x, v) will be successful; however, in 

any other scenario, e will fail. Take into mind the remark that 

comes next: According to this definition, the set of forward 

edges is referred to as Ef, the set of nonfailure cross edges is 

referred to as Ecn, and the set of failure edges is referred to as 

Ecf. E is proportional to Ef+Ecn+Ecf. 

After going over the first two categories of edges that can 

be found, this article moves on to describe the third category 

of edges that can be found. Let imagine that u and v are two 

different states in Q and that u and v are the strings that 

correspond to those states. This will make it easier to 

understand what is going on. The following is an itemised list 

of characteristics of the leading edge, which may be modelled 

using the equation e=(u, x, v). 

Both U and V are frequently seen functioning as prefixes 

for particular string.  

The definitions and explanations of the three categories of 

edges that were described earlier can now be found in this 

section. Imagine that u and v are two separate states in Q, and 

that U and V are the strings that correspond to u and v, 

respectively. This would mean that u and v are both 

represented by the U. Edge e=(u, x, v) ∈Ef, where each of the 

requirements outlined below is met, then Ef can be regarded 

as a forward edge. 

(i) U, and V are all examples of prefixes that can be tacked

onto the start of a string (or several strings) in . 

(ii) v∈Ni+1 and u∈Ni for i≥0.

(iii) U·x=V.

The Ecn can be considered a nonfailing cross edge: Edge

e=(u, x, v) ECN denotes a cross edge. 

(i) v∈Nj and u∈Ni for i≥j>0.

(ii) According to the findings presented in, there is no such

thing as a single forward edge with the equation e=(u, x, w) 

E∈f that exists for some w∈Q. 
(iii) There exists a string y, which can be an empty string,

in such a way that y is a suffix of U and y·x=V. This is possible 

because y is a string that can be empty and there is a string at 

this location. 
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(iv) There is no other suffix z of U that has a length that is

longer than y and whose suffix z is shorter than x for each and 

every node v of Q. This is because there is no other suffix z’∈U. 

The alphabet set is divisible into three distinct subsets, each 

of which can be differentiated from the others based on a 

single dividing point. 

f (u)={x|x∈∧ ∃e=(u, x, v) ∈Ef}, 

cn(u)={x|x∈∧ ∃e=(u, x, v) ∈Ecn}, and 

c f (u)=-f (u)-cn(u). 

The overall amount of characters in the set, as well as the 

number of strings that are included in the set and their 

combined length. The value that is returned by the M() 

function can be somewhere between 0.7 and 0.8, and the 

number of edges can be anywhere from 256×β×n×L. It is 

likely that the number of edges in the AC state graph could 

approach 20 million if N is set to 5,000 and L is set to 20.  

4. RESULTS AND DISCUSSIONS

During our tests, we took use of a Samsung Galaxy S2 i9100, 

which is a model that is currently quite popular. Because our 

investigation required a substantial quantity of storage on the 

device internal components, we chose not to use a memory 

card of the appropriate size. After that, we used the phone to 

take a few images before resetting it to the settings it had when 

it was first manufactured (see Figure 2). Resetting the phone 

to its factory settings had two purposes: the first was to remove 

any data that had been pre-installed by the manufacturer, and 

the second was to determine how successfully forensics tools 

could recover anything that had been removed from the phone. 

The Enron dataset, which was already on the phone when 

the studies began and was relatively comparable to data 

acquired for the goal of detecting fraud, was not available to 

researchers at that time. The data collection in question is one 

that may be utilised effectively for the research at hand. 

The smartphone has a random-access memory of 1 GB and 

a storage capacity of 16 GB, and it is powered by the Android 

OS version 2.3.4 Gingerbread (Android OS, Ice Cream 

Sandwich version 4.0.3). the interface used to extract the files 

is given in Figure 3 

Figure 2. Interface of proposed s-roid extraction tool 

Figure 3. Computation time required to extract contacts with 

a data volume of 210.63 

Figure 4. Computation time required to extract messages 

with a data volume of 138.59 

Figure 5. Computation time required to extract photos with a 

data volume of 719490 

Figure 6. Computation time required to extract audio with a 

data volume of 105350 

Figure 7. Computation time required to extract video with a 

data volume of 183430 

Figure 8. Computation time required to extract Call 

History with a data volume of 1620 

Figure 9. Computation time required to extract documents 

with a data volume of 37190 

479



Except for graphics and other thumbnails, for which the two 

programmes have recovered approximately the same number 

of files, the research shows that dd File has fewer entries that 

are equivalent to one another. This leads one to believe that 

image files, such as thumbnails and graphics, can be restored 

more easily by using DD files. The portion of the file that is 

referred to as slack or free space is where the FTK File and the 

DD File differed greatly from one another. Both files had 

values that were similar to one another under the headings for 

the File Status and the File Category sections of the files. 

The FTK file provides more recovery files than the DD file 

does in the case of evidence that may be recovered from slack 

areas. This is the case even though the DD file was the original. 

This conclusion is arrived at because of looking at the data. To 

put it another way, unused space may hold data that is 

redundant or no longer useful, as well as files that have been 

partially deleted or file fragments.  

The problem is that it likely that recovering from it won't be 

worth anything if there isn't any evidence that worth rescuing 

from the gaps in the data. FTK File 8, which is where we find 

the Slack and Free Spaces, was not successful in recovering 

any of the files that were being searched for. The tests 

conducted by the CFTT Program discovered vulnerabilities in 

the FTK File hard disc file preparation technique that was 

implemented on the Windows XP operating system.  

The fact that the files in Figures 4-9 are so large provides 

support to the theory that Foremost retrieved content that 

Access Data FTK did not discover because to slack or free 

space. This information may comprise files that have been 

erased, file pieces that have been deleted, and potentially even 

files that have been buried. 

Figures 4-9 show that the leading forensic tool was able to 

recover more data from the Backtrack DD image than it was 

able to recover from the FTK image. This is seen by the 

comparison of the two images. This image also displays the 

file sizes together with the total number of files that were 

retrieved from the lost device. When it comes to analysing the 

data files that are created by Backtrack dd Image, this also 

implies that the best forensic tool, Backtrack dd Image, works 

better than FTK Image. According to the data that was 

gathered, the types of documents that were most frequently 

recovered by the Foremost forensic tool were zip, jpeg, mp4, 

and png files, followed by pdf files as the next most frequently 

recovered file type. 

5. CONCLUSIONS

The rise in the use of smartphones for monetary transactions 

and other forms of social connection has been matched by an 

increase in the number of instances of cybercrime committed 

using mobile phones. The complexity of these devices, as well 

as the wide variety of software that they housed, presented 

forensic investigators with a new set of obstacles that they had 

not previously come across. They were effective in obtaining 

or intercepting data from passwords, screenshots recorded by 

programs, images, audio, videos, messages shared, and profile 

images. The AC algorithm needs a significant amount of 

memory in order to keep track of the transition rules of the 

deterministic finite automaton that serves as its foundation. 

This automaton is employed in the construction of the 

algorithm. One of the key contributions of this study is the 

application of the Aho-Corasick algorithm to mobile data 

recovery. While this algorithm has been previously used in 

other contexts, to our knowledge, this is the first study to apply 

it to mobile data recovery. Our results demonstrate that the 

algorithm is well-suited to this task and can significantly 

improve the efficiency and accuracy of data recovery. 

Furthermore, this study highlights the importance of file 

type identification in the data recovery process. By comparing 

file types to a trusted set of files, we were able to accurately 

identify removed files and reduce the risk of false positive 
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