
Evaluation of CNN Models in Identifying Plant Diseases on a Mobile Device

Teddy Aristan , Gede Putra Kusuma*

Computer Science Department, BINUS Graduate Program - Master of Computer Science, Bina Nusantara University, Jakarta

11480, Indonesia

Corresponding Author Email: inegara@binus.edu

https://doi.org/10.18280/ria.370221 ABSTRACT

Received: 17 February 2023

Accepted: 25 March 2023

Farmers in rural areas with limitation of internet connectivity can be made possible for early

plant diseases detection by using optimization of mobile devices which implemented an

application based on Convolutional Neural Network (CNN) because of the computational

efficiency. The researchers used a dataset containing 79 different classes of plant which

was merged from several public domain datasets, which was evaluated and compared using

four CNN models, consisting of MobileNetV3, EfficientNetB0, Mason model, and

ShuffleNetV2. The experiment results showed that Mason model has a highest accuracy of

90.54% and the smallest output file of 0.85MB, MobileNetV3 88.83% with 16.85MB,

EfficientNetB0 88.75% with 16.08MB, and ShuffleNetV2 83.52% with 15.89MB, which

the four models have a slight accuracy decrease on both workstation and mobile devices.

However, on resource consumption overall, MobileNetV3 consumed less than the others

model, even though the value hasn’t a huge difference of several points. It can be concluded

that Mason model is the most suitable model to be implemented on mobile devices because

of accuracy and low resource consumption.

Keywords:

Convolutional Neural Network, plant

diseases classification, mobile device, low

compute device, resource requirement

evaluation

1. INTRODUCTION

Plant diseases are one of the utmost threats to crop

production and expansion. Plant diseases can hamper the

target of agricultural production every year where about 85%

are caused by fungi or fungus-like organisms. The repeated

failure to meet production targets can cause food insecurity for

a country and even the world.

Using pesticides and insecticides could give a short solution

but it is not helpful for long-term. Therefore, early detection

and identification for plant diseases is one of best options in

minimizing the damage level of plants. This option can be used

because symptoms of plant diseases can mostly be identified

on the leaves, such as chlorosis (the yellowing or lightening of

the green parts of plants) and curl (rolling, cupping, or

puckering of leaves).

For the farmers, who lack knowledge of plant diseases, will

call the experts to help them identify plant diseases. In most

cases, the experts need to use a microscope for carrying out in-

depth analysis or need to convert the sample into

electromagnetic spectrum. However, this method tends to be

time-consuming and expensive, even while the experts are far

away from the farmers or laboratory assistance required to

diagnose the diseases.

The new technology appeared over the past few years like

computer vision can be an alternative way to solve the

limitations of traditional methods. The recent applications of

computer vision through deep learning have made enormous

advances in various studies, such as object segmentation,

object recognition, image segmentation, and image

classification. Furthermore, deep learning is not limited to

being implemented on Personal Computer (PC), the others can

be synchronized with mobile devices. Mobile devices have

significantly increased usage during covid-19 pandemic,

where people unwillingly work and study from home, or need

to scan entries ticket via QR code if want to enter public places

even apartments. These uncommon activities during the

pandemic contribute to changing the perspective of mobile

devices usage as an intermediary medium. This opportunity

shown from mobile devices can be one of the potentially good

mediums to reach farmers in rural areas.

However, some rural and plantation areas in Indonesia still

not have enough internet connections support. Therefore,

building a plant diseases diagnosis system with limited

internet connectivity through a mobile application can be very

helpful for farmers.

The system is expected to be able to identify diseases from

leaf images and to provide accurate and quick labeling of a

plant disease. The mechanism of identification refers to the

similarity between the diseases on pictures of plants with

actual plant disease by using deep learning algorithms.

Deep learning algorithms work using several layers of

neural network algorithms to process data and create patterns

in decision making automatically. The subset of deep learning

algorithms is Convolution Neural Network (CNN) which is

currently one of machine learning popular methods for solving

image classification problems. There have been a lot of studies

that use CNN in classifying plant diseases, as have been done

by Jadhav et al. [1] that achieve accuracy rate of 96.25% by

implementing AlexNet with some modifications in

hyperparameters using 650 disease and 550 healthy soybean

images. Upadhyay and Kumar [2] reached identification

accuracy of 99.7%, using simple layers of CNN including

batch normalization layer, one fully connected, and softmax

layer with Rice Leaf Image dataset. Then, Sembiring et al. [3]

classify ten tomato leaf diseases from PlantVillage Dataset and

Revue d'Intelligence Artificielle
Vol. 37, No. 2, April, 2023, pp. 441-449

Journal homepage: http://iieta.org/journals/ria

441

https://orcid.org/0009-0008-7099-1889
https://orcid.org/0000-0003-4241-997X
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.370221&domain=pdf

achieve the accuracy rate of 98.28%. Two versions of

PlantVillage dataset (Augmented and Original) were

evaluated by Atila et al. [4] by using several different CNN

models, the highest accuracy of each version dataset,

EfficientNet-B4 at 99.97% and EfficientNet-B5 at 99.91%

respectively. Then, Liu et al. [5] achieved identification

accuracy of 97.22% from DICNN model using 107,366

images of augmented 7,669 grape leaf images which are

generated via image enhancement technique.

