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Stroke, an acute cerebrovascular disease, has become the second leading cause of death 

worldwide after coronary heart disease, characterized by high incidence, disability, and 

mortality rates, with an increasingly younger affected population. Clinically, stroke types 

are primarily divided into ischemic and hemorrhagic strokes, with ischemic stroke being the 

most common. Presently, early identification methods rely heavily on physicians' 

experience, leading to misdiagnosis, missed diagnosis, diagnostic delay, and other issues, 

potentially resulting in worsened conditions or severe complications. Although artificial 

intelligence-based stroke auxiliary diagnosis systems have been employed in recent years to 

reduce missed diagnoses and enhance work efficiency, their impact on improving diagnostic 

accuracy has been limited. The main reason for this limitation is the selection of relatively 

singular or atypical feature types in neural networks, which affects diagnostic accuracy. To 

address this issue, this study leverages the rapid and sensitive response of 

electroencephalogram (EEG) data to cerebral ischemia and combines it with clinical 

indicators to propose a comprehensive "clinical indicators + quantitative 

electroencephalogram" multi-feature pattern recognition method. Initially, 23 key features 

for neural network training are selected. Subsequently, an ischemic stroke diagnosis model 

combining LSTM attention and multi-feature is constructed. In an experiment involving 500 

ischemic stroke patients, the diagnostic model demonstrates an accuracy of 0.81, a 

sensitivity of 0.82, and an F1-score of 0.81. Moreover, to accurately locate the lesion area, 

the three-dimensional features of MRI images are used. A cascaded 3D deep residual 

network stroke precise segmentation method is constructed by incorporating residual units 

and cascade concepts into the 3DCNN network. The evaluation indicators of this 

segmentation algorithm on the training set are: DICE coefficient 0.91, precision 0.94, and 

sensitivity 0.89. Experimental results indicate that the proposed method outperforms 

existing clinical diagnosis schemes and CNN segmentation models in terms of diagnostic 

performance. The implementation of rapid and accurate diagnosis during early stages of 

stroke onset is crucial for improving ischemic prognosis, minimizing brain damage, and 

reducing mortality and disability rates. 
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1. INTRODUCTION

Stroke is a cerebrovascular disease resulting from damage 

to cerebral blood vessels due to various causes, leading to local 

hypoxia or ischemic necrosis of brain tissue and corresponding 

neurological dysfunction. It is classified into ischemic stroke 

and hemorrhagic stroke, with ischemic stroke accounting for 

approximately 75-90% of all strokes [1, 2] and presenting 

extremely high disability and mortality rates. According to the 

latest global burden of disease study in 2019, 6.55 million 

people succumbed to stroke worldwide, accounting for 11.6% 

of total deaths, making it the second leading cause of death 

globally, after coronary heart disease (16.2%) [3]. In China, 

the stroke mortality rate constitutes about 22.3% of the total 

mortality rate of residents, making it the leading cause of death 

in the country. The number of patients with cerebrovascular 

disease is growing at an annual rate of roughly 8.7% [3]. 

Considering the irreversibility of stroke development, early 

treatment is crucial for prognosis [4]. Currently, the clinical 

diagnostic method for ischemic stroke is a qualitative 

assessment performed by doctors based on patients' clinical 

characteristics and biochemical test data, primarily relying on 

the medical expertise and clinical experience of physicians. 

However, when confronted with numerous complex disease 

characteristics, doctors may misdiagnose and miss diagnoses 

due to subjective factors or heavy workload, thereby 

increasing their work pressure and delaying patients' treatment. 

Therefore, there is an urgent need for a computer-aided 

diagnostic method capable of rapidly diagnosing and 

localizing ischemic stroke lesions to assist doctors in 

determining treatment plans. 

With the continuous advancement of artificial intelligence 

in the medical field, deep learning has achieved noteworthy 

research results in the auxiliary diagnosis of ischemic stroke. 
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Its advantages are primarily reflected in the automatic 

detection of stroke [5, 6], segmentation of stroke infarction 

areas [7], and prediction of complications [8]. Deep learning 

technology can accurately extract high-quality information 

from a vast amount of redundant information, enabling 

medical staff to diagnose and devise beneficial treatment plans 

more rapidly in clinical work, thereby improving the speed of 

treatment decision-making. However, in current research on 

auxiliary diagnosis of ischemic stroke, diagnostic accuracy 

needs enhancement. The main reason is that the selection of 

feature types in neural networks is relatively singular or 

atypical features, which affect the diagnostic accuracy. For 

instance, the clinical decision of ischemic stroke disease based 

on a single image feature [9], speech feature [10], or ultrasonic 

inspection feature lacks the learning of diagnosis of ischemic 

stroke disease by combining multiple inspection features that 

complement each other, in order to provide patients with an 

accurate diagnostic method. 

