
Design of an Efficient Smart Phone Data Extraction Tool Using Aho-Corasick Algorithm

Annies Mary Jeyaseeli , Shanthi Chandrabose*

Department of Computer Science, Vels Institute of Science, Technology, and Advanced Studies, Chennai 600117, India

Corresponding Author Email: shanc08071978@gmail.com

https://doi.org/10.18280/ria.370224 ABSTRACT

Received: 9 February 2023

Accepted: 10 March 2023

Data recovery from Android mobile devices has become an increasingly important area of

research in recent years. With the rise of mobile technology, accidental deletion or erasure

of data is becoming a common problem among users. Many methods have been developed

to recover data from such devices, but most of them are either time-consuming or require

specialized technical skills. In this paper, we present an approach using the Aho-Corasick

algorithm, which has been shown to be highly effective in locating strings in large datasets.

Our proposed method aims to reduce the computational time required for data recovery,

making it more accessible to a wider range of users. In this paper, we develop a Aho-

Corasick algorithm is the most effective method for recovering data from Android mobile

devices after it has been erased inadvertently. The Aho-Corasick algorithm is one approach

that can be utilised in the process of locating strings. It is a piece of software that scans a

given document in search of occurrences of strings that have been selected from a

dictionary. It carries out a simultaneous match on each of the strings at the same time. The

second part of our method involves determining, with the assistance of the Aho-Corasick

algorithm, whether files have been removed from the system. To accomplish this, the file

types are compared to those of files that are already established as being trustworthy and

the proposed method achieves a reduced computational time than other tools.

Keywords:

data extraction, Aho-Corasick algorithm,

smart phones

1. INTRODUCTION

Mobile phones have become an indispensable part of

modern society, providing not only communication but also a

wide range of services and functions, including internet

browsing, email access, social media, and more. In recent

years, the development of more complex telecommunications

infrastructures has further increased the importance of mobile

phones, particularly those with their own operating systems for

intelligence. Android, one such operating system, has gained

a significant market share, with millions of users worldwide.

As such, the need for effective methods of recovering data

from Android mobile devices, particularly after inadvertent

erasure, has become increasingly critical. Mobile phones,

particularly those with their own operating systems for

intelligence, have become increasingly significant to modern

society as a whole as a result of the development of more

complex telecommunications infrastructures. This is

especially true for mobile phones with advanced intelligence

[1]. The creation of the term smart phone, which is used to

describe a type of mobile phone like a personal computer, with

independence from the operating system, that can install

software, such as games from third-party service providers, by

the users, that can expand mobile phone functions through

such programmes constantly, and that can realise the wireless

network through the mobile communication network [2].

The steady increase in the number of people using smart

phones can be attributed, at least in part, to the numerous

benefits offered by smart mobile phones as well as the

marketing efforts of companies that specialise in the

development of such devices. This is why the number of

people using smart phones is expected to continue to rise soon.

The ownership of a smart phone is associated with a variety of

benefits; on the other hand, it is also associated with a variety

of drawbacks [3]. When a traditional cell phone is analysed,

the results are typically the same well-known collection of data;

however, when a smart phone is analysed, the results are

typically a wealth of information since each app stores

application-related data [4], such as call history, text messages,

contacts, and images.

There has been an increase in criminal activity that makes

use of mobile phones and various networks, and this trend is

expected to continue. Because of the significant damage that

may be caused to society by mobile phones and the crimes that

can be carried out using them, the police have focused a lot of

their attention on both of these aspects of the problem. Mobile

phone evidence has become more significant during treatment

for many instances. This is since mobile phones often preserve

essential information that can provide clues and a basis to

clarify the facts of the case [5]. Mobile phones are getting more

and more commonplace in today culture.

At the present time, the criminal use of a mobile phone can

be separated into three distinct categories: first, mobile phones

are used as communication tools during the commission of

criminal acts; second, mobile phones serve as a kind of storage

medium for evidence of criminal acts; and third, mobile

phones are used as an implementation tool for criminal

activities such as SMS fraud, SMS harassment, and the

communication of viruses. During an inquiry, analysts may

find the information gathered from smart phones to be highly

helpful [6].

