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Mechanical structures may exhibit defects during long-time high-temperature operation. 

Infrared image technology quickly and automatically detects mechanical structure defects, 

improves detection speed and accuracy, and reduces the workload of manual detection. 

Although high-temperature infrared image processing method has made significant progress 

in detecting the defects, it still has some shortcomings. Defect features in high-temperature 

infrared images may not be obvious and are mixed with background information, thus 

making it difficult to accurately identify and extract them. Therefore, this research studied 

the detection method of mechanical structure defects after high temperature based on image 

processing. Transform domain denoising method was used to decompose the transform 

domains of images, which distinguished signals and noises in the images. Adaptive Contrast 

Enhancement (ACE) algorithm was used to enhance the images. A feature fusion imaging 

detection framework for infrared and optical imaging of high-temperature mechanical 

structures was constructed, which improved the accuracy and reliability of defect detection. 

Deep neural network was combined with the heuristic fusion section, which further explored 

deep features in the images and improved the fusion effects. The proposed fusion features 

were processed using binary tree classification and hierarchical classifier, which accurately 

identified the abnormal defect regions in the infrared images of high-temperature 

mechanical structures. The experimental results verified that the proposed method was 

effective. 
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1. INTRODUCTION

Mechanical structures in high-temperature environment are 

common in practical applications, such as rocket engines, gas 

turbines, and high-speed train braking system, which may 

exhibit defects, such as fatigue, deformation, and cracks, 

during long-time high-temperature operation [1, 2]. Infrared 

image technology can be used for non-contact detection of 

mechanical structures in high-temperature environment, by 

monitoring the health status of structures in real time, 

detecting potential safety hazards in advance, and avoiding 

accidents [3-8]. Infrared image technology quickly and 

automatically detects mechanical structure defects, improves 

detection speed and accuracy, and reduces the workload of 

manual detection. Timely detection and treatment of 

mechanical structure defects effectively extends the service 

life of equipment, and reduces maintenance costs and 

equipment replacement frequency [9-18]. It is of important 

research significance and broad application value to process 

infrared images of mechanical structures after high 

temperature and detect their defects, because it helps improve 

safety, efficiency, and reliability of equipment in various fields. 

Due to issues, such as extended service life, environmental 

corrosion, and unreasonable construction, mechanical 

structures inevitably have local defects, which affect structural 

performance and may lead to structural failure. Zhang et al. 

[19] proposed a multivariable spatio-temporal regression

model algorithm to identify local defects, based on structural

vibration responses collected using sensor network. First, the

study compared the identification results of the univariate

regression model, the bivariate spatial regression model, and 

the bivariate spatio-temporal regression model. Then a 

multivariable spatio-temporal regression model was proposed, 

and the robustness of damage index was analyzed. Guo et al. 

[20] proposed a solar panel defect detection system, which

automated the detection process and reduced the need of

manual panel detection in large solar power plants. Edge

detection was an important technology in digital image

processing fields, such as image segmentation and feature

extraction. Geometric features of defects were identified by

effectively extracting defect edges in infrared images, because

image edge contained rich information. Liu et al. [21] analyzed

the detection performance of classical edge detection operators

and proposed the fuzzy C-means clustering Canny operator

algorithm to achieve defect edges in infrared images. The

results showed that the algorithm had better performance than

classical edge detection operators and identified the geometric

features of defects more comprehensively and clearly.

Diameters of the defects were calculated based on the image

edge detection results. Vandone et al. [22] proposed an

algorithm to analyze original thermal infrared images. Images

were obtained using the non-destructive laser thermal imaging

evaluation method, which aimed to detect the surface defects.

Compared with existing methods, the proposed method had

some advantages, such as defect detection process automation

and better isolation of defect regions by increasing contrast.

