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California bearing ratio (CBR) is an indispensable parameter in the design of road 

pavement, repeated carrying out of this test has been chiefly monotonous and time wasting, 

also the use of cement as stabilizer has also been increasingly expensive, hence, the need 

for admixing with agrowaste ash such as rice husk ash (RHA). This research is carried out 

for the prediction of the CBR of lateritic soil admixed with cement and RHA by means of 

an artificial neural network (ANN). Six parameters are selected as input variables to obtain 

results that are accurate and precise. The six input variables are cement, RHA, liquid limit, 

plasticity index, maximum dry density and optimum moisture content, while CBR 

Unsoaked and CBR Soaked are the output variables. The study consists of a database of 

1288 samples obtained from laboratory experiments which were subdivided into 70% for 

training, 15% for testing, and 15% for validation. The training operation is performed by a 

multilayer perceptron-back propagation algorithm. The network topology is achieved after 

fixing a number of hidden neurons. Thereafter, statistical indices are used in evaluating the 

performance of the ANN model. It is established that this model is appropriate for accurate 

prediction of CBR results. 
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1. INTRODUCTION

Reliable geomaterial mechanical index prediction is crucial 

for a sturdy pavement construction, for the purpose of ensuring 

that the geomaterial being a construction material exhibit 

unique qualities for enhancing safety, durability and stability 

of the structure built with it [1]. The strength of the subgrade 

soil is typically determined using the California Bearing Ratio 

(CBR). According to Trong et al. [2], the California bearing 

ratio (CBR) is a vital test which provides standard for 

measuring the load bearing capacity of road pavement 

subgrade materials. The CBR test is a type of indirect 

evaluation of soil strength whereby the strength of soil is 

compared to the strength of a typical soil that contains crushed 

rocks. The test is regarded as a diffusion test which was at its 

inception, initiated by the California State Highway 

Department USA, for the purpose of measuring the strength of 

soil subgrade especially, in the course of designing flexible 

pavement. Known standard pistons are used in the CBR test to 

puncture soil samples that have been compacted to their 

maximum dry density (MDD) and optimal moisture content 

(OMC) at a standard speed rate of 1.25 mm/min. The CBR 

value is then estimated as the difference between the force or 

stress required to enter a soil specimen and the tension or 

pressure required to enter a standard material to a specified 

depth of penetration Yildirim and Gunaydin [3]. Bardhan et al. 

[4] created four effective soft computing methods is shown in

this paper. These methods include genetic programming,

multivariate adaptive regression splines with piecewise cubic

models, and multivariate adaptive regression splines with

piecewise linear models (MARS-L, MARS-C). For this, a

variety of experimental data on wet CBR was gathered from a 

current Indian Railways railroad project. To evaluate the CBR 

of soils under wet conditions, three distinct expressions are 

suggested. To assess the ability of the developed models to be 

generalized, separate laboratory experiments were conducted. 

Furthermore, the viability of the top-performing model was 

verified using simulated datasets. In comparison to different 

laboratory studies, experimental findings show that the 

suggested MARS-L model achieved the best accurate estimate 

R2 is 0.9686 and RMSE is 0.0359). The suggested MARS-L 

model has a great deal of promise to be a distinct approach to 

estimating the CBR value at various stages of civil 

construction projects based on the accuracy levels obtained [5-

7]. 

In tropical parts of the world in particular, the CBR test is 

about the most popular standard for dimensioning flexible 

pavements, the CBR can be tedious (labour-intensive), time 

wasting expensive and monotonous [8, 9], hence, the need to 

develop an appropriate model for predicting this indispensable 

strength parameter of soil. Numerous scholars have developed 

models for predicting CBR of soils. Haupt and Netterberg [10] 

employed indicator properties of Tranvaal soils to predict the 

CBR and compaction characteristics of Tranvaal soils. 

Khasawneh et al. [11] employed the three machine learning 

(ML) techniques, M5P model tree, artificial neural networks

(ANN) and lazy algorithm k-nearest neighbor. Furthermore,

the study employed two conventional modeling approaches –

multiple linear regression (MLR) and non-linear regression.