As a direct consequence of this, the primary emphasis of

Revue d'Intelligence Artificielle
Vol. 37, No. 2, April, 2023, pp. 475-481

Journal homepage: http://iieta.org/journals/ria

475

https://orcid.org/0000-0001-5399-0093
https://orcid.org/0000-0002-7976-2360
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.370224&domain=pdf

study in the field of mobile phone forensics has shifted to

include evidence of criminal activity. The Android system,

which was developed by Google, is the first mobile software

for the mobile terminal that is entirely open source. It is based

on the Linux kernel, which serves as the foundation for the

open-source operating system for mobile phones. Since it was

originally presented in 2008, the new smart mobile phone

system has shown a continuous pace of improvement ever

since it was initially released. For this reason, the analysis of

Android forensics will take place very soon [7, 8].

The ability to retrieve lost data is a vital component in

mobile forensics since it permits us to look through erased data

in search of potential evidence. The Yaffs2 file format that is

stored in memory may be analysed, which provides us with the

capability to search for and restore data that had been

destroyed in the past. We need to ensure that the original file

is secure before we can proceed with making a copy of the

content that is saved in the memory of the mobile phone. The

rest of the work is organized is as follows: the related work is

discussed in section 2. Before explaining the details of our

proposed method, we will provide a background on data

recovery techniques and the Aho-Corasick algorithm in

section 3. We will then describe the implementation and

evaluation of our proposed method in section 4. Finally, we

will conclude the paper with a discussion of the results and

future directions for research in this area.

2. RELATED WORKS

The process of forensic data recovery on the cloud presents

its own unique set of problems that must be overcome. As a

result, the use of trusted platform modules (TPM) in

hypervisors, the implementation of multi-factor authentication

as potential solutions to the difficulties that are associated with

cloud forensics. Some of these problems include having

restricted access of validating its integrity, presenting evidence,

or making decisions on data maintained in separate locations

[9].

According to the findings of an evaluation that was carried

out as part of a cloud-related forensic investigation using both

of these products, volatile and non-volatile data can be

successfully retrieved from the cloud by using Guidance

Encase and the Access Data forensic toolkit. This information

was gleaned from the cloud. This prepares the way, from a

forensics point of view, for the development of next-

generation data gathering strategies that are based in the cloud

and are both dependable and safe [10]. These strategies will be

able to collect data in a more efficient and reliable manner. It

has been proposed that a methodical approach to the collection

of evidence data be utilised in cloud-based forensic

investigations to guarantee the investigation credibility [11].

The purpose of this study is to give a comprehensive

reference for future research by analysing the work that has

been done over the course of seven years on the forensic

examination of many smartphone platforms, data gathering

tactics, and information recovery procedures. Before the

development of forensic technology, the traditional approach

to memory gathering placed a significant amount of emphasis

on the collection of physical evidence [12]. This occurred in

the past, before the time when forensic technology was readily

available. To complete this job successfully, you will need to

take the memory chip out of its socket on the motherboard

usually. During the cleaning process, it is possible that crucial

pieces of evidence will be lost or thrown away due to the

operation of these methods [13].

To carry out a forensic investigation that can be relied upon,

it is essential to take measures to protect and retrieve the

volatile data that is stored within the memory of the mobile

device. These measures must be taken to conduct an

investigation that can be relied upon. Because of this, an

approach to backup and acquisition has been suggested that is

suitable for use with iPhones in addition to Android Mobile

phones and Windows Mobile phones. Investigation was done

into a few potential methods for regaining access to and

interpreting data that has been removed from a smart phone

[14].

The findings indicate that there is no one method that can

obtain from the device all the data that is necessary for the

forensic inquiry to proceed. However, even though a variety

of smartphone forensic tools have been developed because of

ongoing studies into mobile device forensics, these studies do

not verify the integrity of the data, which is essential for digital

forensic investigation. In other words, even though these

studies have resulted in the development of a variety of

smartphone forensic tools, the research has not been successful

[15].

Researchers analysed the factors that affect data integrity

during acquisition that are related to Android device recovery

mode variables by looking at Android device acquisition while

the devices were in recovery mode. This allowed the

researchers to analyse the factors that affect data integrity

during acquisition. An Android data gathering tool was built

as a direct consequence of this to assure the veracity of the

information that was acquired. Everyone was made aware of

the fact that there are now no predetermined processes in place

for the acquisition of evidence from smartphones [16].