In light of the fact that the current method of using clinical 

features and biochemical test data to qualitatively diagnose 

ischemic stroke is not comprehensive, this study exploits the 

advantages of electroencephalogram (EEG) in responding 

rapidly and sensitively to brain metabolism, cerebral ischemia, 

and hypoxia [11, 12]. It is anticipated that dynamic 

observation of EEG changes, such as using quantitative EEG 

to quantitatively analyze the relevant information in EEG, and 

combining "clinical indicators + quantitative EEG" along with 

other multi-dimensional features as the input of LSTM (long 

short-term memory network) neural network for training will 

be beneficial. Simultaneously, the attention mechanism is 

incorporated into the neural network model to improve the 

diagnostic accuracy of the auxiliary diagnosis model. The area 

of brain infarction is closely related to the prognosis of stroke. 

Clinically, the diagnosis of the location and area of ischemic 

stroke lesions relies on CT or MRI examination to determine 

the specific location of the lesions. MRI can detect early stroke 

within tens of minutes or even minutes after stroke onset, 

demonstrating higher diagnostic capability than CT scans [13]. 

However, MRI reading is dependent on the experience and 

proficiency of doctors and the vast number of MRI images, 

resulting in a heavy workload for physicians. Coupled with 

individual differences among patients, accurately locating the 

lesion area poses certain challenges. Based on this, the present 

study further investigates the precise segmentation method of 

stroke based on MRI images in conjunction with auxiliary 

diagnosis. The aim is to provide more objective and accurate 

information to assess the severity and prognosis of ischemic 

stroke patients, and to assist doctors in completing rapid 

assessment and lesion localization of ischemic stroke. 

 

 

2. DATA COLLECTION AND PREPROCESSING 

 

2.1 Data collection 

 

The research objects were selected from 500 outpatients and 

inpatients with ischemic stroke in a hospital from 2021 to 2022. 

The inclusion criteria were: (1) meeting the clinical diagnosis 

and treatment standards of ischemic stroke; (2) supported by 

head MRI imaging; (3) continuous electroencephalogram 

monitoring; (4) serum index detection. The MRI image data 

contains manual annotation of ischemic penumbra lesions by 

experienced neurologists comparing perfusion and diffusion 

images and combining the currently accepted linear threshold. 

(1) Clinical Index Data 

 

 

Table 1. Clinical indicators and diagnostic indicators for ischemic stroke 

 
Serial No. Content Clinical indicators Symptom manifestation or value 

1 

BEFAST 

symptoms 

B-Balance 
The patient loses balance or coordination ability and has difficulty walking; 

Boolean value, take 1 if symptoms appear, otherwise 0. 

2 E-Eyes 
The patient has visual difficulties or sudden changes in vision; Boolean value, 

take 1 if symptoms appear, otherwise 0. 

3 F-Face 
The patient has facial asymmetry and mouth deviation; Boolean value, take 1 

if symptoms appear, otherwise 0. 

4 A-Arms 
The patient suddenly feels weak or numb on one side of the body; Boolean 

value, take 1 if symptoms appear, otherwise 0. 

5 S-Speech 
The patient's speech is unclear or slurred; Boolean value, take 1 if symptoms 

appear, otherwise 0. 

6 T-Time Time when the above symptoms appeared; numeric 

7 
Scale 

score 

National Institutes of 

Health Stroke Scale 

Mild stroke 3 points or less, moderate stroke 3-10 points, severe stroke more 

than 10 points. 

8 
Blood 

pressure 

High systolic blood 

pressure 

Blood pressure below 140/90mmHg is normal, the higher the value, the 

greater the risk 

9 BMI index High body mass index 
The normal BMI value is between 20 and 25, the higher the value, the greater 

the risk 

10 
Blood 

sugar 
High fasting blood sugar 

The normal value is between 3.9 and 6.1 mmol/L, the higher the value, the 

greater the risk 

11 Hcy Homocysteine Hcy threshold 10, the higher the stroke risk 

12 Lp(a) Lipoprotein Lp(a) threshold 75 nmol/L, the higher the value, the greater the risk 

13 Apo-A Apolipoprotein A 
Apo-A threshold 300 mg/L, the lower the level, the higher the risk of 

ischemic stroke. 

14 D-D D-dimer 

It is closely related to the degree of cerebral infarction. The threshold is 0.49 

ug/ml. The higher the content, the higher the risk of ischemic stroke and 

recurrence. 

15 FBG Fibrinogen 
Normal value 1.5-4g/L, increased value aggravates neurological deficit and 

poor prognosis. 
Note: For serum indicators in serial numbers 8-15, if normal, use 1 to represent normal, 2 to represent elevated, and 0 to represent decreased. 
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In addition to the "BEFAST" trial issued by the Chinese 

Stroke Association to identify early symptoms of stroke [14] 

and the NIHSS (National Institutes of Health Stroke Scale) 

score, serum index detection can be used in medical clinics to 

diagnose ischemic stroke and assess the severity of the disease. 