Findings revealed that the ANN model yielded the model for

predicting CBR of the soil. A prominent study is Kurnaz and

Kaya [12]. The work of Hassan et al. [13] is to create

Revue d'Intelligence Artificielle 
Vol. 37, No. 2, April, 2023, pp. 305-313 

Journal homepage: http://iieta.org/journals/ria 

305

https://orcid.org/0009-0003-0257-9802
https://orcid.org/0000-0001-6600-6710
https://orcid.org/0000-0003-2111-7155
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.370208&domain=pdf


 

connections between the index parameters of fine-grained 

soils and CBR prediction. Several natural soil samples were 

taken from several locations in Pakistan's capital city of 

Islamabad. Grain size analysis, specific gravity, Atterberg 

limits, standard Proctor, and California bearing ratio 

geotechnical laboratory tests were carried out. The statistical 

analysis program SPSS was used to do a MLRA. Using SPSS, 

many CBR predictive models were created in three phases, 

each stage utilizing a unique set of input variables related to 

the index soil parameters. Based on the results of this study, it 

is concluded that index soil characteristics and compaction 

parameters, which have high R2 values ranging from 0.79 to 

0.96 and importance of less than 0.5 for all, can predict CBR 

of fine-grained soils with exceptional accuracy. The MLRA 

models discussed in this article are based on fine-grained soils 

with low plastic content, hence they would not be appropriate 

for predicting CBR for high plastic content or course-grained 

soils [14, 15]. 

The artificial neural network (ANN) in recent times has 

become very useful for pattern recognition, grouping, 

clustering and prediction in many fields. The ANN is a type of 

model used in machine learning (ML) and has emerged as a 

veritable substitute to known regression and statistical models 

in use and efficiency Varol et al. [16]. The ANN 

implementation and ANN training and prediction quality are 

the two final analysis of the system [17, 18]. It is however 

worthy of note that the use of ANN has found its relevance in 

the field of geotechnical engineering; particularly in areas of 

slope stability, soil classification, settlements of structures, 

retaining walls deflection, pile bearing capacity prediction, 

liquefaction assessment, excavation, landslide susceptibility, 

mapping and site characterization [19-24]. According to 

Onyelowe et al. [25], the shrinkage limit of increasingly broad 

soil treated with RHA and various quicklime starting dose 

RHA was predicted by this study using the intelligent skills of 

genetic programming (GP), ANN, genetic algorithm (GA), 

and optimized polynomial linear regression (PLR). Efficiency 

indices, such as R2 and SSE, were used to evaluate the models' 

accuracy at the conclusion of prediction. With indices of 0.974 

and 1.4%, respectively, it was found that EPR performed 

better than ANN and GP. When used as a compacted subgrade 

material, the treated soil's shrinkage limit was significantly 

improved by the RHA composites Taleb Bahmed et al. [26]. 

However, there is a need to study the prediction analysis of 

treated soil with ANN, to enhance efficiency of technical 

service delivery by reducing the monotony and time wasting 

exercise of carrying out CBR tests in the laboratory and 

enhancing the application process in the engineering world as 

this study has demonstrated that cement can suitably be 

complemented with RHA and values of CBR can adequately 

be predicted using these additives as stabilizers by means of 

ANN. Therefore, this study aims to develop the ANN models 

for predicting the California bearing ratio of lateritic soil 

admixed with ordinary Portland cement and rice husk ash. 

  

 

2. METHODOLOGY 

 

Geotechnical laboratory tests result comprising of liquid 

limit, plasticity index, maximum dry density, optimum 

moisture content, the percentages of cement and rice husk ash 

served as inputs which were used in developing the ANN 

prototypes for predicting soaked and unsoaked CBR values of 

the stabilized soils. 

2.1 The artificial neural network design procedure 

 

The design and deployment of the Artificial Neural 

Network (ANN) for this study was grouped into six (6) major 

stages, namely: data acquisition stage; feature selection and 

data normalization stage, ANN architecture optimization 

stage, the ANN algorithm optimization stage, ANN 

initialization and training stage, testing, validation and 

deployment stage. Feed-Forward-neural-network with 

Levenberg-Marquardt-back-propagation ANN model of 

MATLAB training was used for the computation of data and 

to determine the best model. The Coefficient of Correlation 

(R) and the Mean Square Error (MSE), were employed to 

determine the degree of correlation between the target of the 

soft computing models and their eventual outputs. The six 

input variables were cement (%), rice husk ash (RHA) (%), 

Liquid Limit (LL) (%), Plasticity Index (PI) (%), Maximum 

Dry Density (MDD) (Kg/m3), and OMC (%), while CBR 

Unsoaked (%) and CBR Soaked (%) were the output variables. 