When it comes to the collection of digital evidence, forensic

investigators make use of methods that have been shown to be

reliable via previous research and testing. In addition to this, it

was suggested that various versions of the software that is

installed on cellphones may make it possible for investigators

to access variable volumes of information that is relevant to

the case. On the other hand, there was no attempt made to

retrieve evidence from a formatted Android smartphone, from

which it was reported that all the data and programmes had

been removed. It was claimed that this piece of evidence could

not be reclaimed in any way [17].

This study looked at five different forensic scenarios and

offered a method to obtain data from smartphone, regardless

of the physical design of the device. The research was carried

out by the authors [18]. The purpose of this investigation was

to discover an answer to the problems that were discussed

earlier. Investigations into mobile devices based on the

operating systems Symbian and Windows substantiated these

architecture-related challenges, which suggests that forensic

investigation methods for smartphone mobile devices will

perpetually encounter challenges due to the ever-evolving

nature of technology. Both issues occurred even though these

files had not been deleted. However, the results of the inquiry

showed that not all instruments are made in the same way and

are therefore not comparable.

The evidence that was gathered and analysed from a Nexus

4 phone revealed a vulnerability that gave hackers full access

to the phone even after the bootloader had been unlocked,

which in most cases deleted all user data. The vulnerability

was discovered through the discovery of a vulnerability that

gave hackers full access to the phone. Because of this

476

vulnerability, the hackers were able to access the phone even

after the bootloader had been successfully unlocked. It does

not yet have a mechanism for forensic examination, the

difficulties of smartphone forensics are continuing to get more

difficult [19, 20].

3. THE PROPOSED METHOD

In this section, we create our technique for retrieving

information from a database that has been deleted in the past.

Before making any attempt to retrieve data from a mobile

device, it is strongly recommended that a backup of all the

information that has been saved on the device be produced.

The original data does not need to be altered in any way for

the data recovery procedure to be successful because it can be

performed entirely on the image copy. The journal and the

inodes together form the backbone of the system, which is

supported by the file system, which is where all the system

folders and files are stored. The file system is supported by the

journal.

Read all the entries that are in the file system journal and

inodes, extract all the metadata, and then save it (file type, file

name, size, data, file addresses, created date, last modified date,

flag whether the file is deleted, etc.).

Following the processing of each file, a CRC-32 checksum

is subsequently produced for that file. To certify that the

recovered file is in usable condition, this checksum is

compared with the checksum that is computed after the

damaged files have been rebuilt.

To determine which files and directories were removed,

read the properties of those that were deleted from the journal

and inodes of the file system. This will allow you to identify

the files and directories that were removed.

Give the user your best guess as to what happened to the

files after they were deleted and explain why you reached that

conclusion. It possible that a deleted file fingerprint and data

type won't be able to be recovered at all. When this occurrence

takes place, our system immediately moves on to the

subsequent phase. During this phase, it initiates the process of

parsing the second copy of the metadata to recover the

information that was omitted before.

This method provides a user-friendly interface for entering

search terms, determines whether the entered terms match the

metadata for the deleted files, the Aho-Corasick technique is

then used to decide whether or not the entered terms match the

metadata for the deleted files. This occurs after our method

determines whether the entered terms match the metadata for

the deleted files. Following the conclusion of this step, the user

will be shown with a list of the files that have recently been

removed so that they may confirm that the procedure was

successful.

Rebuilding and recovering the files that correspond to the

user input and the metadata will result from this action. In

order to accomplish this goal, first create new files that have

the same size as the ones that were destroyed, and then copy

the contents of the deleted files into the new files.

At this stage, we do a comparison between the CRC-32

value of the restored file and the value of the original file to

determine whether the two values are same. If the two numbers

match up, then the file in question does not have any tainted

information and can be viewed in the usual manner as in

Figure 1.

Figure 1. Data recover process

3.1 Aho-Corasick algorithm

The fact that the computation time for the AC algorithm is

linear with the length of the input stream and that it does not

depend on the signature strings that lends credence to the idea

that it could be a viable contender for finding a solution to the

string-matching problem.

The ability of the AC algorithm to find a match for a string

in a time that is proportional to the stream length is one of the

most appealing features of the approach. This ability makes

the method one of the most desirable candidates for use. This

is done to maintain the same level of consistency in the

processing time (DFA). The fact that the AC technique needs

a sizeable amount of memory to hold the NFA transition rules

is the most important drawback associated with using this

approach.

