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Farmers in rural areas with limitation of internet connectivity can be made possible for early 

plant diseases detection by using optimization of mobile devices which implemented an 

application based on Convolutional Neural Network (CNN) because of the computational 

efficiency. The researchers used a dataset containing 79 different classes of plant which 

was merged from several public domain datasets, which was evaluated and compared using 

four CNN models, consisting of MobileNetV3, EfficientNetB0, Mason model, and 

ShuffleNetV2. The experiment results showed that Mason model has a highest accuracy of 

90.54% and the smallest output file of 0.85MB, MobileNetV3 88.83% with 16.85MB, 

EfficientNetB0 88.75% with 16.08MB, and ShuffleNetV2 83.52% with 15.89MB, which 

the four models have a slight accuracy decrease on both workstation and mobile devices. 

However, on resource consumption overall, MobileNetV3 consumed less than the others 

model, even though the value hasn’t a huge difference of several points. It can be concluded 

that Mason model is the most suitable model to be implemented on mobile devices because 

of accuracy and low resource consumption. 
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1. INTRODUCTION

Plant diseases are one of the utmost threats to crop 

production and expansion. Plant diseases can hamper the 

target of agricultural production every year where about 85% 

are caused by fungi or fungus-like organisms. The repeated 

failure to meet production targets can cause food insecurity for 

a country and even the world. 

Using pesticides and insecticides could give a short solution 

but it is not helpful for long-term. Therefore, early detection 

and identification for plant diseases is one of best options in 

minimizing the damage level of plants. This option can be used 

because symptoms of plant diseases can mostly be identified 

on the leaves, such as chlorosis (the yellowing or lightening of 

the green parts of plants) and curl (rolling, cupping, or 

puckering of leaves).  

For the farmers, who lack knowledge of plant diseases, will 

call the experts to help them identify plant diseases. In most 

cases, the experts need to use a microscope for carrying out in-

depth analysis or need to convert the sample into 

electromagnetic spectrum. However, this method tends to be 

time-consuming and expensive, even while the experts are far 

away from the farmers or laboratory assistance required to 

diagnose the diseases. 

The new technology appeared over the past few years like 

computer vision can be an alternative way to solve the 

limitations of traditional methods. The recent applications of 

computer vision through deep learning have made enormous 

advances in various studies, such as object segmentation, 

object recognition, image segmentation, and image 

classification. Furthermore, deep learning is not limited to 

being implemented on Personal Computer (PC), the others can 

be synchronized with mobile devices. Mobile devices have 

significantly increased usage during covid-19 pandemic, 

where people unwillingly work and study from home, or need 

to scan entries ticket via QR code if want to enter public places 

even apartments. These uncommon activities during the 

pandemic contribute to changing the perspective of mobile 

devices usage as an intermediary medium. This opportunity 

shown from mobile devices can be one of the potentially good 

mediums to reach farmers in rural areas.  

However, some rural and plantation areas in Indonesia still 

not have enough internet connections support. Therefore, 

building a plant diseases diagnosis system with limited 

internet connectivity through a mobile application can be very 

helpful for farmers. 

The system is expected to be able to identify diseases from 

leaf images and to provide accurate and quick labeling of a 

plant disease. The mechanism of identification refers to the 

similarity between the diseases on pictures of plants with 

actual plant disease by using deep learning algorithms.  

Deep learning algorithms work using several layers of 

neural network algorithms to process data and create patterns 

in decision making automatically. The subset of deep learning 

algorithms is Convolution Neural Network (CNN) which is 

currently one of machine learning popular methods for solving 

image classification problems. There have been a lot of studies 

that use CNN in classifying plant diseases, as have been done 

by Jadhav et al. [1] that achieve accuracy rate of 96.25% by 

implementing AlexNet with some modifications in 

hyperparameters using 650 disease and 550 healthy soybean 

images. Upadhyay and Kumar [2] reached identification 

accuracy of 99.7%, using simple layers of CNN including 

batch normalization layer, one fully connected, and softmax 

layer with Rice Leaf Image dataset. Then, Sembiring et al. [3] 

classify ten tomato leaf diseases from PlantVillage Dataset and 
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achieve the accuracy rate of 98.28%. Two versions of 

PlantVillage dataset (Augmented and Original) were 

evaluated by Atila et al. [4] by using several different CNN 

models, the highest accuracy of each version dataset, 

EfficientNet-B4 at 99.97% and EfficientNet-B5 at 99.91% 

respectively. Then, Liu et al. [5] achieved identification 

accuracy of 97.22% from DICNN model using 107,366 

images of augmented 7,669 grape leaf images which are 

generated via image enhancement technique. 