From the experimental results, 1,288 set of soil data were 

obtained, the data were subdivided into training 70%, testing 

15%, and validation 15%.  

 

2.2 Data division 

 

Datasets for learning, evaluation, and validation were 

created from the randomly selected data. To find potentially 

predictive relations, training data was used. It is a collection of 

samples used to fit the classifier's parameters, or weights, in 

order to learn. A test dataset, which is a collection of examples 

used solely to evaluate the effectiveness (generalization) of a 

fully-specified classifier, was used to evaluate the strength and 

utility of a predictive relationship. In addition to training and 

testing sets, a validation set was required to prevent 

overfitting, particularly when any segment is further 

segmented was to be modified. A validation dataset was used 

to adjust a classifier's hyperparameters (i.e., its design, not its 

weights), such as the number of hidden units in a neural 

network. By using early stopping and the validation sets, 

regularization was achieved by terminating training as soon as 

the validation set's error rose. 
 

2.3 Data normalization 
 

The procedure of data normalization was completed in order 

to remove the possibility of input weight bias. This allows the 

network to prioritize different input values equally regardless 

of their magnitude. Additionally, input normalization speeds 

up computation and training since its band restricts inputs to a 

boundary between 0 and 1, substantially shrinking the search 

space to a unitary hypercube. This greatly facilitates weight 

decay and Bayesian estimation. Eq. 1 illustrates how to acquire 

the matching normalized value (Pi) for each network input Pi. 

 

𝑃𝑖 ̅ = 𝑃𝑡
𝑚𝑖𝑛 + (

𝑃𝑖 − 𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛

) (𝑃𝑡
𝑚𝑎𝑥 − 𝑃𝑡

𝑚𝑖𝑛) (1) 

 

where, 𝑃𝑖 , 𝑃𝑚𝑎𝑥 , and 𝑃𝑚𝑖𝑛 is, in order, the actual input data, the 

highest input value, and the lowest input value, while 𝑃𝑡
𝑚𝑎𝑥, 

and 𝑃𝑡
𝑚𝑖𝑛  are the target's maximum and minimum values, 

respectively Nowland and Hinton [27]. 

 

2.4 Statistical performance indices 

 

This is for the purpose of precision and accuracy. It involves 
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the using the coefficient of determination (R2) and Root Mean 

Square Error (RMSE). This current data on short-term 

efficiency serves as a baseline for the discrepancy between 

expected values and actual values. The evaluation is more 

accurate the smaller the RMSE. The variance that is 

interpreted by the model, or the decrease of variance when 

employing a model, is measured by the coefficient of 

determination, commonly known as R square. R2 ranks from 0 

to 1, and when it is close to 1, the model has good predictive 

power. The overall prediction accuracy can be determined by 

these performance criteria. The longer the MAE, the better the 

long-term performance of the model. MAE (mean complete 

error) is a suggestion of the normal deviation of the anticipated 

values from the equivalent observed values. 
 

2.5 The ANN training algorithm and performance 

standards for networks 
 

Levenberg-Marquardt was the algorithm used (LM). A 

second order approach called the Levenberg-Marquardt (LM) 

Algorithm trains a network by repeatedly updating the 

network weights and biases using an optimization technique. 

The approach, which is simply a Gauss-Newton method trust 

region type, is quick, effective, and frequently the best option 

for supervised training. In order to iteratively reduce an error 

function E(w), as illustrated in Eq. (2), the Levenberg 

Marquardt method tries to change the weight and bias values 

of the various layers of the network Li et al. [28]. This is done 

until a preset permitted minimum value or a stop criterion is 

reached. 
 

𝐸(𝒘) =
1

2
∑ ∑ 𝑒𝑝𝑚

2

𝑀

𝑚=1

𝑃

𝑝=1

 (2) 

 

where, P is the number of input-target training patterns, N is 

the total number of weight elements, and M is the total number 

of outputs. The ANN algorithm's overview is shown in Table 

1. 

 

Table 1. Summary of the ANN algorithm 
 

Algorithm 
Network weight 

adaptation 
Description 

Levenberg-

Marquardt 

(LM) 

Algorithm 

Δ𝑤
= (𝐽𝑇𝐽
+ 𝜇𝐼)−1𝐽𝑇𝑒 

The network 

error vector e 

and the 

Jacobian 

matrix J are 

calculated as 

part of the 

weight update. 

 

 
 

Figure 1. The stages involved in the design and development 

ANN prediction model 

The goal of a soft computing network's performance 

evaluation is to assess how closely the output of the network 

adheres to the real values derived from physical phenomena. 