Take into consideration a signature set in which there are n

total strings, L is the average length of the strings, and L is the

total number of strings. On the AC state graph, the variable n

L, which represents the maximum number of states that can be

achieved, indicates the maximum number of states that can be

reached. There are 256 different routes that can be used to get

from one state to another across the country.

It is possible for the state graph to contain a maximum of

25.6 million transition edges if the value of n is set to 5,000

and L is set to 20. Because of the little size of embedded

devices, it is safe to infer that it would be impractical to create

such a comprehensive transition rule table for these kinds of

devices.

A tree-like form has been created from the NFA state graph,

which has been compacted. When NFA is employed, there is

a risk that the automaton will go through a significant number

of state changes for each character that is entered. This is

477

something that need to be avoided wherever possible. to

properly process each character that is entered into a memory

based NFA implementation, a variety of different table look-

up operations will need to be carried out.

We see a particularly difficult aspect of the NFA in terms of

the string-matching problem. Comparable to the various

pattern substrings that comprise the signature set, the nodes of

the state graph are what make up the graph itself.

This is the case even if there are multiple states in the state

graph. It makes no difference whether the state graph is

dynamic; this is always the case. We illustrate how this trait

may be exploited to boost processing performance in a

pipelined design while simultaneously reducing the size of the

state graph. This can be accomplished by leveraging the

property inherent pipelined nature.

In theory, the pipeline will cycle through a single state for

each character that is present in the input stream. This is the

case even if in practise it will cycle through multiple states. If

we are going to process one character each cycle, then each

table look-up operation needs to be finished within of only one

cycle. The process of hashing data is the procedure that is used

most frequently while building the framework for the

execution of huge LUTs.

When dynamic signature sets are utilised, collisions are an

unavoidable and unavoidable outcome. When collisions occur,

the number of memory visits that need to be carried out to

complete a database lookup can skyrocket, depending on the

severity of the collision. The throughput of the system will be

negatively affected because this is the case. The underlying

AC approach uses a DFA model to represent the system in its

analysis. If we refer to the AC automaton for a signature set as

M()=(Q, q0, δ, F),

where,

q0-initial state,

Q-states,

δ-transition function, and

F⊆Q-output state set represents the AC automaton for this

signature set.

When we discuss the transition function, we are talking to

any mapping that moves from one Q×→Q. The transition

function is synonymous with Q mapping. One way to express

the automaton M is by writing it down as the graph.

G=(Q, E),

where,

Q-nodes and

E-edges.

E={(u, x, v)|u∈Q∧x∈∧v=δ(u, x)}.

where,

x-input symbol,

u-current state,

v-future state,

E-expression

The position 0 is where the system operation is initiated for

the first time. It performs an analysis of the currently active

state in conjunction with the character that was input during

each cycle and then modifies the state in accordance with the

findings. When considered in this setting, the terms edge and

transition, as well as state and node, are interchangeable with

one another.

A representation of the AC state graph for the string

combination apple, past is presented in Figure 1. The label for

each node u in the state graph is a string value that begins with

the prefix U, which is short for some string Y. This prefix

identifies the string Y. The empty string stands in for the

starting state, which is indicated by the q0 value. This value is

denoted by the string. To make the process simpler and clearer

to comprehend, reverse transitions have had their input

symbols masked, and their values have been set to q0.

The character that appears at the end of the string is the one

that is utilised as the input symbol for a transition, and the node

that the transition is bound to is responsible for representing

this character. By analysing the length of the text that is

associated with a certain node in the state graph, it is possible

to ascertain the level of a node in the state graph.

Since q0 level number is zero and its state value is (a string

with no characters), we can deduce that its level number is 0.

Let call the collection of nodes that are situated on the i-th level

of the state graph the Ni group for now. It is hypothesised that

the edge formed by the coordinates (u, x, v) is forward if u and

v are both positive integers, and if x does not have a negative

value.

The remaining edges, which are called cross-edges and are

indicated by dashed lines, are not connected to any of the other

edges in the diagram. There are two distinct types of cross-

edges: those that are unsuccessful and those that are successful.

Both types are possible. In the scenario in which v=q0, the

cross edge given by e=(u, x, v) will be successful; however, in

any other scenario, e will fail. Take into mind the remark that

comes next: According to this definition, the set of forward

edges is referred to as Ef, the set of nonfailure cross edges is

referred to as Ecn, and the set of failure edges is referred to as

Ecf. E is proportional to Ef+Ecn+Ecf.