Based on previous research, there are only two studies that 

focus on the application of deep learning techniques to be used 

on mobile devices, specifically the research of plant disease 

classification. In 2019, Syamsuri and Kusuma [6] evaluate 

several pre-trained deep learning Convolutional Neural 

Network (CNN) on mobile devices, MobileNet reached 

accuracy of 92.83%, followed by MNasNet at 94.87%, and 

Inception V3 at 95.79%. Then, Bimorogo and Kusuma [7] 

expands the previous research by adding two classes of coffee 

plants and four classes of rice plants by using MobileNet V2 

that achieve accuracy of 96.55%, then NasNet Mobile at 

97,31%, DenseNet 121 layer at 96.21%, and Inception V3 at 

98,45%. Both studies can achieve high accuracy and can be 

said to be almost perfect. However, the use of the PlantVillage 

dataset as the main dataset on both studies has drawbacks 

where [8] shows a decrease in accuracy by ten to twenty 

percent when tested with images of different lighting 

conditions. From the background above, there is a motivation 

to build a system that has the ability to recognize many 

variants of diseases with good accuracy performance and 

resource requirements in helping farmers in rural areas who 

are still difficult to reach by a fast internet network. 

In this research, the authors use CNN model that has fewer 

parameters and has been demonstrated to be highly accurate 

on a certain disease dataset, namely Mason model [9], which 

compared to another less parameters CNN models that have 

been proven to be highly accurate on ImageNet dataset such 

as MobileNetV3 [10], ShuffleNetV2 [11], and EfficientNetB0 

[12]. The motivation of using less parameters models is to 

reduce computation cost and require less resources. 

Furthermore, this research extends more plant disease 

classes which consisted of 104,282 images from 21 kind of 

plants, in order to enrich the variation of dataset and build 

robust identification system with more variation of plant 

diseases.  

The evaluation design in this research is carried out in two 

parts, namely on the workstation which is to find the best 

model performance based on its loss and then it is tested on a 

mobile device to evaluate the required resource requirements, 

namely file size, memory, CPU, detection speed, and power 

consumption. The evaluation results show that the Mason 

model shows better performance results compared to other 

models even though still needs some minor improvement in 

the future. 

This paper is organized as follows. Section 2 presents the 

related work to the detection of plant diseases. Section 3 shows 

the experimental design method by mentioning merged 

datasets detail and illustrating workflow experimental on 

workstation and a mobile device. Section 4 discusses the 

experimental results on workstation and mobile devices which 

are displayed in table form and has an explanation. Section 5 

shows the conclusion of the experimental results that have 

been carried out. 

2. RELATED WORK

In their research [1], they used AlexNet and GoogleNet for 

identifying soybean leaf diseases including healthy soybean 

with five-fold cross-validation and transfer learning. The 

result of this study shows AlexNet achieved the higher 

accuracy rate of 98.75% using 1199 images taken in Kolhapur 

district, India.  

Research by Upadhyay and Kumar [2] proposed simple 

CNN architecture for classifying rice leaf diseases in India 

using 4000 images taken by the authors. Then, the dataset was 

preprocessed using several methods such as resizing, 

removing noise, and cropping. The accuracy achieved using 

the proposed architecture was 99.7%. 

Sembiring et al. [3] compared several CNN models to 

identify tomato leaf diseases using ten classes of PlantVillage 

dataset. The authors evaluated the proposed model, VGG16, 

ShuffleNet, and SqueezeNet with fine tuning, learning rate 

0.0003 and sgdm optimization. VGG16 obtained the best 

accuracy score of 98.28%. However, the proposed model has 

achieved an accuracy score of 97.15% and faster in training 

time of around one hour than VGG16 by around five hours.  

Other research that used several CNN models has been done 

by Atila et al. [4]. AlexNet, ResNet50, VGG16, InceptionV3, 

and EfficientNet B0-B7 were carried out using two versions of 

the PlantVillage dataset, original and augmented. The models 

trained either adam optimizer with learning rate 0.001 or sgd 

optimizer with learning rate 0.01. The architecture of the 

EfficientNet B5 achieved a success rate of 99.91% for the 

original version and EfficientNet B4 at 99.97% for the 

augmented version. 