Studies have found that homocysteine (Hcy), lipoprotein a 

[Lp(a)], apolipoprotein A (Apo-A), D-dimer (D-D), and 

fibrinogen (FBG) are independent risk factors for ischemic 

stroke [15]. At the same time, studies [16, 17] have pointed out 

that the top three risk factors leading to stroke are: 

hypertension, high body mass index and high fasting blood 

glucose. Therefore, detecting these risk factors in clinics and 

continuous monitoring are of great significance for the 

prevention and treatment of ischemic stroke. Therefore, the 

clinical indicators used in this study mainly include 6 BEFAST 

clinical symptoms of patients, NIHSS scores, blood pressure, 

BMI, blood sugar, Hcy, Lp(a), Apo-A, D-D, FBG and other 

15 indicators, as shown in Table 1. 

(2) Quantitative Electroencephalogram Data 

At present, CT and MRI techniques provide an objective 

reference for the diagnosis of ischemic stroke in clinics, but 

neither cranial CT nor MRI can achieve real-time monitoring 

of changes in ischemic lesions in the brain [18]. As a 

monitoring tool that can effectively reflect brain function, 

electroencephalogram has unparalleled advantages, but 

traditional electroencephalogram often adopts visual analysis 

methods, and the results are more subjective. Quantitative 

electroencephalogram (QEEG) mainly converts the basic 

elements of electroencephalogram such as frequency, rhythm, 

amplitude, and waveform into various quantized parameters 

through functional models by frequency domain or time 

domain analysis [19], making the analysis results more 

objective and easier for clinicians to read and understand. 

Studies have analyzed the correlation between QEEG features 

and CT perfusion imaging parameters, as well as their 

correlation with NIHSS scores. It is found that QEEG can 

dynamically monitor changes in ischemic lesions in stroke [20] 

and assist doctors in dynamically evaluating patients' 

neurological deficits. 

This paper examines QEEG in patients using a digital 

dynamic electroencephalogram recording and analysis system 

to calculate α wave index, θ wave index, δ wave index, slow 

wave index, δ and α power ratio (delta-alpha power ratio. 

DAR), α and δ power ratio (alpha-delta power ratio, ADR), δ+ 

θ and α+β power ratio [(delta+ theta)/(alpha+ beta), DTABR], 

as well as relative α wave power (relative alpha power, RAP), 

relative δ wave power (relative delta power, RDP), and brain 

symmetry index (brain symmetry index, BSI). Studies have 

found [21] that δ wave index, slow wave index, θ wave index, 

BSI, ADR, and DTABR, the six main indicators, are correlated 

with NIHSS scores. Therefore, this article collects these 6 

QEEG features of patients as indicators to determine ischemic 

stroke, as shown in Table 2. 

 

Table 2. Diagnostic significance of QEEG features for ischemic stroke 

 
Serial No. QEEG feature Diagnostic significance 

1 δ wave index δ wave corresponds to the infarction center and is positively correlated with NIHSS score. If the slow 

wave index in the ischemic lesion area increases, the δ wave index on the affected side is greater than 

that on the healthy side. 

2 Slow wave index Positively correlated with NIHSS score, if the slow wave index in the ischemic lesion area increases 

3 θ wave index θ wave is related to ischemic penumbra, brain edema and neurofunctional separation 

4 BSI Positively correlated with NIHSS score, if BSI increases in the ischemic lesion area 

5 ADR Negatively correlated with NIHSS score, if ADR decreases in the ischemic lesion area 

6 DTABR Negatively correlated with NIHSS score, if DTABR decreases in the ischemic lesion area 

 

(3) MRI Image Data 

Magnetic resonance imaging (MRI) technology can 

accurately detect ischemic and infarcted tissues in the early 

stage of stroke. Studies have found [22] that diffusion-

weighted imaging (DWI) can explore brain edema in the early 

stage of ischemic stroke, and it is superior to conventional 

MRI in distinguishing new and old infarcts. It is generally 

suitable for early exploration. The combined use of diffusion-

weighted imaging (DWI) and perfusion-weighted imaging 

(PWI) can more reliably identify ischemic penumbra and 

reduce damage, which is beneficial to improve prognosis [23]. 

In the collected ischemic stroke dataset, each patient 

underwent routine sequence magnetic resonance imaging 

(MRI), PWI and DWI examinations. The input images in this 

paper are eight modalities: T1c, T2, cerebral blood flow (CBF), 

cerebral blood volume (CBV), diffusion-weighted imaging 

(DWI), time to peak (Tmax), and mean transit time (MTT) and 

time to peak of contrast (TTP) in PWI. 

 

2.2 Data preprocessing 

 

The types and formats of the collected data are not uniform, 

and may contain missing values, outliers, duplicate values, 

inconsistent data formats, incomplete data, etc. These data 

may have a negative impact on the accuracy of the model. 

Therefore, data cleaning and preprocessing are very necessary 

in the deep learning process to complete data cleaning and 

make it suitable for deep learning models, thereby further 

improving the accuracy and efficiency of deep learning 

models. The data preprocessing operations after importing the 

dataset in this paper include the following: 

(1) Data statistical analysis 

Perform preliminary exploratory data analysis on the 

collected data, including some basic statistical analyses such 

as mean, variance, standard deviation, maximum and 

minimum values. Through these analyses, the distribution of 

the data can be understood and some outliers and missing 

values can be identified. 