After going over the first two categories of edges that can

be found, this article moves on to describe the third category

of edges that can be found. Let imagine that u and v are two

different states in Q and that u and v are the strings that

correspond to those states. This will make it easier to

understand what is going on. The following is an itemised list

of characteristics of the leading edge, which may be modelled

using the equation e=(u, x, v).

Both U and V are frequently seen functioning as prefixes

for particular string.

The definitions and explanations of the three categories of

edges that were described earlier can now be found in this

section. Imagine that u and v are two separate states in Q, and

that U and V are the strings that correspond to u and v,

respectively. This would mean that u and v are both

represented by the U. Edge e=(u, x, v) ∈Ef, where each of the

requirements outlined below is met, then Ef can be regarded

as a forward edge.

(i) U, and V are all examples of prefixes that can be tacked

onto the start of a string (or several strings) in .

(ii) v∈Ni+1 and u∈Ni for i≥0.

(iii) U·x=V.

The Ecn can be considered a nonfailing cross edge: Edge

e=(u, x, v) ECN denotes a cross edge.

(i) v∈Nj and u∈Ni for i≥j>0.

(ii) According to the findings presented in, there is no such

thing as a single forward edge with the equation e=(u, x, w)

E∈f that exists for some w∈Q.
(iii) There exists a string y, which can be an empty string,

in such a way that y is a suffix of U and y·x=V. This is possible

because y is a string that can be empty and there is a string at

this location.

478

(iv) There is no other suffix z of U that has a length that is

longer than y and whose suffix z is shorter than x for each and

every node v of Q. This is because there is no other suffix z’∈U.

The alphabet set is divisible into three distinct subsets, each

of which can be differentiated from the others based on a

single dividing point.

f (u)={x|x∈∧ ∃e=(u, x, v) ∈Ef},

cn(u)={x|x∈∧ ∃e=(u, x, v) ∈Ecn}, and

c f (u)=-f (u)-cn(u).

The overall amount of characters in the set, as well as the

number of strings that are included in the set and their

combined length. The value that is returned by the M()

function can be somewhere between 0.7 and 0.8, and the

number of edges can be anywhere from 256×β×n×L. It is

likely that the number of edges in the AC state graph could

approach 20 million if N is set to 5,000 and L is set to 20.

4. RESULTS AND DISCUSSIONS

During our tests, we took use of a Samsung Galaxy S2 i9100,

which is a model that is currently quite popular. Because our

investigation required a substantial quantity of storage on the

device internal components, we chose not to use a memory

card of the appropriate size. After that, we used the phone to

take a few images before resetting it to the settings it had when

it was first manufactured (see Figure 2). Resetting the phone

to its factory settings had two purposes: the first was to remove

any data that had been pre-installed by the manufacturer, and

the second was to determine how successfully forensics tools

could recover anything that had been removed from the phone.

The Enron dataset, which was already on the phone when

the studies began and was relatively comparable to data

acquired for the goal of detecting fraud, was not available to

researchers at that time. The data collection in question is one

that may be utilised effectively for the research at hand.

The smartphone has a random-access memory of 1 GB and

a storage capacity of 16 GB, and it is powered by the Android

OS version 2.3.4 Gingerbread (Android OS, Ice Cream

Sandwich version 4.0.3). the interface used to extract the files

is given in Figure 3

Figure 2. Interface of proposed s-roid extraction tool

Figure 3. Computation time required to extract contacts with

a data volume of 210.63

Figure 4. Computation time required to extract messages

with a data volume of 138.59

Figure 5. Computation time required to extract photos with a

data volume of 719490

Figure 6. Computation time required to extract audio with a

data volume of 105350

Figure 7. Computation time required to extract video with a

data volume of 183430

Figure 8. Computation time required to extract Call

History with a data volume of 1620

Figure 9. Computation time required to extract documents

with a data volume of 37190

479

Except for graphics and other thumbnails, for which the two

programmes have recovered approximately the same number

of files, the research shows that dd File has fewer entries that

are equivalent to one another. This leads one to believe that

image files, such as thumbnails and graphics, can be restored

more easily by using DD files. The portion of the file that is

referred to as slack or free space is where the FTK File and the

DD File differed greatly from one another. Both files had

values that were similar to one another under the headings for

the File Status and the File Category sections of the files.