In the research conducted by Liu et al. [5], they proposed 

Dense Inception Convolutional Neural Networks (DICNN) to 

classify six grape leaf diseases and healthy grape. Using 

107,336 images after implementing several augmentation 

techniques implemented to enumerate number of images. This 

study also compared another different algorithm such as back-

propagation, SVM, VGG16, VGG19, GoogLeNet, ResNet34, 

and DenseNet169. With learning rate 0.001, DICNN was 

superior in accuracy rate of 97.22% than other algorithms. 

There are more than these studies mentioned above that the 

research using CNN deep learning on plant disease detection 

even almost achieved perfection accuracy. However, only two 

studies that evaluated explicitly run CNN deep learning on 

mobile devices. The first, the research was conducted by 

Syamsuri and Kusuma [6] that focus classify coffee plants 

diseases, three CNN models (InceptionV3, MobileNet, and 

MNasNet) achieved classification accuracy of 95.79%, 

92.83%, and 94.87% respectively on mobile devices. For the 

time latency, MobileNet was the lowest with 394.70 ms, 

followed by MNasNet at 430.20 ms, and InceptionV3 at 

2236.10 ms. The models were trained using PlantVillage 

dataset which extended to coffee leaf. The second, Bimorogo 

and Kusuma [7] compared four CNN models that consist of 

MobileNet V2, NasNet Mobile, DenseNet 121 layer, and 

Inception V3 using PlantVillage dataset which extended to 

two classes of coffee plants and four classes of rice plants. The 

experiments showed that Inception V3 was the most stable 

model with highest accuracy of 98.45%, followed by NasNet 

Mobile at 97.31%, MobileNet V2 at 96.55%, and DenseNet 

121 layer at 96.21%. Although Inception V3 was the most 

stable, it consumes a lot of resources.  

442



These two studies can obtain high and almost perfect 

accuracy but the use of the PlantVillage dataset as the main 

dataset can decrease in accuracy when tested with images that 

have outdoor lighting conditions. In addition, the 

recommended models in these two studies still have a large 

number of parameters and resource requirements and to be 

more efficient and effective for farmers who have mobile 

devices with low specifications. 

Furthermore, this research used the CNN model (Mason 

model) [9], which have fewer parameters and have been 

demonstrated to be highly accurate on certain diseases dataset, 

to be compared with with another fewer parameters CNN 

models (MobileNetV3 [10], ShuffleNetV2 [11], and 

EfficientNetB0 [12]), which has been proven to be highly 

accurate on ImageNet dataset. This study also expanded the 

dataset that was used on Syamsuri and Kusuma [6] and 

Bimorogo and Kusuma [7] with other public plant disease 

datasets in order to enrich the variation of datasets and build a 

robust identification system of many variations of plant 

diseases. 

3. METHODOLOGY

3.1 Dataset 

Several sources of datasets were used in this research, these 

are The PlantVillage dataset that collected by Hughes and 

Salathé [13], with extended cassava leaf disease that used in 

competition held by Makerere University AI Lab [14], Plant 

Pathology dataset that was the dataset of Plant Pathology 2020 

Challenge [15], a robusta coffee leaf images called RoCole 

dataset [16], then an apple scab dataset collected by Institute 

of Hulticulture [17], bean disease dataset from public domain, 

PlantDoc dataset [18], corn leaf disease dataset [19], cotton 

leaf disease dataset [20], DiaMOS plant dataset which contains 

four pear leaf disease [21], some disease species from 

Digipathos dataset [22] that have more than 20 images, rice 

leaf diseases dataset that gathered from a farming community 

[23], citrus leaf diseases dataset [24], cassava leaf diseases 

dataset [25], bean diseases dataset [26], and some manual 

searching for two classes, rice gray leaf spot and rice healthy. 

Total images were 104,282 images consisting of 21 plant 

species in 79 different classes with 19 healthy plants and 60 

combinations of diseased plants. Next, the authors removed 

some background images from the datasets which have like 

the other and renamed properly all the images file after the 

dataset merged. The detail of the dataset is mentioned in Table 

1. 

Then, the dataset will be separated into three parts datasets, 

training, validation, and testing, using stratified random 

sampling with composition 60% (62,568 images), 20% 

(20,857 images), and 20% (20,857 images) respectively. Due 

to the manual image picking process in mobile, the testing data 

would be 158 images for testing on mobile devices and uses 

all of testing data for evaluating TFlite models’ accuracy on 

PC. 