Based on previous research, there are only two studies that

focus on the application of deep learning techniques to be used

on mobile devices, specifically the research of plant disease

classification. In 2019, Syamsuri and Kusuma [6] evaluate

several pre-trained deep learning Convolutional Neural

Network (CNN) on mobile devices, MobileNet reached

accuracy of 92.83%, followed by MNasNet at 94.87%, and

Inception V3 at 95.79%. Then, Bimorogo and Kusuma [7]

expands the previous research by adding two classes of coffee

plants and four classes of rice plants by using MobileNet V2

that achieve accuracy of 96.55%, then NasNet Mobile at

97,31%, DenseNet 121 layer at 96.21%, and Inception V3 at

98,45%. Both studies can achieve high accuracy and can be

said to be almost perfect. However, the use of the PlantVillage

dataset as the main dataset on both studies has drawbacks

where [8] shows a decrease in accuracy by ten to twenty

percent when tested with images of different lighting

conditions. From the background above, there is a motivation

to build a system that has the ability to recognize many

variants of diseases with good accuracy performance and

resource requirements in helping farmers in rural areas who

are still difficult to reach by a fast internet network.

In this research, the authors use CNN model that has fewer

parameters and has been demonstrated to be highly accurate

on a certain disease dataset, namely Mason model [9], which

compared to another less parameters CNN models that have

been proven to be highly accurate on ImageNet dataset such

as MobileNetV3 [10], ShuffleNetV2 [11], and EfficientNetB0

[12]. The motivation of using less parameters models is to

reduce computation cost and require less resources.

Furthermore, this research extends more plant disease

classes which consisted of 104,282 images from 21 kind of

plants, in order to enrich the variation of dataset and build

robust identification system with more variation of plant

diseases.

The evaluation design in this research is carried out in two

parts, namely on the workstation which is to find the best

model performance based on its loss and then it is tested on a

mobile device to evaluate the required resource requirements,

namely file size, memory, CPU, detection speed, and power

consumption. The evaluation results show that the Mason

model shows better performance results compared to other

models even though still needs some minor improvement in

the future.

This paper is organized as follows. Section 2 presents the

related work to the detection of plant diseases. Section 3 shows

the experimental design method by mentioning merged

datasets detail and illustrating workflow experimental on

workstation and a mobile device. Section 4 discusses the

experimental results on workstation and mobile devices which

are displayed in table form and has an explanation. Section 5

shows the conclusion of the experimental results that have

been carried out.

2. RELATED WORK

In their research [1], they used AlexNet and GoogleNet for

identifying soybean leaf diseases including healthy soybean

with five-fold cross-validation and transfer learning. The

result of this study shows AlexNet achieved the higher

accuracy rate of 98.75% using 1199 images taken in Kolhapur

district, India.

Research by Upadhyay and Kumar [2] proposed simple

CNN architecture for classifying rice leaf diseases in India

using 4000 images taken by the authors. Then, the dataset was

preprocessed using several methods such as resizing,

removing noise, and cropping. The accuracy achieved using

the proposed architecture was 99.7%.

Sembiring et al. [3] compared several CNN models to

identify tomato leaf diseases using ten classes of PlantVillage

dataset. The authors evaluated the proposed model, VGG16,

ShuffleNet, and SqueezeNet with fine tuning, learning rate

0.0003 and sgdm optimization. VGG16 obtained the best

accuracy score of 98.28%. However, the proposed model has

achieved an accuracy score of 97.15% and faster in training

time of around one hour than VGG16 by around five hours.

Other research that used several CNN models has been done

by Atila et al. [4]. AlexNet, ResNet50, VGG16, InceptionV3,

and EfficientNet B0-B7 were carried out using two versions of

the PlantVillage dataset, original and augmented. The models

trained either adam optimizer with learning rate 0.001 or sgd

optimizer with learning rate 0.01. The architecture of the

EfficientNet B5 achieved a success rate of 99.91% for the

original version and EfficientNet B4 at 99.97% for the

augmented version.

In the research conducted by Liu et al. [5], they proposed

Dense Inception Convolutional Neural Networks (DICNN) to

classify six grape leaf diseases and healthy grape. Using

107,336 images after implementing several augmentation

techniques implemented to enumerate number of images. This

study also compared another different algorithm such as back-

propagation, SVM, VGG16, VGG19, GoogLeNet, ResNet34,

and DenseNet169. With learning rate 0.001, DICNN was

superior in accuracy rate of 97.22% than other algorithms.

There are more than these studies mentioned above that the

research using CNN deep learning on plant disease detection

even almost achieved perfection accuracy. However, only two

studies that evaluated explicitly run CNN deep learning on

mobile devices. The first, the research was conducted by

Syamsuri and Kusuma [6] that focus classify coffee plants

diseases, three CNN models (InceptionV3, MobileNet, and

MNasNet) achieved classification accuracy of 95.79%,

92.83%, and 94.87% respectively on mobile devices. For the

time latency, MobileNet was the lowest with 394.70 ms,

followed by MNasNet at 430.20 ms, and InceptionV3 at

2236.10 ms. The models were trained using PlantVillage

dataset which extended to coffee leaf. The second, Bimorogo

and Kusuma [7] compared four CNN models that consist of

MobileNet V2, NasNet Mobile, DenseNet 121 layer, and

Inception V3 using PlantVillage dataset which extended to

two classes of coffee plants and four classes of rice plants. The

experiments showed that Inception V3 was the most stable

model with highest accuracy of 98.45%, followed by NasNet

Mobile at 97.31%, MobileNet V2 at 96.55%, and DenseNet

121 layer at 96.21%. Although Inception V3 was the most

stable, it consumes a lot of resources.