The algorithm was first verified by analyzing simulated

thermal images, and then was confirmed by scanning the

surface of carbon fiber reinforced plastics (CFRP) composite

plates with induced defects in experiment.
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Although high-temperature infrared image processing 

method has made significant progress in detecting mechanical 

structure defects, it still has some shortcomings. Infrared 

images in high-temperature environment may be affected by 

various interference factors, such as ambient light, smoke, and 

dust, resulting in low signal-to-noise ratio and affecting the 

accuracy of defect detection. Defect features in high-

temperature infrared images may not be obvious and are mixed 

with background information, making it difficult to accurately 

identify and extract them. To overcome these shortcomings, 

advanced image processing technologies need to be introduced 

to improve the identification and extraction capability of 

defect features, such as deep learning and computer vision. At 

the same time, algorithm design needs to be optimized to 

reduce computational complexity and improve real-time 

performance. Therefore, this research studied the detection 

method of mechanical structure defects after high temperature 

based on image processing. First, transform domain denoising 

method was used to decompose the transform domains of 

images, and to distinguish signals and noises in the images in 

Chapter 2. ACE algorithm was used to enhance the images. 

Then a feature fusion imaging detection framework for 

infrared and optical imaging of high-temperature mechanical 

structures was constructed in Chapter 3, which improved the 

accuracy and reliability of defect detection. Deep neural 

network was combined with the heuristic fusion section, which 

further explored deep features in the images and improved the 

fusion effects. In addition, the proposed fusion features were 

processed using binary tree classification and hierarchical 

classifier in Chapter 4, which accurately identified the 

abnormal defect regions in the infrared images. Finally, the 

experimental results verified that the proposed method was 

effective. 

2. IMAGE DENOISING AND ENHANCEMENT

Figure 1 shows the flowchart of the mechanical structure 

defect detection method after high temperature proposed in 

this study. Due to the influence of various interference factors 

on the infrared images of high-temperature mechanical 

structures, the noise level was relatively high. Therefore, the 

transform domain denoising method was first used in this 

study, which decomposed the image into transform domains, 

and differentiated the signals and noises in the image. That is, 

the image was decomposed into different frequency sub-bands, 

which helped separate signals and noises. In addition, the 

noises were suppressed, which maintained the image's detailed 

information while removing noises. Let Fl(v,u) and F-l(v,u) be 

the high-pass filters, (vl,ul) and (-vl,-ul) be their corresponding 

center coordinates, respectively, and W be the number of notch 

filtering, then the following formula provided the expression 

of the transform domain denoising algorithm function: 

1

( , ) ( , ) ( , )

W

l l

l

F v u F v u F v u−

=

= (1) 

Figure 1. Flowchart of detection method 

For a N×M two-dimensional infrared image of high-

temperature mechanical structures, the readability of image 

frequency domain was ensured in an ideal state based on 

frequency shift processing. With (M/2,N/2)(N/2,M/2) as the 

center of the frequency domain rectangle, frequency shift was 

achieved by multiplying it with (-1) Aa+b. The distance 

calculation formulas in the filter expression were provided as 

follows: 
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Based on features of the infrared image, ACE algorithm 

needed to be used for contrast enhancement of the image, 

because the image had low contrast and did not have obvious 

defect features, making it difficult to directly and accurately 

detect them. ACE algorithm first divided the image into blocks, 

then calculated the contrast of each local region and adaptively 

adjusted based on the contrast value, and finally merged each 

local region to obtain the enhanced image. By adaptively 

adjusting the contrast of local regions, ACE algorithm 

improved the overall image contrast while maintaining local 

details, which helped highlight the defect features in the image, 

thus improving the accuracy and reliability of defect detection. 

The core of the ACE algorithm used in this study was the 

calculation of contrast gain. Let g(r,l) be the pixel values at 

point (r,l), N(i,j) be with (i,j) as the center, [2m+1,2n+1] be the 

local average value of the window size region, and ε(i,j) be the 

standard deviation of the image region, then the local average 

value and standard deviation of each data point in the image 

were calculated based on the following formulas: 
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After obtaining the local average value and standard 

deviation, adaptive adjustments were made based on the 

contrast value of each local region. The contrast was increased 

for low-contrast regions, and was maintained or appropriately 

reduced for high-contrast ones, which helped maintain the 

overall effects of the image while highlighting details and 

defect features. Let N be the global average value, and β be the 

adjustable coefficient parameter, then the image enhancement 

formulas were provided as follows: 

( , ) ( , ) ( ( , ) ( , ))h i j N i j H g i j N i j= + − (6) 
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After adaptive contrast adjustment, the local regions merged 

into a complete image. At this time, the contrast and detailed 

information of the image were significantly enhanced. 