(2) Treatment of outliers 

If outliers are directly deleted, the sample size will be 

insufficient and the distribution of variables will be changed. 

This paper uses the mean correction method to fill in outliers, 

that is, to correct the outliers with the mean of the two previous 

observations. 

(3) Treatment of missing values 

In actual data, there may be missing values in the collected 

data due to human error, system error or data collection 

problems. This paper uses the method of calculating the mean 

to fill in missing values. First calculate the mean of the column 

or row containing any missing values and fill it in the position 
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of the missing values. 

(4) Data normalization 

In deep learning, different algorithms may have different 

requirements for the format of data. Therefore, it is necessary 

to convert and standardize the data so that the algorithm can 

work better. This paper implements data standardization and 

normalization by normalizing the data with standard deviation. 

All data are converted into numbers between [0,1] to eliminate 

the magnitude difference between each dimension data and 

avoid the network prediction error being too large due to the 

large difference in magnitude between input and output data. 

The calculation is shown in formula (1).  

 
' .min

.max .min

X X
X

X X

−
=

−

 
(1) 

 

where, X.min is the minimum value in the indicator X data, and 

X.max is the maximum value in the indicator X data. 

(5) Division of datasets 

Dividing the dataset into training set and test set is one of 

the key steps in data preprocessing. It can improve the 

performance of machine learning models. The training set is 

used to train the model. By trying different methods and ideas, 

different models are trained using the training set. The model 

with the best performance is selected. Finally, the test set is 

used to evaluate the performance of the model. In this paper, 

the 500 patient dataset study objects were classified in a ratio 

of 8:2, with 400 in the training set and 100 in the test set.  

 

 

3. DEEP LEARNING-BASED AUXILIARY DIAGNOSIS 

OF ISCHEMIC STROKE 

 

3.1 Problem description 

 

The research of auxiliary diagnosis for ischemic stroke can 

be defined as: given datasets 𝐷 = {(𝑑𝑖1, 𝑑𝑖2)}𝑖=1
𝑁 and 𝑅 =

{𝑟𝑖 ∈ {0,1}}. 

where, i represents the i-th patient, D represents the diagnosis 

data of this patient. This paper considers diagnostic indicators 

for ischemic stroke, which consists of clinical indicator data 

and quantitative electroencephalogram (QEEG) data, where 

di1 represents the clinical indicator data of the i-th patient, di2 

represents the QEEG data of the i-th patient. R represents the 

diagnosis label for each patient, taking value 0 indicates non-

ischemic stroke, and 1 indicates ischemic stroke. After 

conversion, the input features and corresponding labels are 

shown in formulas (2) and (3). 

 

 1 2, , nX x x x=  (2) 

 

 1 2, , nY y y y=  (3) 

 

In the formula above, n represents the number of patients, xi 

represents the input features of the i-th patient, yi represents 

the diagnosis label for the i-th patient, yiri. The target of the 

auxiliary diagnosis model is to obtain the mapping relationship 

between the input features and the diagnosis label through 

neural network training based on the input patient data, and 

finally give the result of whether it is ischemic stroke. 

 

3.2 Auxiliary diagnosis model construction 

 

Considering the diversity, difference and correlation of the 

input feature information, this paper constructs an auxiliary 

diagnosis model for ischemic stroke based on LSTM and 

multi-feature fusion. At the same time, research proves that 

[24] the attention mechanism can improve the model's 

prediction accuracy by helping the model learn the correlation 

information between multiple features, so an attention 

mechanism is considered in the LSTM model. The multi-

feature bidirectional LSTM network designed in this paper is 

shown in Figure 1, which includes two feature extraction 

submodules and one disease classification submodule. 

 

 
 

Figure 1. A multifeature bidirectional LSTM network model 

 

(1) Clinical indicator feature extraction submodule 

This module realizes the feature extraction of clinical 

indicator data through a bidirectional LSTM model. The data 

consists of 15 input indicators selected in section 2.1(1) related 

to ischemic stroke lesions, with each indicator dimension 

being 1. 32 neural units are set in the bidirectional LSTM 

model, and a Dropout layer is added to prevent model 

overfitting. 

(2) QEEG data feature extraction submodule 

The QEEG data features mainly contain numerical 

indicators. The design of the submodule consists of an input 

layer, bidirectional LSTM layer and Dense connection layer. 

The 6 numerical indicators in section 2.1(2) are concatenated 

to form a feature vector and input into the bidirectional LSTM 

model. Then the bidirectional LSTM is used for feature 

learning, with 32 neural units calculating forward and 

backward features as input and outputting doubled feature 

vectors, with the connection mode of bidirectional LSTM 

being concat. Finally, Dropout with 0.5 is used to drop neurons 

in the network to reduce model overfitting, and a Dense 

connected layer outputs the feature vector. 