442

These two studies can obtain high and almost perfect

accuracy but the use of the PlantVillage dataset as the main

dataset can decrease in accuracy when tested with images that

have outdoor lighting conditions. In addition, the

recommended models in these two studies still have a large

number of parameters and resource requirements and to be

more efficient and effective for farmers who have mobile

devices with low specifications.

Furthermore, this research used the CNN model (Mason

model) [9], which have fewer parameters and have been

demonstrated to be highly accurate on certain diseases dataset,

to be compared with with another fewer parameters CNN

models (MobileNetV3 [10], ShuffleNetV2 [11], and

EfficientNetB0 [12]), which has been proven to be highly

accurate on ImageNet dataset. This study also expanded the

dataset that was used on Syamsuri and Kusuma [6] and

Bimorogo and Kusuma [7] with other public plant disease

datasets in order to enrich the variation of datasets and build a

robust identification system of many variations of plant

diseases.

3. METHODOLOGY

3.1 Dataset

Several sources of datasets were used in this research, these

are The PlantVillage dataset that collected by Hughes and

Salathé [13], with extended cassava leaf disease that used in

competition held by Makerere University AI Lab [14], Plant

Pathology dataset that was the dataset of Plant Pathology 2020

Challenge [15], a robusta coffee leaf images called RoCole

dataset [16], then an apple scab dataset collected by Institute

of Hulticulture [17], bean disease dataset from public domain,

PlantDoc dataset [18], corn leaf disease dataset [19], cotton

leaf disease dataset [20], DiaMOS plant dataset which contains

four pear leaf disease [21], some disease species from

Digipathos dataset [22] that have more than 20 images, rice

leaf diseases dataset that gathered from a farming community

[23], citrus leaf diseases dataset [24], cassava leaf diseases

dataset [25], bean diseases dataset [26], and some manual

searching for two classes, rice gray leaf spot and rice healthy.

Total images were 104,282 images consisting of 21 plant

species in 79 different classes with 19 healthy plants and 60

combinations of diseased plants. Next, the authors removed

some background images from the datasets which have like

the other and renamed properly all the images file after the

dataset merged. The detail of the dataset is mentioned in Table

1.

Then, the dataset will be separated into three parts datasets,

training, validation, and testing, using stratified random

sampling with composition 60% (62,568 images), 20%

(20,857 images), and 20% (20,857 images) respectively. Due

to the manual image picking process in mobile, the testing data

would be 158 images for testing on mobile devices and uses

all of testing data for evaluating TFlite models’ accuracy on

PC.