The FTK file provides more recovery files than the DD file

does in the case of evidence that may be recovered from slack

areas. This is the case even though the DD file was the original.

This conclusion is arrived at because of looking at the data. To

put it another way, unused space may hold data that is

redundant or no longer useful, as well as files that have been

partially deleted or file fragments.

The problem is that it likely that recovering from it won't be

worth anything if there isn't any evidence that worth rescuing

from the gaps in the data. FTK File 8, which is where we find

the Slack and Free Spaces, was not successful in recovering

any of the files that were being searched for. The tests

conducted by the CFTT Program discovered vulnerabilities in

the FTK File hard disc file preparation technique that was

implemented on the Windows XP operating system.

The fact that the files in Figures 4-9 are so large provides

support to the theory that Foremost retrieved content that

Access Data FTK did not discover because to slack or free

space. This information may comprise files that have been

erased, file pieces that have been deleted, and potentially even

files that have been buried.

Figures 4-9 show that the leading forensic tool was able to

recover more data from the Backtrack DD image than it was

able to recover from the FTK image. This is seen by the

comparison of the two images. This image also displays the

file sizes together with the total number of files that were

retrieved from the lost device. When it comes to analysing the

data files that are created by Backtrack dd Image, this also

implies that the best forensic tool, Backtrack dd Image, works

better than FTK Image. According to the data that was

gathered, the types of documents that were most frequently

recovered by the Foremost forensic tool were zip, jpeg, mp4,

and png files, followed by pdf files as the next most frequently

recovered file type.

5. CONCLUSIONS

The rise in the use of smartphones for monetary transactions

and other forms of social connection has been matched by an

increase in the number of instances of cybercrime committed

using mobile phones. The complexity of these devices, as well

as the wide variety of software that they housed, presented

forensic investigators with a new set of obstacles that they had

not previously come across. They were effective in obtaining

or intercepting data from passwords, screenshots recorded by

programs, images, audio, videos, messages shared, and profile

images. The AC algorithm needs a significant amount of

memory in order to keep track of the transition rules of the

deterministic finite automaton that serves as its foundation.

This automaton is employed in the construction of the

algorithm. One of the key contributions of this study is the

application of the Aho-Corasick algorithm to mobile data

recovery. While this algorithm has been previously used in

other contexts, to our knowledge, this is the first study to apply

it to mobile data recovery. Our results demonstrate that the

algorithm is well-suited to this task and can significantly

improve the efficiency and accuracy of data recovery.

Furthermore, this study highlights the importance of file

type identification in the data recovery process. By comparing

file types to a trusted set of files, we were able to accurately

identify removed files and reduce the risk of false positive

REFERENCES

[1] Dorai, G., Houshmand, S., Aggarwal, S. (2020). Data

extraction and forensic analysis for smartphone paired

wearables and IoT devices. In HICSS, pp. 1-10.

https://doi.org/10.24251/HICSS.2020.172

[2] Fukami, A., Stoykova, R., Geradts, Z. (2021). A new

model for forensic data extraction from encrypted mobile

devices. Forensic Science International: Digital

Investigation, 38: 301169.

https://doi.org/10.1016/j.fsidi.2021.301169

[3] Shankar, V.G., Devi, B., Srivastava, S. (2019).

DataSpeak: Data extraction, aggregation, and

classification using big data novel algorithm. In

Computing, Communication and Signal Processing:

Proceedings of ICCASP 2018, Springer Singapore, pp.

143-155. https://doi.org/10.1007/978-981-13-1513-8_16

[4] Aggarwal, S., Dorai, G., Karabiyik, U., Mukherjee, T.,

Guerra, N., Hernandez, M., Parsons, J., Rathi, K., Chi, H.,

Aderibigbe, T., Wilson, R. (2019). A targeted data

extraction system for mobile devices. In Advances in

Digital Forensics XV: 15th IFIP WG 11.9 International

Conference, Orlando, FL, USA, pp. 73-100. Springer

International Publishing. https://doi.org/10.1007/978-3-

030-28752-8_5

[5] Laranjo, L., Ding, D., Heleno, B., Kocaballi, B., Quiroz,

J.C., Tong, H.L., Chahwan, B., Neves, A.L., Gabarron,

E., Dao, K.P., Rodrigues, D., Neves, G.C., Antunes, M.L.,

Coiera, E., Bates, D.W. (2021). Do smartphone

applications and activity trackers increase physical

activity in adults? Systematic review, meta-analysis and

metaregression. British journal of sports medicine, 55(8):

422-432. https://doi.org/10.1136/bjsports-2020-102892

[6] Husnjak, S., Forenbacher, I., Peraković, D., Cvitić, I.