Table 1. Merged Dataset 

No Class Name Train Val. Test 

1 Apple Complex 1291 430 430 

2 Apple Frog Eye Leaf Spot 1909 636 636 

3 Apple Powdery Mildew 710 237 237 

4 Apple Scab 967 323 323 

Continue Table 1 

No Class Name Train Val. Test 

5 Apple Black Rot 373 124 124 

6 Apple Rust 165 55 55 

7 Apple Healthy 1111 371 370 

8 Bean Angular Leaf Spot 490 163 163 

9 Bean Healthy 487 162 162 

10 Bean Rust 482 161 161 

11 Blueberry Healthy 901 301 300 

12 Cassava Bacterial Blight 931 311 311 

13 Cassava Brown Streak 2179 726 727 

14 Cassava Green Mottle 1895 632 632 

15 Cassava Healthy 1735 579 579 

16 Cassava Mosaic 9490 3163 3163 

17 Cherry Healthy 511 171 171 

18 Cherry Powdery Mildew 631 211 210 

19 Coffee Healthy 475 158 158 

20 Coffee Red Spider Mite 100 34 33 

21 Coffee Rust level 1 232 78 78 

22 Coffee Rust level 2 100 33 33 

23 Coffee Rust level 3 38 12 12 

24 Coffee Rust level 4 18 6 6 

25 Corn Northern Leaf Blight 1279 426 426 

26 Corn Gray Leaf Blight 652 218 217 

27 Corn Common Rust 1498 500 500 

28 Corn Healthy 775 258 258 

29 Cotton Bacterial Blight 268 90 90 

30 Cotton Curl Virus 250 84 84 

31 Cotton Fussarium Wilt 251 85 85 

32 Cotton Healthy 256 85 85 

33 Grape Black Rot 708 236 236 

34 Grape Esca 829 277 277 

35 Grape Healthy 253 85 85 

36 Grape Leaf Blight 646 215 215 

37 Orange Citrus Black Spot 103 34 34 

38 Orange Citrus Canker 98 32 33 

39 Orange Citrus Healthy 35 11 12 

40 Orange Citrus Greening 3427 1142 1142 

41 Peach Healthy 1517 506 506 

42 Peach Bacterial Spot 1378 460 459 

43 Pear Curl 32 11 11 

44 Pear Healthy 26 8 9 

45 Pear Slug 1215 405 405 

46 Pear Spot 530 177 177 

47 Pepper Bell Bacterial Spot 598 200 199 

48 Pepper Bell Healthy 886 295 295 

49 Potato Early Blight 600 200 200 

50 Potato Healthy 92 30 30 

51 Potato Late Blight 600 200 200 

52 Raspberry Healthy 223 74 74 

53 Rice Bacterial Leaf Blight 27 9 9 

54 Rice Brown Spot 30 10 10 

55 Rice Gray Leaf Spot 14 4 5 

56 Rice Healthy 14 4 5 

57 Rice Leaf Smut 24 8 8 

58 Soybean Bacterial Blight 34 11 11 

59 Soybean Brown Spot 20 6 7 

60 Soybean Copper Phytotoxicity 14 4 5 

61 Soybean Downy Mildew 20 6 6 

62 Soybean Mosaic 14 4 4 

63 Soybean Powdery Mildew 47 15 15 

64 Soybean Rust 39 13 13 

65 Soybean Southern Blight 38 12 12 

66 Soybean Healthy 3053 1-18 1018 

67 Squash Powdery Mildew 1101 367 367 

68 Strawberry Healthy 274 91 91 

69 Strawberry Leaf Scorch 665 222 222 

70 Tomato Bacterial Spot 1276 425 425 

71 Tomato Early Blight 600 200 200 

72 Tomato Healthy 954 318 318 

73 Tomato Late Blight 1145 382 382 
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Continue Table 1 

No Class Name Train Val. Test 

74 Tomato Leaf Mold 571 191 190 

75 Tomato Septoria Leaf Spot 1063 354 354 

76 Tomato Two-Spotted Spider Mite 1006 335 335 

77 Tomato Target Spot 842 281 281 

78 Tomato Mosaic 223 75 75 

79 Tomato Curl 3214 1071 1072 

Total 62568 20857 20857 

3.2 CNN models 

This research implemented transfer learning method to the 

CNN models. Transfer learning works by gained the weight of 

pre-trained CNN models before on a large-scale and general 

dataset, namely ImageNet. So, the CNN models can learn 

basic knowledge from existing models instead of starting from 

scratch each time. However, the authors cannot find two saved 

weights of transfer learning on ImageNet for ShuffleNetV2 

and Mason model. The alternative, both models will be trained 

first using merged dataset with 20 epochs without early 

stopping using learning rate SGD 0.001 and Adam 0.001 

respectively.  