Table 1. Merged Dataset

No Class Name Train Val. Test

1 Apple Complex 1291 430 430

2 Apple Frog Eye Leaf Spot 1909 636 636

3 Apple Powdery Mildew 710 237 237

4 Apple Scab 967 323 323

Continue Table 1

No Class Name Train Val. Test

5 Apple Black Rot 373 124 124

6 Apple Rust 165 55 55

7 Apple Healthy 1111 371 370

8 Bean Angular Leaf Spot 490 163 163

9 Bean Healthy 487 162 162

10 Bean Rust 482 161 161

11 Blueberry Healthy 901 301 300

12 Cassava Bacterial Blight 931 311 311

13 Cassava Brown Streak 2179 726 727

14 Cassava Green Mottle 1895 632 632

15 Cassava Healthy 1735 579 579

16 Cassava Mosaic 9490 3163 3163

17 Cherry Healthy 511 171 171

18 Cherry Powdery Mildew 631 211 210

19 Coffee Healthy 475 158 158

20 Coffee Red Spider Mite 100 34 33

21 Coffee Rust level 1 232 78 78

22 Coffee Rust level 2 100 33 33

23 Coffee Rust level 3 38 12 12

24 Coffee Rust level 4 18 6 6

25 Corn Northern Leaf Blight 1279 426 426

26 Corn Gray Leaf Blight 652 218 217

27 Corn Common Rust 1498 500 500

28 Corn Healthy 775 258 258

29 Cotton Bacterial Blight 268 90 90

30 Cotton Curl Virus 250 84 84

31 Cotton Fussarium Wilt 251 85 85

32 Cotton Healthy 256 85 85

33 Grape Black Rot 708 236 236

34 Grape Esca 829 277 277

35 Grape Healthy 253 85 85

36 Grape Leaf Blight 646 215 215

37 Orange Citrus Black Spot 103 34 34

38 Orange Citrus Canker 98 32 33

39 Orange Citrus Healthy 35 11 12

40 Orange Citrus Greening 3427 1142 1142

41 Peach Healthy 1517 506 506

42 Peach Bacterial Spot 1378 460 459

43 Pear Curl 32 11 11

44 Pear Healthy 26 8 9

45 Pear Slug 1215 405 405

46 Pear Spot 530 177 177

47 Pepper Bell Bacterial Spot 598 200 199

48 Pepper Bell Healthy 886 295 295

49 Potato Early Blight 600 200 200

50 Potato Healthy 92 30 30

51 Potato Late Blight 600 200 200

52 Raspberry Healthy 223 74 74

53 Rice Bacterial Leaf Blight 27 9 9

54 Rice Brown Spot 30 10 10

55 Rice Gray Leaf Spot 14 4 5

56 Rice Healthy 14 4 5

57 Rice Leaf Smut 24 8 8

58 Soybean Bacterial Blight 34 11 11

59 Soybean Brown Spot 20 6 7

60 Soybean Copper Phytotoxicity 14 4 5

61 Soybean Downy Mildew 20 6 6

62 Soybean Mosaic 14 4 4

63 Soybean Powdery Mildew 47 15 15

64 Soybean Rust 39 13 13

65 Soybean Southern Blight 38 12 12

66 Soybean Healthy 3053 1-18 1018

67 Squash Powdery Mildew 1101 367 367

68 Strawberry Healthy 274 91 91

69 Strawberry Leaf Scorch 665 222 222

70 Tomato Bacterial Spot 1276 425 425

71 Tomato Early Blight 600 200 200

72 Tomato Healthy 954 318 318

73 Tomato Late Blight 1145 382 382

443

Continue Table 1

No Class Name Train Val. Test

74 Tomato Leaf Mold 571 191 190

75 Tomato Septoria Leaf Spot 1063 354 354

76 Tomato Two-Spotted Spider Mite 1006 335 335

77 Tomato Target Spot 842 281 281

78 Tomato Mosaic 223 75 75

79 Tomato Curl 3214 1071 1072

Total 62568 20857 20857

3.2 CNN models

This research implemented transfer learning method to the

CNN models. Transfer learning works by gained the weight of

pre-trained CNN models before on a large-scale and general

dataset, namely ImageNet. So, the CNN models can learn

basic knowledge from existing models instead of starting from

scratch each time. However, the authors cannot find two saved

weights of transfer learning on ImageNet for ShuffleNetV2

and Mason model. The alternative, both models will be trained

first using merged dataset with 20 epochs without early

stopping using learning rate SGD 0.001 and Adam 0.001

respectively.

This work also fine-tuned the last ten layers of each model.

By fine tuning, the information from transfer learning is not

lost at all when the model to be retrained. For the final layers,

each model used two fully connected layers (FCs) with relu

activation function that has nodes same as the number of

classes including a softmax layer.

3.2.1 Mason model

Mason model is popularized by Masud et al. [9] which has

less parameters around 200 thousand. This model is supported

by four convolution layers, a Global Average Pooling (GAP),

two Fully Connected (FC), and a softmax output layer. Each

convolution block has 3 x 3 rectified linear units (ReLUs), a

connected convolution block 1 x 1 with ReLu and a max

pooling block.

Zero padding is implemented before reaching convolution

block for keeping the size of each convolution block. Mini-

batch normalization is also used for accelerating the training.

Then, in the middle of convolution block and max pooling,

there is convolution block connector.

This model was able to obtain prediction accuracy of 97.9%

in pulmonary nodule detection using CT Scan images of Lung

Image Database Consortium (LIDC) dataset on mobile devices.

3.2.2 MobileNetV3

MobileNetV3 is a next generation model from its

predecessor MobileNetV2 which was made to enhance

computation efficiency, accuracy, and latency reduction. This

model was made by combination of MobileNetV2 and

MNasNet as building blocks.

In the new architecture proposed, there includes non-

linearity, h-swish, and new version of swish non-linearity for

enlarging friendly computation and quantization. In addition,

the new design of MobileNetV3 switched the final layer in

MobileNetV2 design to after final average pooling position, so

the final layer will only count 1 x 1 spatial resolution.

Overall, MobileNetV3 has two versions that consists of

MobileNetV3-Large and MobileNetV3-Small. This work used

the large one which still has less parameters and good accuracy

at [10].

3.2.3 ShuffleNetV2

ShuffleNet V2 is the second edition of ShuffleNet which

proposed channel split concept and switching channel shuffle

to bottom block [11]. This concept is designed to reduce the

cost of pointwise group convolutions and bottleneck structure.

Overall, the performance of the model from its authors shown

58% faster from MobileNet V2 and 63% faster from

ShuffleNet V1.

3.2.4 EfficientNet B0

EfficientNet B0 is a sub-model of EfficientNet group which

was introduced by Tan and Le [12]. The baseline of this model

was built from a combination of MobileNet and ResNet. The

compound scaling approach was proposed to scale up

calculation stability of dimension, width, and resolution depth.

By this approach, the layers can be stretched up or down

automatically in getting receptive field and fine-grained based

on the input images.

3.3 Evaluation

The research was divided into two versions of

implementation, those consist of experiments on workstation

and experiments on a mobile device. In the experiments of

workstation, mainly, the authors implement pre-trained CNN

models with two hyperparameter (Adam and SGD) and

learning rate (0.01 and 0.001) to find the best accuracy on PC.

Then, in the experiments on a mobile device, primarily, the

authors chose the four best models to be tested on a mobile

device.