The root mean square error (RMSE) and coefficient of 

correlation (R) were employed in this study. Figure 1 shows 

the flow chart for the analysis of ANN algorithms. 

 

 

3. RESULTS AND DISCUSSIONS  

 

Artificial Neural Network (ANN) Results in Table 2 

shows the details of the components of the ANN model. The 

six input variables were cement (%), rice husk ash (RHA) (%), 

optimum moisture content (%), liquid limit (LL) (%), 

plasticity index (PI) (%), and maximum dry density (MDD) 

(Kg/m3), while CBR Unsoaked (%) and CBR Soaked (%) 

were the two output variables. One hidden layer with ten layers 

of neurons. Figures 2 to 15 show the testing results of the 

observed (laboratory test results) and ANN predicted values of 

unsoaked and soaked CBR of natural soils (A-7-6) and 

cement-treated soils stabilized with rice husk ash. These 

values clearly signify the high precision and accuracy of the 

ANN models. Figure 2 shows the comparison between the 

observed (in the lab) and predicted unsoaked CBR values of 

A-7-6+RHA+0% cement. Figure 3 presents the comparison 

between the observed (in the lab) and predicted unsoaked CBR 

values of A-7-6+RHA+2% cement. Figure 4 depicts the 

comparison between the observed (lab) and predicted 

unsoaked CBR values of A-7-6+RHA+4% cement. Figure 5 

shows the comparison between the observed (lab) and 

predicted unsoaked CBR values of A-7-6 +RHA+6% cement. 

Figure 6 gives the comparison between the observed (in the 

lab) and predicted unsoaked CBR values of A-7-6+RHA+8% 

cement. Figure 7 shows the comparison between the observed 

(in the lab) and predicted unsoaked CBR values of A-7-

6+RHA+10% cement. Figure 8 presents the comparison 

between the observed (in the lab) and predicted unsoaked CBR 

values of A-7-6+RHA+12% cement. Figure 9 depicts the 

comparison between the observed (lab) and predicted soaked 

CBR values of A-7-6+RHA+0% cement, and Figure 10 shows 

the comparison between the observed (lab) and predicted 

soaked CBR values of A-7-6+RHA+2% cement. Figure 11 

shows the comparison between the observed (lab) and 

predicted soaked CBR values of A-7-6+RHA+4% cement, and 

Figure 12 shows a comparison between the observed (lab) and 

predicted soaked CBR values of A-7-6+RHA+6% cement. 

However, Figure 13 depicts the comparison between the 

observed (lab) and predicted soaked CBR values of A-7-

6+RHA+8% cement. and Figure 14 depicts a comparison 

between the observed (lab) and predicted soaked CBR values 

of A-7-6+RHA+10% cement. Figure 15 presents a comparison 

between the observed (lab) and predicted soaked CBR values 

of A-7-6+RHA+12% cement. 

 

Table 2. Details of components of the ANN model 

 
Number of inputs                                                   6 

Number of outputs                                                 2 

Number of hidden layer neurons                           10 

Number of output layer neurons                            2 

Number of epochs                                                  21 

 

Data 
Acquisition

Input selection
&

Data normalization

Determining
Optimum ANN 

Architecture

ANN Initialization 
and Training

Levenberg-
Marquardt 
Algorithm

Resilient 
Backpropagation 

Algorithm

Evaluate ANN 
performance and 

deploy models
Build GUI

ANN Algorithms

Evaluation and Deployment
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Figure 2. Comparison between observed (lab) and predicted 

unsoaked CBR values of A-7-6+RHA+0% cement 

 

 
 

Figure 3. Comparison between observed (lab) and predicted 

unsoaked CBR values of A-7-6+RHA+2% cement 

 

 
 

Figure 4. Comparison between observed (lab) and predicted 

unsoaked CBR values of A-7-6+RHA+4% cement 

 

 
 

Figure 5. Comparison between observed (lab) and predicted 

unsoaked CBR values of A-7-6+RHA+6% cement 

 

 
 

Figure 6. Comparison between observed (lab) and predicted 

unsoaked CBR values of A-7-6+RHA+8% cement 

 

 
 

Figure 7. Comparison between observed (lab) and predicted 

unsoaked CBR values of A-7-6+RHA+10% cement 
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Figure 8. Comparison between observed (lab) and predicted 

unsoaked CBR values of A-7-6+RHA+12% cement 

 