According to practical application requirements, parameters 

were adjusted to achieve the best enhancement effects, such as 

the size of local regions and contrast adjustment strategies. 

3. FEATURE FUSION IMAGING OF MECHANICAL

STRUCTURES AFTER HIGH TEMPERATURE

Defects may lead to decreased structural performance of 

mechanical structures in high-temperature environment, and 

even cause structural damage, affecting their stability. At the 

same time, defects accelerate the wear and aging of 

mechanical structures in high-temperature environment, and 

may even cause accidents, such as fires and explosions, posing 

a threat to the safety of personnel and mechanical structures. 

Quantitative evaluation of defects monitors the health status 

of mechanical structures in real time, identifies potential safety 

hazards in advance, and avoids accidents. Timely detection 

and treatment of defects helps reduce the maintenance and 

replacement costs of mechanical structures. Multi-physical 

imaging technology and deep learning method can be used to 

achieve automated and efficient defect detection and 

evaluation, and to make more reasonable mechanical structure 

maintenance plans. Combined with multiple imaging modes, 

such as infrared imaging and optical imaging, deep learning 

technology can be used for multimodal information fusion, 

which intelligently optimizes detection strategies and 

parameter adjustments, and effectively improves the accuracy 

and reliability of defect detection, thus helping ensure the 

safety of mechanical structures, extend the lifespan of 

mechanical equipment, improve production efficiency, and 

reduce enterprise operating costs, which has important 

practical significance and application value. 

Figure 2. Schematic diagram of image feature extraction 

based on deep neural network 

In order to integrate useful information of infrared and 

optical images, this study constructed a feature fusion imaging 

detection framework for infrared and optical imaging, which 

aimed to improve the accuracy and reliability of detecting 

high-temperature mechanical structure defects. Deep neural 

network was combined with the heuristic fusion section, which 

further explored deep features in the image and improved the 

fusion effects. Figure 2 shows a schematic diagram of image 

feature extraction based on deep neural network. As a deep 

learning method based on supervised learning, deep mode 

region learning trained neural network using labeled infrared 

and optical images, and learned local patterns and regional 

information in the images. Features were extracted layer by 

layer in a multi-layer network, which achieved high-level 

feature fusion of infrared and optical images. As a deep 

learning method based on unsupervised learning, deep residual 

fusion network (DRFN) learned feature representation in 

infrared and optical images using unsupervised learning 

methods, such as AutoEncoder or generative adversarial 

network (GAN). During the fusion process, deep residual 

network was used to learn residual information of infrared and 

optical images, thus achieving more precise feature fusion. 

This research studied the efficient fusion of infrared and 

optical imaging features of high-temperature mechanical 

structures based on two types of networks. 
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DRFN mainly included four parts, namely, input layer, 

feature extraction layer, fusion layer, and the classifier. 

Infrared thermal imager recorded the spatial distribution 

changes of surface temperature and temperature transient 

response of mechanical structures in high-temperature 

environment. From a mathematical perspective, let B  ̄be the 

tensor containing spatial-transient information, Ma×Mb×M be 

the dimension, Ma×Mb be the corresponding space, and M be 

the corresponding transient state. Finally, the recorded infrared 

and optical images were input into the input layer together. 

Composed of multiple convolutional and pooling layers, the 

feature extraction layer was used to extract local features of 

infrared and optical images. Before entering the feature 

extraction layer, this study separated the principal components 

of the thermal imaging sequence and used principal 

component analysis, which had the ability to automatically 

extract spatial and temporal patterns, to distinguish transient 

features of temperature changes in defect regions. In order to 

facilitate the calculation of principal component analysis, the 

three-dimensional tensor of input mechanical structure surface 

temperature needed to be converted into a two-dimensional 

matrix. Let U∈RMa×Mb×M be the entire thermal imaging video 

sequence, B(p)∈RC×M be the vectorized result of U∈RMa×Mb×M 

frame by frame, where C=Ma×Mb, B(p) be a mixture of 

observation results, An(p) be the thermal mode features of 

thermal imaging sequence, n=1,2,...,N be the corresponding 

sequence numbers of features separated by principal 

component analysis, and qn be the mixing parameter, then An(p) 

had regional features with different spatio-temporal 

distributions, which were correspondingly divided into 

various principal components. The expression of B(p), which 

was considered as a linear instantaneous mixed model, was 

provided as follows: 

1
( ) ( )

N

n nn
B p q A p

=
= (8) 

where, A’n(p)=[vec(A1(p)),vec(A2(p)),...,vec(AN(p))]. 