3.3.1 Experiments on a workstation

The experiments process supported by TensorFlow V2,

TensorFlow-lite deep learning model, Python 3.7, and Visual

Studio Code. The workflow in the experiments on workstation

is illustrated by a flowchart that is shown in Figure 1.

Figure 1. Experiments process chart on workstation

The CNN model that has been trained was chosen based on

the highest validation accuracy rate. Then, each model was

saved in disk using “model.save()” function from TensorFlow.

The experiments were carried out on a workstation which has

the specifications that are shown in Table 2.

444

Table 2. The workstation specification

No Hardware Specification

1 Memory 16GB

2 Processor
Intel®Core™ i5-1035G1 @ 1.00GHz

(8 CPUs)

3 GPU NVIDIA GeForce MX250

4
Operating

System
Windows 10 Home 64-bit (19044)

3.3.2 Experiments on a mobile device

In the beginning, the best trained models that saved by

“model.save()” function was recalled to be converted into

TensorFlow-lite (TFlite) models. The standard of converted

TFlite models have default float32 version. This version

needed to be optimized for reducing the storage size, less

memory usage, and smaller download size without decreasing

the accuracy. This work used float16 quantization because it

provides minimal impact on accuracy and up to 50% model

size reduction [26].

Then, the optimized TFlite models were carried out to

predict the testing data on a workstation. Furthermore, the

mobile application was built as a medium to read the TFlite

models on a mobile device using kotlin language and android

studio.

The experiments process on a mobile device is illustrated by

a flowchart which is depicted in Figure 2.

Figure 2. Experiments chart on a mobile device

The application was used to evaluate model CNN on a

mobile device illustrated in Figure 3.

There were ten repetitions to be tested on a mobile device

for evaluating the resource requirements which consist of CPU,

memory, and power consumption. The mobile battery was

fully charged, on airplane mode, and restarted on every

repetition to get the baseline and to ensure no other application

are running. The numeric output data from the AccuBattery

application, application to count resource requirements, during

the testing on a mobile device was noted into excel. The

experiments were carried out on a mobile device which has the

specifications that are shown in Table 3.

Figure 3. Mobile application prototype

Table 3. The mobile device specification

No Hardware Specification

1 Memory 8GB

2 Processor Qualcomm®Snapdragon™ 720G

3 Battery Capacity 4000mAh

4 Operating System Funtouch OS 11.1

4. RESULTS AND DISCUSSION

4.1 Experimental results on the model performance

The first experiment on the workstation was done in Jupyter

notebook by running a script program that was distinguished

on each model. The training and validation performance of

each model trained was illustrated graphically in Figure 4 for

training and validation loss and Figure 5 for training and

validation accuracy.

Figure 4. Training and Validation loss of each model

445

Figure 4 showed that MobileNetV3 has achieved the lowest

training loss of 0.097 in epoch 15, followed by ShuffleNetV2

with the training loss of 0.098, Mason model of 0.103, and

EfficientNetB0 of 0.171. Meanwhile, EfficientNetB0 has

achieved the lowest validation loss of 0.284 in epoch 16,

followed by Mason model of 0.301, MobileNetV3 of 0.328,

and ShuffleNetV2 of 0.951.

Figure 5. Training and Validation accuracy of each model

Figure 5 shows that the training and validation process of

EfficientNet B0 stops at epoch 16 with the accuracy value of

0.9390 or 93.90% and a validation accuracy value of 0.9008

or 90.08%. While the training and validation process of

MobileNet V3 stops at epoch 15 with an accuracy rate of

0.9655 or 96.55% and a validation rate of 0.9010 or 90.10%.

Then, Mason model achieved an accuracy value of 0.9644

or 96.44% and a validation value of 0.9108 or 91.08% at epoch

9. The last model, ShuffleNet V2 achieved an accuracy value

of 0.9671 or 96.71% and a validation value of 0.8503 or 85.03%

at epoch 5.

However, in these training and validation processes, the

Mason model which has the fewest parameters is leading on

the accuracy performance compared to other models. Then,

overall, in the training and validation process, there is an

indication of overfitting in the results obtained. However,

when a maximum overfitting tolerance limit of seven percent

is set, there are three out of four models that are not overfitting,

namely EfficientNetB0, MobileNetV3, and Mason model.

The summary of hyperparameters used on each model

which help to achieve the lowest validation loss is summarized

in Table 4.

Table 4. Hyperparameters summary

Models Optimizers Learning rate

EfficientNetB0 SGD 0.01

MobileNetV3 SGD 0.01

Mason model SGD 0.001

ShuffleNetV2 SGD 0.001

Table 4 shows that SGD optimizer gave better accuracy

value of four models than Adam optimizer and both learning

rates have equal percentage on this experiment. From this best

specification, each model is converted to Tensorflow-lite

version and optimized with float16 quantization in order to suit

to the mobile device application.

Another experimental result is the accuracy per class that

the model gets when tested on workstations and mobile

devices. the configuration on workstations and mobile devices

is slightly different due to the different programming

languages used between workstations (python) and mobile

devices (kotlin). However, the author tries to form the

configuration as similar as possible between the two devices.

The experimental results showed that Mason model has a

slight decrease in accuracy on the mobile device, such as apple

powdery mildew, bean angular leaf spot, bean rust, cassava

green mottle, coffee rust level 1, grape leaf blight, and soybean

mosaic. Meanwhile, the slight increase in accuracy such as

grape healthy and soybean southern blight. For the bad

performance of classes or achieve null percentage such as rice

gray leaf spot, rice healthy, soybean brown spot, and soybean

mosaic.