 
 

Figure 9. Comparison between observed (lab) and predicted 

soaked CBR values of A-7-6+RHA+0% cement 

 

 
 

Figure 10. Comparison between observed (lab) and predicted 

soaked CBR values of A-7-6+RHA+2% cement 

 

 
 

Figure 11. Comparison between observed (lab) and predicted 

soaked CBR values of A-7-6+RHA+4% cement 

 

 
 

Figure 12. Comparison between observed (lab) and predicted 

soaked CBR values of A-7-6+RHA+6% cement 

 

 
 

Figure 13. Comparison between observed (lab) and predicted 

soaked CBR values of A-7-6+RHA+8% cement 
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Figure 14. Comparison between observed (lab) and predicted 

soaked CBR values of A-7-6+RHA+10% cement 

Figure 15. Comparison between observed (lab) and predicted 

soaked CBR values of A-7-6+RHA+12% cement 

 

 
 

  
  

Figure 16. The regression plot showing the predicted (output) and target (observed) values for (a) Training dataset, (b) 

Testing, (c) Validation dataset, and (d) The prediction analysis of all the process during of the ANN model (RHA and A-7-6 

and cement) 
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Figure 17. ANN prediction best validation performance  

 

 
 

Figure 18. The ANN error plot for rice husk Ash at A-7-6 

soil and cement 

 

3.1 Regression plots for ANN modelling results for rice 

husk ash and A-7-6 soil 

 

Figures 16(a-d) show the regression plot between observed 

and predicted CBR values of the A-7-6 soil stabilized with 

RHA and cement. Figure 16a shows the predicted (output) and 

target (observed) values for training dataset during training 

stage of ANN model. Figure 16b shows the predicted and 

target values for testing dataset during testing stage of ANN 

model. Figure 16c and Figure 16d shows the predicted (output) 

and target (observed) values for validating dataset during 

validating stage of ANN model. Performance of the neural 

network as indicated by coefficient of correlation (R2) at 

training, testing and validation and all prediction stages were; 

0.99921, 0.9983, 0.99676 and 0.9985, respectively. According 

to Ebid [29], If R 0.8, there is a significant connection between 

two sets of variables. Since the model's R-value is 0.99, it can 

accurately determine CBR values. The prediction carried out 

by the ANN is viable and when applied it will give a 

significant optimal process for the application of lateritic soil 

admixed with cement and rice husk ash. This study is support 

by the work done by Harini and Naagesh [30]. 

Figure 17 displays the results of the training. The training 

stops after six consecutive increases in the validation error, 

and the best result is taken from the epoch with the least 

validation error. In overall, the error decreases as more training 

epochs are completed, but it may start to increase on the 

validation data set as the network starts struggling to maintain 

the training data in the activated form He et al. [31]. Figure 18 

depicts the error plot of the prediction analysis via the ANN 

model. 

 

 

4. CONCLUSION 

 

This research studies the effects of rice husk ash on cement 

treated lateritic soil and makes efforts to develop a predictive 

model for CBR through the use of artificial neural network 

(ANN). This study clearly distinguishes itself not only by 

developing an ANN predictive model for CBR when soil is 

stabilized with cement, a common soil stabilizer, but the 

efficient management of a ubiquitous waste-rice husk, which 

upon being burnt under controlled conditions result to ash with 

pozzolanic properties that suitably complement cement, 

hence, reducing costs of road construction. The ANN models 

constitute a database of results of laboratory tests. ANNs is 

presented as a multi-layer perception and trained with 

feedback propagation algorithm, with the model input 

variables as: cement (%), rice husk ash (%), liquid limit (%), 

plasticity index (%), maximum dry density (MDD) (kg/m3) 

and optimum moisture content (%) with California bearing 

ratio (CBR) (both at soaked and unsoaked states) as the output. 

It is established that the chosen optimal model, with one single 

hidden layer of ten hidden layer neurons, is able to predict the 

CBR outcomes. The resultant optimal ANN shows sound 

accuracy with R of 0.99 and RMSE of 0.99, when validated 

against a set of unseen data. It can be concluded that the model 

can be recommended as a reliable tool to predict values of 

soaked and unsoaked CBR of cement treated laterites 

stabilised with rice husk ash (RHA), which upon optimal use 

would alleviate the monotony, time-wasting, costly-in terms 

of manpower and resources, processes of carrying out the CBR 

tests in the laboratory. 
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