The fusion layer of DRFN fused the extracted infrared and 

optical image features, using weighted sum, feature cascading, 

or other feature fusion techniques. The classifier or regressor 

were used for defect detection or quantitative evaluation 

according to the fused features. Binary tree classification 

method and hierarchical classifier were used in this study, and 

introduced in the next chapter. DRFN constructed network 

structure using the deep learning framework PyTorch and used 

labeled infrared and optical images for training. During the 

training process, stochastic gradient descent (SGD) was used 

for weight update. After the training was completed, the 

network was applied to actual defect detection tasks of high-

temperature mechanical structures. 

Figure 3. Schematic diagram of DRFN structure 

Architecture of DRFN mainly included four parts, namely, 

input layer, feature extraction layer, residual learning layer, 

and fusion layer. Figure 3 shows a schematic diagram of the 

DRFN structure. The input layer was used to receive infrared 

and optical images. Also composed of multiple convolutional 

and pooling layers, the feature extraction layer was used to 

extract feature representations of infrared and optical images. 

The residual learning layer learned residual information of 

infrared and optical images using deep residual network, such 

as ResNet. The fusion layer, which was designed based on L1 

norm, fused the features extracted by the feature extraction 

layer with the residual information learned by the residual 

learning layer. The L1 norm of each point (a,b) was first 

calculated using the extracted transient features of temperature 

changes. Let Ψm
i(i=1,...,l) be the high-dimensional features 

extracted by the encoder from the input image of the i-th 

imaging system, l≥2 be the number of imaging systems, 

m=1,2,...,M(M=64) be the sequence number of corresponding 

feature in the high-dimensional feature map, and M be the total 

amount of output features for each input image. Based on the 

regional average operator in the L1 norm graph, the activity 

level evaluation graph Ni(a,b) corresponding to each input 

image was calculated, which obtained: 
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Let Qi(a,b) be the weighted mask of each input image, then 

Qi(a,b) was further calculated: 
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Let Ψm
g(a,b) be the fused feature map, then it was calculated 

using the following formula: 
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1

( , ) , ,
lm m

g i ii
a b Q a b a b

=
 =  (11) 

Figure 4. Schematic diagram of encoder structure 

After infrared and optical images were fused, the feature 

map was finally processed to reconstruct the fusion image. 

DRFN built network structure using PyTorch and used 

unlabeled infrared and optical images for training. During the 

training process, AutoEncoder was used for feature 

representation and residual information learning. After the 

training was completed, the network was applied to actual 

defect detection tasks of high-temperature mechanical 

structures. Figure 4 shows a schematic diagram of the encoder 

structure. 
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4. CLASSIFICATION AND IDENTIFICATION OF

HIGH-TEMPERATURE MECHANICAL STRUCTURE

DEFECTS

In order to identify and classify multiple abnormal defect 

regions that may exist in the infrared image of high-

temperature mechanical structures, image cropping and 

segmentation techniques needed to be used first to divide the 

original image into single suspicious region. Then contour 

image and single suspicious region image were used as the 

basis for classification and identification of high-temperature 

mechanical structural defects. 

For the feature fusion results in the previous section, global 

and regional fusion features, which were helpful for 

classification and identification, needed to be further selected 

from high-temperature mechanical structure image. Finally, 

binary tree classification and hierarchical classifier were used 

to process these features, which accurately identified the 

abnormal defect regions in the infrared image of high-

temperature mechanical structures. 

Binary tree classification is a classification method based on 

tree structure, where each non-leaf node represents a judgment 

condition, and the dataset is divided into two parts according 

to the conditions. This classification method is easy to 

understand and implement, and splits based on the importance 

of features, which helps identify key features. 