This work also fine-tuned the last ten layers of each model. 

By fine tuning, the information from transfer learning is not 

lost at all when the model to be retrained. For the final layers, 

each model used two fully connected layers (FCs) with relu 

activation function that has nodes same as the number of 

classes including a softmax layer. 

3.2.1 Mason model 

Mason model is popularized by Masud et al. [9] which has 

less parameters around 200 thousand. This model is supported 

by four convolution layers, a Global Average Pooling (GAP), 

two Fully Connected (FC), and a softmax output layer. Each 

convolution block has 3 x 3 rectified linear units (ReLUs), a 

connected convolution block 1 x 1 with ReLu and a max 

pooling block. 

Zero padding is implemented before reaching convolution 

block for keeping the size of each convolution block. Mini-

batch normalization is also used for accelerating the training. 

Then, in the middle of convolution block and max pooling, 

there is convolution block connector. 

This model was able to obtain prediction accuracy of 97.9% 

in pulmonary nodule detection using CT Scan images of Lung 

Image Database Consortium (LIDC) dataset on mobile devices. 

3.2.2 MobileNetV3 

MobileNetV3 is a next generation model from its 

predecessor MobileNetV2 which was made to enhance 

computation efficiency, accuracy, and latency reduction. This 

model was made by combination of MobileNetV2 and 

MNasNet as building blocks. 

In the new architecture proposed, there includes non-

linearity, h-swish, and new version of swish non-linearity for 

enlarging friendly computation and quantization. In addition, 

the new design of MobileNetV3 switched the final layer in 

MobileNetV2 design to after final average pooling position, so 

the final layer will only count 1 x 1 spatial resolution.  

Overall, MobileNetV3 has two versions that consists of 

MobileNetV3-Large and MobileNetV3-Small. This work used 

the large one which still has less parameters and good accuracy 

at [10]. 

3.2.3 ShuffleNetV2 

ShuffleNet V2 is the second edition of ShuffleNet which 

proposed channel split concept and switching channel shuffle 

to bottom block [11]. This concept is designed to reduce the 

cost of pointwise group convolutions and bottleneck structure. 

Overall, the performance of the model from its authors shown 

58% faster from MobileNet V2 and 63% faster from 

ShuffleNet V1. 

3.2.4 EfficientNet B0 

EfficientNet B0 is a sub-model of EfficientNet group which 

was introduced by Tan and Le [12]. The baseline of this model 

was built from a combination of MobileNet and ResNet. The 

compound scaling approach was proposed to scale up 

calculation stability of dimension, width, and resolution depth. 

By this approach, the layers can be stretched up or down 

automatically in getting receptive field and fine-grained based 

on the input images.   

3.3 Evaluation 

The research was divided into two versions of 

implementation, those consist of experiments on workstation 

and experiments on a mobile device. In the experiments of 

workstation, mainly, the authors implement pre-trained CNN 

models with two hyperparameter (Adam and SGD) and 

learning rate (0.01 and 0.001) to find the best accuracy on PC. 

Then, in the experiments on a mobile device, primarily, the 

authors chose the four best models to be tested on a mobile 

device.  

3.3.1 Experiments on a workstation 

The experiments process supported by TensorFlow V2, 

TensorFlow-lite deep learning model, Python 3.7, and Visual 

Studio Code. The workflow in the experiments on workstation 

is illustrated by a flowchart that is shown in Figure 1. 

Figure 1. Experiments process chart on workstation 

The CNN model that has been trained was chosen based on 

the highest validation accuracy rate. Then, each model was 

saved in disk using “model.save()” function from TensorFlow. 

The experiments were carried out on a workstation which has 

the specifications that are shown in Table 2. 
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Table 2. The workstation specification 

No Hardware Specification 

1 Memory 16GB 

2 Processor 
Intel®Core™ i5-1035G1 @ 1.00GHz 

(8 CPUs) 

3 GPU NVIDIA GeForce MX250 

4 
Operating 

System 
Windows 10 Home 64-bit (19044) 

3.3.2 Experiments on a mobile device 

In the beginning, the best trained models that saved by 

“model.save()” function was recalled to be converted into 

TensorFlow-lite (TFlite) models. The standard of converted 

TFlite models have default float32 version. This version 

needed to be optimized for reducing the storage size, less 

memory usage, and smaller download size without decreasing 

the accuracy. This work used float16 quantization because it 

provides minimal impact on accuracy and up to 50% model 

size reduction [26]. 