Another model, EfficientNetB0 experienced a significant

accuracy degradation on the mobile device such as pear curl

and pear healthy. For the very poor performance of classes

such as cassava green mottle, coffee red spider mite, coffee

rust level 1-4, pear curl, pear healthy.

MobileNetV3 has a slight accuracy degradation on the

mobile device such as soybean rust and soybean southern

blight. Otherwise, the very poor performance of classes such

as cassava bacterial blight, cassava green mottle, cassava

healthy, coffee red spider mite, coffee rust level 1-4, rice gray

leaf spot, soybean copper phytotoxicity, and soybean downy

mildew.

ShuffleNetV2 has many classes which achieved very poor

performance, consists of cassava bacterial blight, cassava

green mottle, cassava healthy, coffee red spider mite, coffee

rust level 1-4, cotton bacterial blight, pear curl, pear healthy,

rice brown spot, rice gray leaf spot, rice healthy, rice leaf smut,

soybean brown spot, soybean copper phytotoxicity, soybean

downy mildew, and soybean mosaic. However, there two

classes of soybean powdery mildew and soybean southern

blight have a slight accuracy increase from workstation into

mobile.

There are some of the same classes that cannot be identified

by the four models in this study such as the class of coffee

plants and rice plants. This can be due to the background or

disturbance in the image that makes the focal point of the

infected area in the image unfocused. For the average accuracy

of each model, the average accuracy is summarized using

weighted average and illustrated on Table 5.

Table 5. Weighted average performance of each model

Models

Weighted Average

Workstation Mobile Device

Pre-

cision

Re-

call

F1-

Score

Pre-

cision

Re-

call

F1-

Score

Efficient-

NetB0
0.90 0.91 0.90 0.89 0.89 0.89

Mobile-

NetV3
0.91 0.90 0.90 0.90 0.89 0.89

Mason

model
0.91 0.91 0.91 0.90 0.91 0.90

Shuffle-

NetV2
0.84 0.84 0.84 0.84 0.84 0.83

The four models, which have the highest validation

accuracy, were converted into Tensorflow-lite (TF-lite)

models. Then, each TF-lite model was tested with a testing

dataset to measure the accuracy of each model. The

comparation of the testing accuracy of each model between on

the workstation and the mobile device is illustrated in Table 6.

446

Table 6. Summary of testing accuracy of tiny version of each

model

Models
Testing Accuracy

Workstation Mobile Device

EfficientNet B0 91.00 88.75

MobileNet V3 90.45 88.83

Mason model 91.00 90.54

ShuffleNet V2 85.00 83.52

Table 6 shows that EfficientNetB0 and Mason model has

the same testing accuracy on the workstation with 90%.

Besides that, Mason model is slightly higher of testing

accuracy than MobileNetV3 and EfficientNetB0 on the mobile

device.

4.2 Experimental results on the resource requirements

The experiment for evaluating resource requirements start

with measure the output file size of each model. The best

model on workstation was converted to Tensorflow-lite

version and optimized using float16 quantization. The size of

each model between the mobile device and the workstation is

shown in Table 7.

Table 7. Summary of file size of each model

Models
Output File (MB)

Workstation Mobile Device

EfficientNet B0 20.40 16.08

MobileNet V3 20.20 16.85

Mason model 1.64 0.85

ShuffleNet V2 16.77 15.89

Table 7 shows that Mason model achieved the lowest file

size in Tensorflow-lite version, meanwhile, ShuffleNetV2 has

around four MB lower than other three models. The lowest file

size of Mason TF-lite model could be happened because the

model has a simple architecture that generates small

parameters. Meanwhile, the float16 quantization can

optimized output file size one to four megabytes from

workstation to the mobile device without a significant

accuracy decreased.

Table 8. Resource requirement of each model

Resource

Consump-

tion

Models

EfficientNet

B0
MobileNetV3

Mason

model

Shuffle-

NetV2

CPU Load

Peak (%)
31.90 31.50 20.30 18.50

Memory Peak

(MB)
214.11 202.07 229.35 178.99

Detection

Speed Average

(ms)

181.67 60.31 184.63 173.69

Energy

Reduction /

hour (%)

3.91 3.63 4.79 4.28

Battery Usage

(%)
0.56 0.49 0.54 0.69

Battery Usage

(mAh)
26.73 23.94 26.25 28.56

The other experiment results on the mobile device through

an application were demonstrated in ten repetitions of 158

images which the images were picked randomly from testing

dataset and predicted one by one. This experiment generated

resource consumption that consists of CPU, memory,

detection speed, and battery. The experimental results are

illustrated in Table 8.

The results in Table 8 show that overall, MobileNetV3 is

the lowest in all resource consumption object except CPU load

peak and memory peak compared to the other three models. In

the detail of experiments, the model which has the lowest CPU

load was ShuffleNetV2 with 18.5% followed by Mason model

of 20.3%, MobileNetV3 of 31.5%, and EfficientNetB0 of

31.9%.