(3) Disease classification submodule 

The disease classification submodule is first responsible for 

connecting the feature vectors output by each feature 

extraction submodule and outputting the diagnosis result by 

the classifier. The feature vectors output by each submodule 

are expanded into 3D vectors that meet the input requirements 

of the self-attention mechanism through Lambda, and then the 

feature vectors are concatenated and self-attention is applied 

to output a feature vector by weighting the feature vectors 

from different modules. The dimension is compressed by 

Flatten, and the result is output by two Dense connected layers. 
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Since the classification label has been converted to binary 

category when input, the last Dense layer outputs the 

classification result. 

 

3.3 Model evaluation and experimental results 

 

3.3.1 Diagnosis comparison experimental settings 

In order to verify the effectiveness of the network in Figure 

1 for auxiliary diagnosis of ischemic stroke, the following 

three groups of experiments were set up for result comparison. 

(1) Different multifeature extraction submodel design 

experimental comparison 

To compare the differences in performance of different 

designs of the proposed feature submodels, two groups of 

feature diagnosis models with different combinations were 

constructed, referred to as LSTM-LSTM and bidirectional 

LSTM-bidirectional LSTM according to the feature 

submodels. 

(2) Comparison experiments of single feature models and 

multi-feature fusion models 

To verify the effect of the proposed dual-feature fusion 

model (clinical indicators + QEEG data) on feature learning in 

the diagnosis of ischemic stroke disease compared with single 

feature learning, LSTM and bidirectional LSTM diagnosis 

models were established for each feature and used for the 

diagnosis of ischemic stroke as contrast experiments with the 

proposed model. 

(3) Comparison experiment by adding attention mechanism 

The attention mechanism was added to the model in this 

experiment to highlight the degree of attention to features from 

different examinations, and the experimental results were 

compared. 

 

3.3.2 Explanation of experimental evaluation standards 

The experiments adopted evaluation indicators that measure 

the reliability of disease determination in clinical diagnosis, 

including accuracy, sensitivity, specificity, positive predictive 

value, negative predictive value and F1_Score. 

where, TP represents true positive, FP represents false positive, 

FN represents false negative, TN represents true negative. 

(1) Accuracy 

Calculating the number of samples predicted correctly/total 

number of samples, the calculation formula is as follows: 

 

TP TN
Acc

TP FP FN TN

+
=

+ + +
 (4) 

 

(2) Sensitivity 

It measures the ability to correctly determine that a patient 

has ischemic stroke, and calculates how many of the true 

ischemic stroke positive samples are truly predicted to be 

ischemic stroke patients. High sensitivity indicates a low miss 

rate, and the calculation formula is as follows: 

 

TP
Sensitivity

TP FN
=

+
 (5) 

 

 

(3) Specificity 

It measures the ability to correctly identify patients without 

ischemic stroke. It is calculated by determining how many of 

all true non-ischemic stroke negative samples are accurately 

predicted to have non-ischemic stroke. Higher specificity 

indicates a lower false positive rate, as shown in the formula: 

 
TN

Specificity
TN FP

=
+

 
(6) 

 

(4) Positive predictive value 

It calculates how many of the positive samples in the 

predicted samples are predicted correctly, calculates the true 

ischemic stroke patients among those predicted to have 

ischemic stroke, and the calculation formula is as follows: 

 
TP

PPV
TP FP

=
+

 (7) 

 

(5) Negative predictive value 

It calculates how many of the negative samples in the 

predicted samples are predicted correctly, calculates the true 

non-ischemic stroke patients among those predicted to have 

non-ischemic stroke, and the calculation formula is as follows: 

 
TN

NPV
TN FN

=
+

 (8) 

 

(6) F1_Score 

It balances precision and recall by calculating the harmonic 

mean of the two, here it is calculating the harmonic mean 

between PPV and sensitivity, and the calculation formula is as 

follows: 

 
2

1_
PPV Sensitivity

F Score
PPV Sensitivity

 
=

+
 (9) 

 

3.3.3 Experimental results of auxiliary diagnosis 

(1) Experimental results of different network models 

First, experiments compared the diagnosis of ischemic 

stroke disease using different network models, including 

LSTM-LSTM and bidirectional LSTM-bidirectional LSTM 

models. The experimental results comparison is shown in 

Table 3. 

As shown in Table 3, the bidirectional LSTM-bidirectional 

LSTM model overall accuracy has increased compared to the 

LSTM-LSTM model, indicating that using bidirectional 

LSTM as the hidden layer played a role in capturing reverse 

sequence feature information in feature extraction, The 

accuracy and loss changes during the training process of the 

two multi-feature models are shown in Figure 2 respectively. 

(2) Comparison of separate feature model and multi-feature 

combined model experiments 

To compare the effect of fusing two types of patient feature 

data on the diagnosis of ischemic stroke disease, separate 

diagnosis models for single features were established in the 

experiment. The comparison results of single feature diagnosis 

models and multi-feature diagnosis models are shown in Table 

4. 