(2022). UAV forensics: DJI mavic air noninvasive data

extraction and analysis. In 5th EAI International

Conference on Management of Manufacturing Systems,

pp. 115-127. https://doi.org/10.1007/978-3-030-67241-

6_10

[7] Thornton, G., Zadeh, P.B. (2022). An investigation into

Unmanned Aerial System (UAS) forensics: Data

extraction & analysis. Forensic Science International:

Digital Investigation, 41: 301379.

https://doi.org/10.1016/j.fsidi.2022.301379

[8] Liao, L., Li, J., Lu, C. (2022). Data extraction method for

industrial data matrix codes based on local adjacent

modules structure. Applied Sciences, 12(5): 2291.

https://doi.org/10.3390/app12052291

[9] Scrivens, N., Lin, X. (2017). Android digital forensics:

Data, extraction and analysis. In Proceedings of the ACM

Turing 50th Celebration Conference-China, China, pp. 1-

10. https://doi.org/10.1145/3063955.3063981

[10] Turow, J., Couldry, N. (2018). Media as data extraction:

Towards a new map of a transformed communications

480

field. Journal of Communication, 68(2): 415-423.

https://doi.org/10.1093/joc/jqx011

[11] Barreneche, C., Wilken, R. (2015). Platform specificity

and the politics of location data extraction. European

Journal of Cultural Studies, 18(4-5): 497-513.

https://doi.org/10.1177/1367549415577386

[12] Gupta, A., Anand Shankar, S., Manjunath, C. (2017). A

comparative study on data extraction and its processes.

International Journal of Applied Engineering Research,

12(18): 7194-7201.

[13] Spolaor, R., Dal Santo, E., Conti, M. (2017). Delta: Data

extraction and logging tool for android. IEEE

Transactions on Mobile Computing, 17(6): 1289-1302.

https://doi.org/10.1109/TMC.2017.2762692

[14] Kong, J. (2015). Data extraction on mtk-based android

mobile phone forensics. Journal of Digital Forensics,

Security and Law, 10(4): 3.

https://doi.org/10.15394/jdfsl.2015.1209

[15] Ashawa, M., Ogwuche, I. (2017). Forensic data

extraction and analysis of left artifacts on emulated

android phones: a case study of instant messaging

applications. Seizure, 19: 16.

https://doi.org/10.22632/ccs-2017-252-67

[16] Aziz, N.A., Mokhti, F., Nozri, M.N.M. (2015). Mobile

device forensics: extracting and analysing data from an

android-based smartphone. In 2015 Fourth International

Conference on Cyber Security, Cyber Warfare, and

Digital Forensic (CyberSec), pp. 123-128. IEEE.

https://doi.org/10.1109/CyberSec.2015.32

[17] Tajuddin, T.B., Abd Manaf, A. (2015). Forensic

investigation and analysis on digital evidence discovery

through physical acquisition on smartphone. In 2015

World Congress on Internet Security, pp. 132-138. IEEE.

https://doi.org/10.1109/WorldCIS.2015.7359429

[18] Basyoni, Y., Talaat, H. (2015). A bilevel traffic data

extraction procedure via cellular phone network for

intercity travel. Journal of Intelligent Transportation

Systems, 19(3): 289-303.

https://doi.org/10.1080/15472450.2014.892380

[19] Cui, M., Wu, X., Mao, J., Wang, X., Nie, M. (2016).

T2DM self-management via smartphone applications: A

systematic review and meta-analysis. PloS One, 11(11):

e0166718. https://doi.org/10.1371/journal.pone.0166718

[20] Firth, J., Torous, J., Nicholas, J., Carney, R., Pratap, A.,

Rosenbaum, S., Sarris, J. (2017). The efficacy of

smartphone-based mental health interventions for

depressive symptoms: A meta-analysis of randomized

controlled trials. World Psychiatry, 16(3): 287-298.

https://doi.org/10.1002/wps.20472

481