While the highest memory peak, Mason model achieved

229.35 MB, followed by EfficientNetB0 with 214.11 MB,

MobileNetV3 at 202.07 MB, and ShuffleNetV2 at 178.99 MB.

On average speed while predicting plant diseases,

MobileNetV3 was the fastest speed of 60.31ms with

ShuffleNetV2 of 173.69ms, EfficientNetB0 of 181.67ms, and

Mason model of 184.63.

Energy reduction per hour was the percentage decrease of

battery capacity. Battery usage was the amount of battery

when using an application. The lowest energy reduction when

evaluated the models has been achieved by MobileNetV3 of

3.63%, followed by EfficientNetB0 with 3.91%,

ShuffleNetV2 with 4.28%, and Mason model with 4.79%.

Meanwhile, the lowest battery usage has been accomplished

by MobileNetV3 with 0.56% or 23.94 mAh, Mason model

with 0.54% or 26.25 mAh, EfficientNetB0 with 0.56% or

26.73 mAh, and ShuffleNetV2 with 0.69% or 28.56 mAh.

5. CONCLUSION AND FUTURE WORK

This research has evaluated four lightweight models with

the transfer learning method which allows the training and

validation process to be run on a workstation with low

computational costs and has relatively standard specifications.

Based on the training and validation process, it can be

concluded that EfficientNetB0 takes slightly longer with

different one to eleven epochs with the assumption that one

epoch takes three and a half hours compared to the other three

models. Meanwhile, the output files after converted to

Tensorflow-lite version using Float16 quantization for mobile

devices showed that each model has a size decreased around

one to four megabytes where the Mason model produces the

smallest output file with under one megabyte.

In comparing the accuracy performance of each model on

workstations and mobile devices, there is a decrease in

accuracy in some specific classes and poor accuracy

performance in some specific classes such as coffee plant and

pear plant classes. Meanwhile, EfficientNetB0, MobileNetV3,

and Mason models get almost the same and high testing

accuracy from both workstations and mobile devices along

with low loss. However, Mason model is still higher in

accuracy than EfficientNetB0 and MobileNetV3 for mobile

devices.

Besides that, in the training and validation process, there are

indications of overfitting obtained in each model, but three of

the four models can still be used, namely EfficienetNetB0,

MobileNetV3, and Mason model if the overfitting tolerance

limit set in this study is seven percent.

On the resource requirements, Mason model requires

slightly higher resource consumption than MobileNetV3

which consumes the least detection time and battery, and

ShuffleNetV2 which consumes the least CPU load and

memory.

447

Based on the experimental design and research results, the

authors conclude that the Mason model is the most

recommended model to be implemented on mobile devices for

building robust identification system with many variants of

plant diseases with the advantages of high accuracy, low

resource requirements, and small output file size.

For the future work, the models in this study still need to be

improved in order to reduce the tolerance overfitting

percentage if required around one to two percents by adding

datasets with live capture of plant diseases with advanced

preprocessing to focus the detail of main spot of the disease

and also these model in this study can be used for another

datasets to prove.

REFERENCES

[1] Jadhav, S.B., Udupi, V.R., Patil, S.B. (2021).

Identification of plant diseases using convolutional

neural networks. International Journal of Information

Technology (Singapore), 13(6): 2461-2470.

https://doi.org/10.1007/s41870-020-00437-5

[2] Upadhyay, S.K., Kumar, A. (2022). A novel approach for

rice plant diseases classification with deep convolutional

neural network. international journal of Information

Technology (Singapore), 14(1): 185-199.

https://doi.org/10.1007/s41870-021-00817-5

[3] Sembiring, A., Away, Y., Arnia, F., Muharar, R. (2021).

Development of concise convolutional neural network

for tomato plant disease classification based on leaf

images. Journal of Physics: Conference Series, 1845(1).

https://doi.org/10.1088/1742-6596/1845/1/012009

[4] Atila, Ü., Uçar, M., Akyol, K., Uçar, E. (2021). Plant leaf

disease classification using EfficientNet deep learning

model. Ecological Informatics, 61: 101182.

https://doi.org/10.1016/j.ecoinf.2020.101182

[5] Liu, B., Ding, Z., Tian, L., He, D., Li, S., Wang, H.

(2020). Grape leaf disease identification using improved

deep convolutional neural networks. Frontiers in Plant

Science, 11: 1-14.

https://doi.org/10.3389/fpls.2020.01082

[6] Syamsuri, B., Kusuma, G.P. (2019). Plant disease

classification using lite pretrained deep Convolutional

Neural Network on android mobile device. International

Journal of Innovative Technology and Exploring

Engineering, 9(2): 2796-2804.

https://doi.org/10.35940/ijitee.b6647.129219

[7] Bimorogo, S.D., Kusuma, G.P. (2020). A comparative

study of pretrained convolutional neural network model

to identify plant diseases on android mobile device.

International Journal of Advanced Trends in Computer

Science and Engineering, 9(3): 2824-2833.

https://doi.org/10.30534/ijatcse/2020/53932020

[8] Rimon, S.I., Islam, M.R., Dey, A., Das, A. (2022).

PlantBuddy: An android-based mobile application for

plant disease detection using deep Convolutional Neural

Network. Lecture Notes in Electrical Engineering.