After building binary tree structure, the number of levels in 

the binary tree was determined. The multi-classification 

problem of classifying and identifying high-temperature 

mechanical structure defect image was decomposed into a 

series of binary classification subproblems, that is, the 

problems of "hot spots" and "cold spots" on the surface of 

high-temperature mechanical structures. 

In the infrared image of high-temperature mechanical 

structures, occurrence of "hot spots" and “cold spots" usually 

meant that the temperature distribution on the structure surface 

was uneven, may indicating potential problems in the structure. 

Specifically, the hot spots in the infrared image indicated that 

the temperature of certain region was relatively high, which 

may mean that the parts in the mechanical structures rubbed or 

wore during movement, resulting in hot stars and increased 

local temperature. Damaged bearing or poor lubrication, and 

excessive load borne by the mechanical structures may also 

lead to increased local temperature. 

Cold spots in infrared image indicated relatively low 

temperature in certain region, which may mean excessive heat 

dissipation in local regions, leading to decreased temperature. 

Cold spots reflected structural defects, such as cracks and 

delamination, which hindered local heat conduction. Uneven 

material composition or thickness may lead to changes in the 

thermal conductivity characteristics of local regions, resulting 

in cold spots. 

Each node in the binary tree structure corresponded to a 

binary classification problem of "hot spots" and "cold spots", 

with the left and right sub-nodes representing two 

subcategories respectively. The tree stopped growing, when 

the preset tree depth was reached, the number of samples 

contained in leaf nodes was lower than a certain threshold, or 

the purity of nodes was higher than a certain threshold. For 

each node, after selecting a feature and a partition threshold, 

the sample of the current node was allocated to the left or right 

sub-nodes based on whether the feature value was greater than 

the threshold. Appropriate binary classification algorithm was 

used to train the classifier of each node. The third and fourth 

steps were repeated for each sub-node until the stop conditions 

were met. 

Figure 5. Hierarchical classifier structure diagram 

Notes: 1. Friction or wear 

2. Damaged bearing or poor lubrication
3. Excessive load borne by the mechanical structures

4. Cracks and delamination 

5. Heat dissipation problems 

The hierarchical classifier is a hierarchical classification 

method, which first classifies data at coarse-grained level, and 

then continues to classify data at fine-grained level within each 

coarse-grained category. This method has strong scalability 

and effectively handles the imbalance problem between 

categories. Hierarchical classification avoids one-time 

complex classification of the entire dataset, which reduces 

computational costs. The key to designing a hierarchical 

classifier is to set the hierarchical structure, that is, to 

determine the number of layers of the classifier and the 

classification task for each layer based on the relationships 

between categories. For each layer, after selecting appropriate 

features and classification criteria based on the classification 

task of the current layer, the input samples are allocated to 

different subcategories. 

Adaptive hierarchical classifier structure was constructed in 

this study based on Fisher criterion and confusion matrix, 

which effectively classified five types of high-temperature 

mechanical structure defects. Figure 5 shows the structure 

diagram. 

The dataset was divided into training and testing sets. A 

classifier based on Fisher criterion was trained on the training 

set, and then was used for prediction on the testing set. 

According to the prediction results and the real category, a 

confusion matrix was constructed to measure the similarity 

between modes. The confusion matrix DN was given by the 

following formula: 

11 1

1

m

m mm

dn dn

DN

dn dn

 
 

=  
 
 

(12) 

The confusion matrix was analyzed to determine the 

category pairs with high similarity, which were divided into 

groups and formed a coarse-grained hierarchical structure. In 

each coarse-grained category, Fisher criterion was used 

continuously to construct a measure matrix for finer grained 

classification. The calculation method of the measure matrix 

was given by the following formula: 
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The measure matrix was a symmetric matrix, and its 

similarity measure PN was normalized, which obtained the 

following formula: 

, max/V ij ijpn kn p= (14) 

The Fisher criterion was used to train the classifier at each 

level. For the coarse-grained classifier, eigenvectors were 

input and category groups were output. For the fine-grained 

classifier, eigenvectors were input and specific defect 

categories were output. Finally, after setting similarity 

threshold β and dissimilarity threshold γ, the categories were 

regrouped according to the following rules: 

① If pnV,ij≤β, i and j were combined to form a composable

set Hn={Di,Dj}. If pnV,ij≥γ, i and j were combined to form a 

combined set Hm={Di,Dj}. At this time, if Hnl∩Hn2=∅, then the 

two were merged into a composable set. 