 

Table 3. Comparison of experimental results of different network models 

 

Model Accuracy Sensitivity Specificity Positive predictive value Negative predictive value F1_Score 

LSTM-LSTM 0.72 0.78 0.69 0.72 0.76 0.75 

Bidirectional LSTM 0.81 0.82 0.80 0.80 0.81 0.81 
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Table 4. Comparison of single feature diagnosis models and multi-feature diagnosis models 

 

Model Accuracy Sensitivity Specificity 
Positive predictive 

value 

Negative predictive 

value 
F1_Score 

Clinical indicators-LSTM 0.64 0.60 0.69 0.72 0.63 0.65 

QEEG data-LSTM 0.71 0.61 0.70 0.73 0.65 0.66 

Clinical indicators-bidirectional LSTM 0.64 0.59 0.72 0.68 0.61 0.63 

QEEG data-bidirectional LSTM 0.77 0.67 0.79 0.80 0.64 0.73 

Multi-feature bidirectional LSTM-

bidirectional LSTM 
0.81 0.81 0.79 0.80 0.80 0.80 

 

Table 5. Comparison of experimental results of models with added attention mechanism 

 

Model Accuracy Sensitivity Specificity 

Positive 

predictive 

value 

Negative 

predictive 

value 

F1_Score 

LSTM-LSTM 0.73 0.78 0.68 0.72 0.75 0.75 

LSTM-LSTM-ATT 0.78 0.82 0.73 0.76 0.79 0.79 

Bidirectional LSTM-bidirectional LSTM 0.80 0.81 0.79 0.80 0.80 0.81 

Bidirectional LSTM-bidirectional LSTM-ATT 0.84 0.89 0.78 0.81 0.87 0.85 

 

 
(a) LSTM-LSTM                                               (b) Bidirectional LSTM 

 

Figure 2. The accuracy and loss changes during the training process of the two multi-feature models 

 

Table 4 reveals that in this experiment, diagnostic results for 

two distinct types of inspection feature data using single 

LSTM models, single bidirectional LSTM models and the 

multi-feature bidirectional LSTM-bidirectional LSTM model 

proposed in this paper were compared. Compared to the 

evaluation outcomes of single feature models and single 

bidirectional LSTM models, the overall performance of the 

multi-feature bidirectional LSTM-bidirectional LSTM model 

reached 80%, giving play to the advantage of multi-feature 

information complementing each other. 

(3) Experiments adding attention mechanism for 

comparison 

In view of the role of the attention mechanism in weighting 

key features, this experiment added the self-attention 

mechanism at the multi-feature level based on the comparison 

of (1) models. The experimental results comparison is shown 

in Table 5. 

As the table above shows, by adding the self-attention 

mechanism to both models, compared to the sensitivity and 

specificity of each model under self-attention, the ability to 

accurately diagnose ischemic stroke and non-ischemic stroke 

improved. In the model proposed in this paper, the ability to 

correctly determine ischemic stroke disease reached 89%. The 

positive predictive value and negative predictive value 

increased overall and achieved balance, indicating that the 

model reduced the likelihood of clinical misdiagnosis. Under 

the self-attention mechanism, the overall prediction accuracy 

of the multi-feature model remained stable or increased, 

demonstrating the effectiveness of the self-attention 

mechanism in improving model accuracy. 

 

 

4. SEGMENTING ISCHEMIC STROKE LESIONS 

BASED ON MRI IMAGES 

 

4.1 MRI image segmentation process 

 

Image segmentation needs to segment lesions in MRI 

images and obtain information such as location, shape, etc. of 

stroke. Due to the structural diversity of brain tissue itself and 

the blurred boundaries around stroke caused by cerebral 

occlusion during stroke, the difference in pixel values between 

ischemic stroke lesions and adjacent normal tissues is very 

small, and the random changes in size, shape and location of 

lesions as well as unbalanced sample training data will affect 

detection accuracy in computer-aided diagnosis. To solve the 

difficulties of brain stroke lesion segmentation, the network 

structure needs to be designed according to the features of 

ischemic stroke in size, gray scale and contrast with 

surrounding tissues. The flow chart of the segmentation 
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algorithm for ischemic stroke in this paper is shown in Figure 

3, and the process is as follows: 

(1) Acquire multi-modal MRI examination images of 

patients; 

(2) Divide the acquired images into training set and test set; 

(3) Perform normalization preprocessing on the divided 

data, and this paper adopts the image transformation method 

in literature [25] to perform data intensity normalization, while 

reserving the gray scale difference with diagnostic value, 

reducing and eliminating the phenomenon of inconsistent gray 

scale in the image. The specific method is to subtract the mean 

of the pixel values and then divide by the variance, so that the 

gray distribution reaches a normal distribution with mean 0 

and standard deviation 1. 