Then, the optimized TFlite models were carried out to 

predict the testing data on a workstation. Furthermore, the 

mobile application was built as a medium to read the TFlite 

models on a mobile device using kotlin language and android 

studio.  

The experiments process on a mobile device is illustrated by 

a flowchart which is depicted in Figure 2. 

Figure 2. Experiments chart on a mobile device 

The application was used to evaluate model CNN on a 

mobile device illustrated in Figure 3. 

There were ten repetitions to be tested on a mobile device 

for evaluating the resource requirements which consist of CPU, 

memory, and power consumption. The mobile battery was 

fully charged, on airplane mode, and restarted on every 

repetition to get the baseline and to ensure no other application 

are running. The numeric output data from the AccuBattery 

application, application to count resource requirements, during 

the testing on a mobile device was noted into excel. The 

experiments were carried out on a mobile device which has the 

specifications that are shown in Table 3. 

Figure 3. Mobile application prototype 

Table 3. The mobile device specification 

No Hardware Specification 

1 Memory 8GB 

2 Processor Qualcomm®Snapdragon™ 720G 

3 Battery Capacity 4000mAh 

4 Operating System Funtouch OS 11.1 

4. RESULTS AND DISCUSSION

4.1 Experimental results on the model performance 

The first experiment on the workstation was done in Jupyter 

notebook by running a script program that was distinguished 

on each model. The training and validation performance of 

each model trained was illustrated graphically in Figure 4 for 

training and validation loss and Figure 5 for training and 

validation accuracy. 

Figure 4. Training and Validation loss of each model 
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Figure 4 showed that MobileNetV3 has achieved the lowest 

training loss of 0.097 in epoch 15, followed by ShuffleNetV2 

with the training loss of 0.098, Mason model of 0.103, and 

EfficientNetB0 of 0.171. Meanwhile, EfficientNetB0 has 

achieved the lowest validation loss of 0.284 in epoch 16, 

followed by Mason model of 0.301, MobileNetV3 of 0.328, 

and ShuffleNetV2 of 0.951. 

Figure 5. Training and Validation accuracy of each model 

Figure 5 shows that the training and validation process of 

EfficientNet B0 stops at epoch 16 with the accuracy value of 

0.9390 or 93.90% and a validation accuracy value of 0.9008 

or 90.08%. While the training and validation process of 

MobileNet V3 stops at epoch 15 with an accuracy rate of 

0.9655 or 96.55% and a validation rate of 0.9010 or 90.10%. 

Then, Mason model achieved an accuracy value of 0.9644 

or 96.44% and a validation value of 0.9108 or 91.08% at epoch 

9. The last model, ShuffleNet V2 achieved an accuracy value

of 0.9671 or 96.71% and a validation value of 0.8503 or 85.03%

at epoch 5.

However, in these training and validation processes, the 

Mason model which has the fewest parameters is leading on 

the accuracy performance compared to other models. Then, 

overall, in the training and validation process, there is an 

indication of overfitting in the results obtained. However, 

when a maximum overfitting tolerance limit of seven percent 

is set, there are three out of four models that are not overfitting, 

namely EfficientNetB0, MobileNetV3, and Mason model. 

The summary of hyperparameters used on each model 

which help to achieve the lowest validation loss is summarized 

in Table 4. 

Table 4. Hyperparameters summary 

Models Optimizers Learning rate 

EfficientNetB0 SGD 0.01 

MobileNetV3 SGD 0.01 

Mason model SGD 0.001 

ShuffleNetV2 SGD 0.001 

Table 4 shows that SGD optimizer gave better accuracy 

value of four models than Adam optimizer and both learning 

rates have equal percentage on this experiment. From this best 

specification, each model is converted to Tensorflow-lite 

version and optimized with float16 quantization in order to suit 

to the mobile device application. 

Another experimental result is the accuracy per class that 

the model gets when tested on workstations and mobile 

devices. the configuration on workstations and mobile devices 

is slightly different due to the different programming 

languages used between workstations (python) and mobile 

devices (kotlin). However, the author tries to form the 

configuration as similar as possible between the two devices.  