② If β≤pnV,ij≤γ, in the composable set H={Di,Dl} and the

non-composable set H’={Di,Dj}, j could not be added to H. 

③ If β≤pnV,ij, and pnV,il≤γ, as well as composable sets

H1={Dj,Dl} and H2={Di,Dl} existed, they were combined only 

when pnV,ij≤γ and pnV,fl≤γ. 

5. EXPERIMENTAL RESULTS AND ANALYSIS

Denoising and enhancement processing effects of infrared 

images of high-temperature mechanical structures using 

transform domain denoising method and ACE algorithm were 

analyzed based on Table 1.  

Table 1. Quantitative evaluation of image preprocessing results 

Defect type 
Peak signal-to-noise ratio Entropy 

Structural similarity 
Original image Processed image Original image Processed image 

Friction or wear 38.01 42.81 6.99 7.31 1.00 

Bearing problems 36.31 42.61 7.12 7.32 1.00 

Excessive load 41.03 43.91 6.81 7.03 1.00 

Cracks and delamination 38.31 42.92 7.02 7.22 1.00 

Material problems 37.15 42.85 7.03 7.25 1.00 

Table 2. Measure matrix 

Measure matrix 

Prediction category 

Friction or 

wear 

Bearing 

problems 

Excessive 

load 

Cracks and 

delamination 

Material 

problems 

Real 

category 

Friction or wear 1 1.5131 1.7151 1.3415 1.122 

Bearing problems 0 0 1.7215 1.2415 1.2341 

Excessive load 1 0 0 1.6154 1.5154 

Cracks and delamination 0 1 0 0 1.0631 

Material problems 1 1 0 1 0 

Table 3. Normalized similarity metric matrix 

Normalized similarity metric 

matrix 

Prediction category 

Friction or 

wear 

Bearing 

problems 

Excessive 

load 

Cracks and 

delamination 

Material 

problems 

Real 

category 

Friction or wear 0 0.8151 0.9151 0.7165 0.6151 

Bearing problems 0 0 1.0211 0.7125 0.7151 

Excessive load 1 0 0 0.9646 0.9151 

Cracks and delamination 0 0 1 0 0.6114 

Material problems 0 1 0 0 0 

Table 4. Classification results of the hierarchical classifier 

Classification results of the 

hierarchical classifier 

Prediction category 

Insulation layer 

detachment 

Bearing 

problems 

Excessive 

load 

Cracks and 

delamination 

Material 

problems 

Real category 

Friction or wear 1 0 0 0 0 

Bearing problems 0 1 0 0 0 

Excessive load 0 0 1 0 0 

Cracks and delamination 0 0 0.05 1 0 

Material problems 0 0 0 0 1 

As shown in Table 1, after the transform domain denoising 

method and ACE algorithm were used, all indexes of the 

infrared images improved. The Peak Signal to Noise Ratio 

(PSNR) of the processed image improved among all defect 

types, indicating that the quality of the processed image 

improved with obvious denoising effects compared with the 
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original image. In addition, the entropy of the processed image 

also increased among all defect types. Higher entropy 

indicated richer information in the image because entropy 

represented the amount of information in the image. Therefore, 

the results indicated that the processed image contained more 

information on defects, which helped improve the 

identification accuracy. The structural similarity (SSIM) 

values in the table were all 1.00, indicating high structural 

similarity between the processed and the original images. This 

meant that the processing process improved image quality 

while preserving the original structural information of the 

image, which was beneficial for subsequent defect 

identification. In summary, the transform domain denoising 

method and ACE algorithm had significant processing effects 

of the infrared image of high-temperature mechanical 

structures. The processed image was improved in terms of 

quality, amount of information, and structural similarity, 

which helped improve the accuracy and reliability of 

subsequent defect identification. 

Tables 2 and 3 present the calculated measure matrix and 

normalized similarity metric matrix. Table 4 presents the final 

classification results of five types of high-temperature 

mechanical structure defects processed by the infrared image. 