Springer Nature Singapore, pp. 275-285.

https://doi.org/10.1007/978-981-16-6448-9_28

[9] Masud, M., Muhammad, G., Hossain, M.S., Alhumyani,

H., Alshamrani, S.S., Cheikhrouhou, O., Ibrahim, S.

(2020). Light deep model for pulmonary nodule

detection from CT scan images for mobile devices.

Wireless Communications and Mobile Computing.

https://doi.org/10.1155/2020/8893494

[10] Howard, A., Wang, W., Sandler, M., Zhu, Y., Chu, G.,

Pang, R., Chen, L., Vasudevan, V., Chen, B., Le, Q.V.,

Tan, M., Adam, H. (2019). Searching for MobileNetV3.

In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pp. 1314-1324.

[11] Ma, N., Zhang, X., Zheng, H.T., Sun, J. (2018).

Shufflenet v2: Practical guidelines for efficient cnn

architecture design. In Proceedings of the European

conference on computer vision (ECCV), pp. 116-131.

[12] Tan, M., Le, Q.V. (2019). EfficientNet: Rethinking

model scaling for convolutional neural networks. In 36th

International Conference on Machine Learning, ICML

2019, 2019-June, pp. 10691-10700.

[13] Hughes, D.P., Salathé, M. (2015). An open access

repository of images on plant health to enable the

development of mobile disease diagnostics. ArXiv

Preprint ArXiv:1511.08060.

https://doi.org/10.48550/arXiv.1511.08060

[14] Makerere University AI Lab. (2021). Cassava Leaf

Disease Classification.

https://www.kaggle.com/competitions/cassava-leaf-

disease-classification.

[15] Thapa, R., Zhang, K., Snavely, N., Belongie, S., Khan,

A. (2020). The plant pathology challenge 2020 data set

to classify foliar disease of apples. Applications in Plant

Sciences, 8(9): e11390.

[16] Parraga-Alava, J., Cusme, K., Loor, A., Santander, E.

(2019). RoCoLe: A robusta coffee leaf images dataset for

evaluation of machine learning based methods in plant

diseases recognition. Data in Brief, 25: 104414.

https://doi.org/10.1016/j.dib.2019.104414

[17] Kodors, S., Lacis, G., Sokolova, O., Zhukovs, V.,

Apeinans, I., Bartulsons, T. (2021). Apple scab detection

using CNN and transfer learning. Agronomy Research,

19(2): 507-519. https://doi.org/10.15159/AR.21.045

[18] Singh, D., Jain, N., Jain, P., Kayal, P., Kumawat, S.,

Batra, N. (2020). PlantDoc: A dataset for visual plant

disease detection. In Proceedings of the 7th ACM IKDD

CoDS and 25th COMAD 2020 Jan 5, New York, United

States, pp. 249-253.

https://doi.org/10.1145/3371158.3371196

[19] Geetharamani, G., Pandian, A. (2019). Identification of

plant leaf diseases using a nine-layer deep Convolutional

Neural Network. Computers & Electrical Engineering,

76: 323-338.

https://doi.org/10.1016/j.compeleceng.2019.04.011

[20] Noon, S.K., Amjad, M., Ali Qureshi, M., Mannan, A.

(2021). Computationally light deep learning framework

to recognize cotton leaf diseases. Journal of Intelligent &

Fuzzy Systems, 40(6): 12383-12398.

https://doi.org/10.3233/JIFS-210516

[21] Fenu, G., Malloci, F.M. (2021). DiaMOS plant: A dataset

for diagnosis and monitoring plant disease. Agronomy,

11(11): 2107.

https://doi.org/10.3390/agronomy11112107

[22] Barbedo, J.G.A., Koenigkan, L.V., Viera, B.A.H, Costa,

R.V., Nechet, K.L., Godoy, C.V., Junior, M.L., Patricio,

F.R.A, Talamini, V., Chitarra, L.G., Oliviera, S.A.S,

Ishida, A.K.N, Fernandes, J.M.C, Santos, T.T.,

Cavalcanti, F.R., Terao, D., Angelotti, F. (2018).

Annotated plant pathology databases for image-based

detection and recognition of diseases. IEEE Latin

448

America Transactions, 16(6): 1749-1757.

https://doi.org/10.1109/TLA.2018.8444395

[23] Prajapati, H.B., Shah, J.P., Dabhi V.K. (2017). Detection

and classification of rice plant diseases. Intelligent

Decision Technologies, 11(3): 357-373.

https://doi.org/10.3233/IDT-170301

[24] Rauf, H.T., Saleem, B.A., Lali, M.I.U., Khan, M.A.,

Sharif, M., Bukhari, S.A.C. (2019). A citrus fruits and

leaves dataset for detection and classification of citrus

diseases through machine learning. Data in brief, 26:

104340. https://doi.org/10.1016/j.dib.2019.104340

[25] Makerere University AI Lab. (2019). Cassava Leaf

Disease Classification. Can be accessed in

https://www.kaggle.com/competitions/cassava-

disease/overview.

[26] Mugalu, B.W., Nakatumba-Nabende, J., Katumba, A.,

Babirye, C., Tusubira, F.J., Mutebi, C., Nsumba, S.,

Namanya, G. (2022). Makerere University Beans Image

Dataset.

https://www.kaggle.com/datasets/therealoise/bean-

disease-dataset.

449