(4) Perform data augmentation after preprocessing to 

expand the training data to 4 times by rotating the extracted 

image blocks by 90°, 180°, and 270° to alleviate the overfitting 

problem that is easily encountered during training with small 

datasets; 

(5) Model training. The optimal trained model is obtained 

through a series of operations such as feature extraction, 

forward propagation of features, reverse adjustment of 

parameters, and iterations; 

(6) Save the model, and evaluate the performance of the 

model of this iteration with evaluation indicators (DICE 

coefficient) after each iteration operation and save the optimal 

training result during the iteration process; 

(7) Test on the test set. Using the model saved in (6) to test 

the test set data and save the corresponding prediction results; 

(8) Quantify the segmentation performance based on the 

prediction results and analyze whether the network model used 

is effective. 

 

 
 

Figure 3. Flowchart of deep learning-based ischemic stroke segmentation algorithm 

 

4.2 Network structure design for lesion area segmentation 

 

The MRI medical images contain three-dimensional context 

information of the image, in order to fully utilize the depth 

information of three-dimensional medical images, multi-scale 

three-dimensional convolutional neural networks (3DCNN) 

are used to realize the three-dimensional segmentation of 

ischemic stroke lesions. Using MRI image blocks sampled as 

the network input can avoid the class imbalance phenomenon 

that often occurs in medical images and obtain more detailed 

segmentation. The algorithm in this paper introduces residual 

units [26] and cascade ideas [27] to the 3DCNN network 

structure to solve the problems of gradient disappearance or 

gradient explosion when the number of layers increases and 

achieve higher precision segmentation of lesions. 

In traditional neural networks, especially in image 

processing, very many convolutional layers, pooling layers, 

etc. are often used, and each layer extracts features from the 

previous layer, so degradation problems generally occur as the 

number of layers increases. Residual networks avoid a series 

of problems brought by deep neural networks using jump 

connections. The ResNet model structure is composed of 

repeated stacking of the same ResNetblock. 

The three-dimensional residual block consists mainly of 

two 3D convolutional layers (3DConv), 2 BN, an ReLU 

activation function and an identity connection, as shown in 

Figure 4. In this paper, 3D-ResNet uses three-dimensional 

convolutional layers as the basic constituent units of residual 

blocks. BN operations are added after each convolutional layer. 

Combining convolution with BN improves the training 

efficiency of 3D-ResNet. 

Research shows that U-Net performs well on medical 

images [28] because the encoding and decoding structure of 

U-Net with jump connections can fuse features at different 

levels. The fixed structure and small sample size of medical 

images together make U-Net the best model in the field of 

medical image segmentation [29]. A cascaded 3D deep 

residual network model structure is shown in Figure 5. 

As shown in the figure above, all convolutional layers use 

3*3*3 convolutional kernels with stride 1 for feature 

extraction, and batch normalization (BN) and rectified linear 

units (ReLU) are used in all convolutional layers to accelerate 

network training speed and enhance gradient backpropagation. 

Due to the loss of too much spatial information when pooling 

operations reduce spatial dimensions, the network uses 

convolutions to replace pooling operations. A convolutional 

layer with kernel size 3*3*3 and stride 2 is fused with a 

pooling layer with kernel size 2*2*2 and stride 2 to form a 

down-convolution module. 

In order to make the resolution of the segmentation result 

the same as the input image size, transposed convolutions with 

kernel size 2*2*2 and stride 2 are used for upsampling in the 

decoding path of the network. Finally, a convolution with 

kernel size 1*1*1 converts the feature map into foreground 

and background parts. 
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Figure 4. 3DResNetblock 

 
 

Figure 5. Ischemic stroke segmentation network model structure 

 

4.3 Lesion segmentation experimental results 

 

In order to further analyze the effectiveness of the ischemic 

stroke lesion segmentation algorithm proposed in this paper, 

multi-scale CNN, 3D cascaded U-Net algorithm, 3D residual 

U-Net algorithm and the cascaded 3D deep residual network 

algorithm proposed in this paper were used to evaluate the 

diagnostic results and experimental segmentation results in 

terms of DICE coefficient, accuracy, sensitivity and other 

indicators. The comparison of segmentation evaluation 

indicators of the four different algorithms on the training set 

and test set is shown in Tables 6 and 7 respectively. 

As shown in Figures 6 and 7, the segmentation results of the 

cascaded 3D deep residual network algorithm are similar to 

the delineated lesions marked by doctors, indicating that this 

network can quickly automatically detect and accurately 

segment lesions to assist doctors in quickly and accurately 

locating patient lesion areas for the next treatment. 

In summary, the cascaded 3D deep residual network 

algorithm proposed in this paper has better performance than 

other comparison algorithms in segmentation accuracy, 

sensitivity and other evaluation indicators, which 

demonstrates the effectiveness of the algorithm in segmenting 

ischemic stroke lesions from MRI images. 

As shown in Figures 6 and 7, the segmentation results of the 

cascaded 3D deep residual network algorithm are close to the 

delineated lesions marked by doctors, indicating that this 

network can quickly and automatically detect and segment 

lesions with high precision to assist doctors in quickly and 

accurately locating patient lesion areas for the next treatment. 