As shown in the above table, when the five types of high-

temperature mechanical structure defects processed by the 

infrared image were classified using the hierarchical classifier, 

most of the predicted results were consistent with the real 

categories. The classifier fully and accurately predicted four 

types of defects, namely, friction or wear, bearing problems, 

excessive load, and material problems, demonstrating high 

accuracy. In addition, the classifier had high prediction 

accuracy (95%) for the defect category of cracks and 

delamination. According to the analysis in the above table, the 

hierarchical classifier has accurately identified high-

temperature mechanical structure defects in most cases, 

indicating that the proposed defect identification method is 

effective. Although the classifier has certain errors in 

identifying the defect category of cracks and delamination, the 

overall accuracy is still high and can be used as the basis for 

practical applications. The method rapidly and accurately 

identified high-temperature mechanical structure defects, 

which helped reduce equipment failures, improve production 

efficiency, and reduce maintenance costs. At the same time, 

early identification and treatment of these defects ensured 

personnel safety and avoided safety accidents caused by 

equipment failures. 

In the experiment of manually preset buried mechanical 

structure defects, the circular defect regions and material 

bonding regions were taken as examples in this study. First, 

representative mechanical structure materials were selected, 

such as steel and aluminum, to ensure the certain-degree 

universality of experimental results. Different types of defects 

were created on experimental materials, such as circular 

defects, cracks, and delamination. In order to facilitate 

observation and analysis, the surface of the materials was 

colored to highlight defects. Cutting tools, such as drills and 

cutting machines, were used to create circular defects on 

mechanical structure materials. Circular defects with different 

sizes and depths were created according to actual needs. 

However, the defects should have regular shapes and flat 

edges. The defect regions were covered with a layer of 

materials similar to the mechanical structure materials, which 

simulated the possibly buried defects in actual situations. 

During the covering process, the covering layer should have 

moderate thickness, no bubbles, and be closely adhered to the 

base materials. The infrared image was used to detect preset 

buried defects in order to evaluate the effectiveness of 

different detection techniques in identifying defects. Figure 6 

shows the quantitative analysis results of infrared thermal 

imaging. Figure 7 shows a schematic diagram of the test pieces. 

(a) deformed region 1 (b) deformed region 2

Figure 6. Quantitative analysis results of infrared thermal 

imaging 

(a) physical image (b) theoretical schematic

diagram of regions 1 and 2

Figure 7. Schematic diagram of the test pieces 

Table 5. Detection performance comparison results of different algorithms 

Test piece Evaluation index PCA SVM RF CNN DBN DBSCF SIASM TSR The method in this study 

1 
F-score 1.01 1.03 0.99 1.03 1.01 1.06 1.02 0.91 1.03 

SNR 2.21 2.42 3.92 2.33 2.33 2.88 1.84 1.31 3.9 

2 
F-score 0.87 1.03 1.03 1.06 1.67 1.01 0.84 0.87 1.05 

SNR 0.33 0.61 0.41 1.66 0.78 1.67 0.56 0.31 5.6 

3 
F-score 0.64 0.91 0.71 0.59 2.06 0.78 0.66 0.66 0.94 

SNR 4.91 1.41 2.23 1.03 1.83 2.06 1.83 4.21 4.06 

4 
F-score 0.81 1.33 1.6 3.06 1.03 1.31 1.03 1.51 1.05 

SNR 1.51 3.42 3.42 3.54 2.21 2.23 2.21 0.51 4.77 

5 
F-score 1.03 0.92 0.91 0.92 0.91 0.89 0.91 0.94 1.02 

SNR 1.74 1.98 1.98 NaN NaN 1.41 2.41 2.41 2.71 

6 
F-score 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 

SNR 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 
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Table 6. Comparison results of run time in different algorithms 