The experimental results showed that Mason model has a 

slight decrease in accuracy on the mobile device, such as apple 

powdery mildew, bean angular leaf spot, bean rust, cassava 

green mottle, coffee rust level 1, grape leaf blight, and soybean 

mosaic. Meanwhile, the slight increase in accuracy such as 

grape healthy and soybean southern blight. For the bad 

performance of classes or achieve null percentage such as rice 

gray leaf spot, rice healthy, soybean brown spot, and soybean 

mosaic. 

Another model, EfficientNetB0 experienced a significant 

accuracy degradation on the mobile device such as pear curl 

and pear healthy. For the very poor performance of classes 

such as cassava green mottle, coffee red spider mite, coffee 

rust level 1-4, pear curl, pear healthy. 

MobileNetV3 has a slight accuracy degradation on the 

mobile device such as soybean rust and soybean southern 

blight. Otherwise, the very poor performance of classes such 

as cassava bacterial blight, cassava green mottle, cassava 

healthy, coffee red spider mite, coffee rust level 1-4, rice gray 

leaf spot, soybean copper phytotoxicity, and soybean downy 

mildew.  

ShuffleNetV2 has many classes which achieved very poor 

performance, consists of cassava bacterial blight, cassava 

green mottle, cassava healthy, coffee red spider mite, coffee 

rust level 1-4, cotton bacterial blight, pear curl, pear healthy, 

rice brown spot, rice gray leaf spot, rice healthy, rice leaf smut, 

soybean brown spot, soybean copper phytotoxicity, soybean 

downy mildew, and soybean mosaic. However, there two 

classes of soybean powdery mildew and soybean southern 

blight have a slight accuracy increase from workstation into 

mobile.  

There are some of the same classes that cannot be identified 

by the four models in this study such as the class of coffee 

plants and rice plants. This can be due to the background or 

disturbance in the image that makes the focal point of the 

infected area in the image unfocused. For the average accuracy 

of each model, the average accuracy is summarized using 

weighted average and illustrated on Table 5. 

Table 5. Weighted average performance of each model 

Models 

Weighted Average 

Workstation Mobile Device 

Pre-

cision 

Re-

call 

F1-

Score 

Pre-

cision 

Re-

call 

F1-

Score 

Efficient-

NetB0 
0.90 0.91 0.90 0.89 0.89 0.89 

Mobile-

NetV3 
0.91 0.90 0.90 0.90 0.89 0.89 

Mason 

model 
0.91 0.91 0.91 0.90 0.91 0.90 

Shuffle-

NetV2 
0.84 0.84 0.84 0.84 0.84 0.83 

The four models, which have the highest validation 

accuracy, were converted into Tensorflow-lite (TF-lite) 

models. Then, each TF-lite model was tested with a testing 

dataset to measure the accuracy of each model. The 

comparation of the testing accuracy of each model between on 

the workstation and the mobile device is illustrated in Table 6. 
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Table 6. Summary of testing accuracy of tiny version of each 

model 

Models 
Testing Accuracy 

Workstation Mobile Device 

EfficientNet B0 91.00 88.75 

MobileNet V3 90.45 88.83 

Mason model 91.00 90.54 

ShuffleNet V2 85.00 83.52 

Table 6 shows that EfficientNetB0 and Mason model has 

the same testing accuracy on the workstation with 90%. 

Besides that, Mason model is slightly higher of testing 

accuracy than MobileNetV3 and EfficientNetB0 on the mobile 

device.  

4.2 Experimental results on the resource requirements 

The experiment for evaluating resource requirements start 

with measure the output file size of each model. The best 

model on workstation was converted to Tensorflow-lite 

version and optimized using float16 quantization. The size of 

each model between the mobile device and the workstation is 

shown in Table 7.  

Table 7. Summary of file size of each model 

Models 
Output File (MB) 

Workstation Mobile Device 

EfficientNet B0 20.40 16.08 

MobileNet V3 20.20 16.85 

Mason model 1.64 0.85 

ShuffleNet V2 16.77 15.89 

Table 7 shows that Mason model achieved the lowest file 

size in Tensorflow-lite version, meanwhile, ShuffleNetV2 has 

around four MB lower than other three models. The lowest file 

size of Mason TF-lite model could be happened because the 

model has a simple architecture that generates small 

parameters. Meanwhile, the float16 quantization can 

optimized output file size one to four megabytes from 

workstation to the mobile device without a significant 

accuracy decreased. 