 

Table 6. Training set segmentation evaluation indicators 

 

Algorithm 
DICE mean  

(Standard deviation) 

Accuracy mean 

(Standard deviation) 

Sensitivity mean  

(Standard deviation) 

Multi-scale CNN 0.85(0.08)  0.83(0.11)  0.88(0.08)  

3D Cascaded U-Net 0.92(0.08)  0.95(0.08)  0.90(0.10)  

3D Residual U-Net 0.90(0.07)  0.90(0.09)  0.90(0.07)  

The algorithm in this study 0.91(0.05)  0.94(0.06)  0.89(0.06)  

 

Table 7. Test set segmentation evaluation indicators 

 

Algorithm 
DICE mean  

(Standard deviation) 

Accuracy mean 

(Standard deviation) 

Sensitivity mean  

(Standard deviation) 

Multi-scale CNN 0.76(0.10)  0.75(0.11)  0.75(0.15)  

3D Cascaded U-Net 0.79(0.11)  0.83(0.11)  0.77(0.15)  

3D Residual U-Net 0.78(0.16)  0.79(0.14)  0.79(0.20)  

The algorithm in this study 0.81(0.11)  0.81(0.12)  0.81(0.14)  
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Figure 6. MRI original image of Case 1, lesion area marked by doctors and segmentation result of this study 

 

 
 

Figure 7. MRI original image of Case 2, lesion area marked by doctors and segmentation result of this study 

 

 

5. CONCLUSION 

 

Currently, ischemic stroke as the main type of stroke, the 

incidence rate is increasing year by year globally, with high 

mortality, high disability and multiple complications. Timely 

diagnosis and determination of treatment plans are key to 

slowing down the progression of the disease. Currently, 

clinical diagnosis and localization of lesion areas still rely on 

doctors manually reading images, which is inefficient, 

laborious and subjective. Therefore, this paper proposes to 

build an auxiliary diagnostic model based on deep learning and 

an automatic lesion segmentation algorithm to help doctors 

quickly and accurately customize personalized treatment plans 

based on diagnostic results. 

In building an auxiliary diagnostic model for ischemic 

stroke, considering that the selection of neural network feature 
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types affects the diagnosis accuracy, EEG data is used first due 

to its advantages of rapidly and sensitively reacting to cerebral 

ischemia, combining it with clinical indicators in feature 

selection. A multi-feature pattern recognition method based on 

"clinical indicators + quantitative electroencephalogram" is 

proposed to screen 23 key features for neural network training. 

Meanwhile, attention mechanism is introduced into LSTM to 

design two feature extraction submodels based on 

bidirectional LSTM model for different types of examination 

data, outputting the corresponding feature vectors of each 

submodule and connecting to self-attention mechanism, 

allocating weight vectors and inputting to fully connected 

layer to realize auxiliary diagnosis of ischemic stroke disease. 

The constructed model can learn the association information 

between various features to further improve the diagnostic 

accuracy. Meanwhile, the cascaded 3D deep residual network 

algorithm is proposed to be applied to the segmentation of 

ischemic stroke lesion areas. The residual module is 

introduced in the segmentation architecture to avoid the 

problem of gradient disappearance caused by the increase of 

network depth and solve the problem of difficult subdividing 

of lesions due to unclear features and boundaries. 

Although experiments prove that the overall completion of 

the patient's ischemic stroke auxiliary diagnosis function and 

automatic segmentation of ischemic stroke lesions has been 

realized and high diagnostic accuracy and segmentation 

precision have been achieved, there are still many aspects that 

need to be improved and perfected. For example, the training 

and test data in this paper came from patient data from 

hospitals, which need manual collection or medical equipment, 

there are data types or some missing. Although data cleaning 

and preprocessing have been done, the corrected data may not 

fully represent the indicators data of ischemic stroke 

occurrence. At the same time, due to the limited patient sample 

data, the data generalization ability is still not strong enough, 

which may affect the accuracy of disease classification 

diagnosis. In the future, based on the current research, further 

deepening and expansion is needed, and future research work 

mainly includes the following two aspects: 

(1) In the auxiliary diagnosis model, in order to further 

improve the system diagnostic accuracy while training a 

robust neural network with stronger generalization ability, 

more hospital stroke patient data is needed for training and 

testing, and the causes of ischemic stroke need to be studied. 

Medical history data and expert consultation are collected to 

mine more indicators that can be used for the diagnosis of 

ischemic stroke to form neural network input features that can 

comprehensively reflect the symptoms of ischemic stroke. 

(2) In the automatic lesion segmentation algorithm, due to 

the large amount of training data, especially the large number 

of MRI image modes and image blocks after sampling, the 

computational amount during network training is relatively 

large, resulting in relatively slow lesion segmentation speed. 

Therefore, it is necessary to further optimize the network 

structure to improve the network performance and accelerate 

the segmentation speed while ensuring segmentation accuracy 

to make the running time more efficient to meet the clinical 

application of hospital systems. 
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