Test piece PCA SVM RF CNN DBN DBSCF SIASM TSR The method in this study 

1 0.7 1.8 61.8 124.4 20.3 240.6 11.4 202.6 6.5 

2 1.3 2.3 65.3 130.6 22.1 273.7 13.5 231.5 7.3 

3 0.8 2.2 63.5 128.3 21.6 265.6 12.3 210.6 6.8 

4 0.7 1.8 59.4 114.6 20.1 254.8 9.9 204.3 7.2 

5 0.6 1.6 42.7 103.8 15.6 223.4 8.2 189.6 6.4 

6 0.5 0.8 35.7 82.6 11.6 189.6 8.4 145.6 4.1 

7 0.6 1.2 39.6 83.6 11.5 190.6 9.4 152.4 4.3 

8 0.6 1.3 46.5 99.4 14.3 203.6 9.8 165.3 4.4 

9 0.5 1.2 38.4 95.7 13.8 189.6 9.3 152.6 4.2 

10 0.5 1.1 38.5 90.6 12.6 180.5 8.5 144.3 3.85 

11(1) 1.3 2.1 68.7 124.6 15.4 281.6 11.6 214.6 7.1 

12(2) 1.4 1.6 60.7 130.5 14.6 254.6 13.4 189.6 5.2 

Average value 0.9 1.5 51.7 109.6 16.1 231.6 10.5 183.5 5.4 

Table 5 presents the detection performance comparison 

results of different algorithms. Th performance of different 

algorithms in identification and detection of high-temperature 

mechanical structure defects was compared and analyzed 

based on the above table. The table focused on two evaluation 

indexes, F-score and signal-to-noise ratio (SNR). The former 

referred to F value, a comprehensive index measuring the 

accuracy and recall of the classifier. The latter referred to an 

index measuring image quality. The DBSCF, SIASM, and the 

method proposed in this study had high F-score values on most 

test pieces, indicating that these three methods had good 

performance in the accuracy and recall of defect identification. 

However, other algorithms also had high F-score values on 

certain test pieces, such as PCA, SVM, RF and so on, 

indicating that these algorithms also had certain defect 

identification capability. The method proposed in this study 

had high SNR values on most test pieces, indicating that the 

method had advantages in image quality. The SNR values of 

other algorithms fluctuated significantly, indicating that they 

had unstable performance when dealing with different test 

pieces. In summary, the method proposed in this study 

performed well in identifying and detecting high-temperature 

mechanical structure defects, with high F-score and SNR 

values. Although the SIASM method also had advantages in 

F-score, its performance in SNR was unstable. Other

algorithms, such as PCA, SVM, and RF, also identified defects

on certain test pieces to some extent, but their overall

performance was relatively low.

Table 6 presents the comparison results of run time in 

different algorithms. According to the above table, PCA and 

SVM methods had relatively short run time on most test pieces, 

indicating that these two methods had advantages in 

computational complexity and were suitable for scenarios with 

high real-time requirements. The RF, CNN, DBN, and DBSCF 

methods had longer run time on most test pieces, especially 

the DBSCF method, which may not be suitable for scenarios 

with high real-time requirements. These methods may require 

a longer training and optimization process, but may provide 

higher identification accuracy in some cases. The run time of 

the method in this study on most test pieces was somewhere 

between that of other algorithms, indicating that it achieved a 

good balance between computational complexity and 

identification performance. 

6. CONCLUSION

Based on image processing, the detection method of 

mechanical structure defects after high temperature was 

studied in this research. Transform domain denoising method 

was used to decompose the transform domains of images in 

order to distinguish the signals and noises. ACE algorithm was 

used for image enhancement. A feature fusion imaging 

detection framework for infrared and optical imaging of high-

temperature mechanical structures was constructed, which 

improved the accuracy and reliability of defect detection. Deep 

neural network was combined with the heuristic fusion section, 

which further explored deep features in the images and 

improved the fusion effects. Binary tree classification and 

hierarchical classifier were used to process the proposed 

fusion features, which accurately identified the abnormal 

defect regions in the infrared images of high-temperature 

mechanical structures. Combined with the experiment, 

denoising and enhancement processing effects of the infrared 

images using transform domain denoising method and ACE 

algorithm were analyzed, which verified the significant 

processing effects of the method and the algorithm. The final 

classification results of five types of high-temperature 

mechanical structural defects processed by the infrared images 

were provided, which verified that the hierarchical classifier 

accurately identified the defects in most cases, indicating that 

the proposed defect identification method was effective. The 

detection performance comparison results of different 

algorithms were provided, which verified that the method 

proposed in this study performed well in identifying and 

detecting high-temperature mechanical structure defects, with 

high F-score and SNR values and fast run time, thus verifying 

the effectiveness of the proposed method. 
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