Table 8. Resource requirement of each model 

Resource 

Consump-

tion 

Models 

EfficientNet

B0 
MobileNetV3 

Mason 

model 

Shuffle-

NetV2 

CPU Load 

Peak (%) 
31.90 31.50 20.30 18.50 

Memory Peak 

(MB) 
214.11 202.07 229.35 178.99 

Detection 

Speed Average 

(ms) 

181.67 60.31 184.63 173.69 

Energy 

Reduction / 

hour (%) 

3.91 3.63 4.79 4.28 

Battery Usage 

(%) 
0.56 0.49 0.54 0.69 

Battery Usage 

(mAh) 
26.73 23.94 26.25 28.56 

The other experiment results on the mobile device through 

an application were demonstrated in ten repetitions of 158 

images which the images were picked randomly from testing 

dataset and predicted one by one. This experiment generated 

resource consumption that consists of CPU, memory, 

detection speed, and battery. The experimental results are 

illustrated in Table 8.  

The results in Table 8 show that overall, MobileNetV3 is 

the lowest in all resource consumption object except CPU load 

peak and memory peak compared to the other three models. In 

the detail of experiments, the model which has the lowest CPU 

load was ShuffleNetV2 with 18.5% followed by Mason model 

of 20.3%, MobileNetV3 of 31.5%, and EfficientNetB0 of 

31.9%.  

While the highest memory peak, Mason model achieved 

229.35 MB, followed by EfficientNetB0 with 214.11 MB, 

MobileNetV3 at 202.07 MB, and ShuffleNetV2 at 178.99 MB. 

On average speed while predicting plant diseases, 

MobileNetV3 was the fastest speed of 60.31ms with 

ShuffleNetV2 of 173.69ms, EfficientNetB0 of 181.67ms, and 

Mason model of 184.63. 

Energy reduction per hour was the percentage decrease of 

battery capacity. Battery usage was the amount of battery 

when using an application. The lowest energy reduction when 

evaluated the models has been achieved by MobileNetV3 of 

3.63%, followed by EfficientNetB0 with 3.91%, 

ShuffleNetV2 with 4.28%, and Mason model with 4.79%. 

Meanwhile, the lowest battery usage has been accomplished 

by MobileNetV3 with 0.56% or 23.94 mAh, Mason model 

with 0.54% or 26.25 mAh, EfficientNetB0 with 0.56% or 

26.73 mAh, and ShuffleNetV2 with 0.69% or 28.56 mAh. 

5. CONCLUSION AND FUTURE WORK

This research has evaluated four lightweight models with 

the transfer learning method which allows the training and 

validation process to be run on a workstation with low 

computational costs and has relatively standard specifications. 

Based on the training and validation process, it can be 

concluded that EfficientNetB0 takes slightly longer with 

different one to eleven epochs with the assumption that one 

epoch takes three and a half hours compared to the other three 

models. Meanwhile, the output files after converted to 

Tensorflow-lite version using Float16 quantization for mobile 

devices showed that each model has a size decreased around 

one to four megabytes where the Mason model produces the 

smallest output file with under one megabyte.  

In comparing the accuracy performance of each model on 

workstations and mobile devices, there is a decrease in 

accuracy in some specific classes and poor accuracy 

performance in some specific classes such as coffee plant and 

pear plant classes. Meanwhile, EfficientNetB0, MobileNetV3, 

and Mason models get almost the same and high testing 

accuracy from both workstations and mobile devices along 

with low loss. However, Mason model is still higher in 

accuracy than EfficientNetB0 and MobileNetV3 for mobile 

devices.  

Besides that, in the training and validation process, there are 

indications of overfitting obtained in each model, but three of 

the four models can still be used, namely EfficienetNetB0, 

MobileNetV3, and Mason model if the overfitting tolerance 

limit set in this study is seven percent.  

On the resource requirements, Mason model requires 

slightly higher resource consumption than MobileNetV3 

which consumes the least detection time and battery, and 

ShuffleNetV2 which consumes the least CPU load and 

memory.  
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Based on the experimental design and research results, the 

authors conclude that the Mason model is the most 

recommended model to be implemented on mobile devices for 

building robust identification system with many variants of 

plant diseases with the advantages of high accuracy, low 

resource requirements, and small output file size. 

For the future work, the models in this study still need to be 

improved in order to reduce the tolerance overfitting 

percentage if required around one to two percents by adding 

datasets with live capture of plant diseases with advanced 

preprocessing to focus the detail of main spot of the disease 

and also these model in this study can be used for another 

datasets to prove.   
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