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Recently, electrocardiogram (ECG) biometric recognition has become an emerging area of 

interest in the identity identification technology. However, robust and accurate of ECG 

biometric recognition are challenging. Sparse representation-based classification (SRC) and 

deep neural networks (DNNs) have achieved significant success in biometric recognition, 

but there are some problems, and SRC-based learning methods are one-step models where 

the latent discriminative information cannot be fully exploited. DNNs are complex models 

and require large amounts of training data. The proposed method describes the design of a 

multi-grained deep cascade learning for ECG biometric recognition that addresses above 

problems. First, the global and local features are generated by principal components analysis 

(PCA) and the use of one-dimensional multi-resolution local binary pattern (1DMRLBP) 

method. Second, we obtain new features of class coding based on the sparse representation 

by multi-granularity scanning. Third, we propose an end-to-end deep cascade learning 

model without back-propagation to seek more discriminative information. This approach 

not only effectively solves the one-step model problem of sparse representation, but also 

effectively reduces the ECG signal noise. Extensive experiments are conducted on four ECG 

datasets. The results demonstrate that the proposed method can outperform other state-of-

the-art methods in terms of both accuracy and efficiency. 
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1. INTRODUCTION

Biometric recognition is one of the most popular and 

challenging technologies for identification [1]. At present, 

many kinds of biological characteristics can be used for 

personal identification and they can be mainly divided into two 

categories: physiological characteristics and behavioural 

characteristics. Common physiological characteristics include 

human faces [2], fingerprints [3], hands [4, 5], irises [6, 7], and 

ears [8, 9]; behavioural characteristics include voices [10], 

gaits [11], signatures [12, 13], and keystrokes [14, 15]. 

However, these human biological characteristics are easy to 

falsify, which makes this type of approach to personal 

identification vulnerable. For example, presenting a 

photograph of a subject may deceive a system involved in face 

recognition, and a recording of a voice of a person may 

similarly deceive a speaker recognition technology. In a few 

cases, access to biometric systems has also been achieved 

using synthetic fingerprints made out of wax. 

Forsen et al. [16] first proposed the use of 

electrocardiograms (ECG) for human feature recognition. Biel 

et al. [17] reported their highly influential work on ECG 

biometrics in 2001. ECG biometrics has since attracted 

increasing research interest and is regarded as one of the most 

promising biometric techniques. ECG biometrics has several 

unique advantages compared with other biometric traits and 

they can be summarized as follows: (1) the ECG signal is 

common to all organisms and it is not forgotten or lost; (2) the 

ECG signal is hard to replicate or spoof, which leads to the 

high security of ECG biometrics; (3) the ECG signal is a one-

dimensional signal, which makes it easy to process and has 

less calculation data; (4) the ECG is used in the diagnosis of 

heart disease worldwide. As a result, the ECG signal can be 

gathered using many inexpensive sensing devices. 

In recent years, sparse representation has been widely used 

in the ECG biometric recognition. The main idea of the sparse 

representation is to seek the optimal approximation of the 

signal in a certain space. In the transform domain, the original 

signal is represented by as few atoms as possible, which allows 

the basic information of the original signal to be grasped as a 

whole. Sparse representation learning can efficiently handle 

noise and many related methods have been proposed for ECG 

biometric recognition. Wang et al. [18] explored a novel 

framework to extract compact and discriminative features 

from ECG signals for human identification based on sparse 

representation of local segments. Tan et al. [19] presented a 

kernel sparse representation classifier to enhance system 

performance in a high-dimensional feature space for ECG 

biometric recognition. Li et al. [20] described a robust ECG 

biometrics method based on the graph regularized non-

negative matrix factorization and sparse representation. 

Goshvarpour and Goshvarpour [21] developed an 

identification system using a non-fiducial one-lead ECG 

feature set based on the sparse representation. Huang et al. [22] 

proposed a unified sparse representation framework that 

collaboratively exploits joint and specific patterns for ECG 

biometric recognition. However, the sparse representation-

based coding method is a one-step model, and hence the latent 

discriminative information of the coding error vectors cannot 

be fully exploited. 

Many researchers are inclined to use neural networks to 

handle ECG signals because of the considerable progress that 
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has been made in the development and application of deep 

neural network (DNN) technology. The recognition rate is 

significantly higher using this type of approach compared with 

other recognition methods [23-25]. The advantage of neural 

networks lies in their unique ability to learn new knowledge 

and perform parallel data processing at high speed. Neural 

networks can still be corrected automatically through a large 

amount of training to generate accurate results even if the 

eigenvalues are somewhat inaccurate. Although neural 

networks have significant advantages, they also have some 

disadvantages. First, training requires a huge amount of data, 

which makes it impossible for deep neural networks to be 

directly applied to tasks that have small-scale data. Second, 

deep neural networks are complex models and powerful 

computational facilities are usually required for the training 

process. More importantly, deep neural networks have too 

many hyper-parameters, and the learning performance 

depends on careful tuning of these factors. The multi-grained 

cascade forest (gcForest) proposed by Zhou and Feng [26] in 

2017 provided new ideas for pattern recognition and it 

overcomes some of the shortcomings of a DNN. The gcForest 

has fewer hyper-parameters than the DNN and can be easily 

trained without too many parameter adjustment skills. In many 

areas, the gcForest can achieve recognition results comparable 

to or better than the DNN.  

We designed a multi-grained deep cascade learning model 

with global and local features for ECG biometric recognition, 

which can solve the one-step model problem of sparse 

representation, and also reduce the ECG signal noise. The 

main contributions of this paper are summarized as follows: 

(1) Global and local features are generated by principal

components analysis (PCA) and one-dimensional multi-

resolution local binary patterns (1DMRLBPs). (2) After the

multi-granularity scanning, we obtain some new features

through the getting new class vector (GNCV) function based

on sparse representation. (3) We propose an end-to-end deep

cascade learning model that can effectively reduce ECG signal

noise and help find more discriminative information.

The paper is organized as follows: Section 2 reviews the 

literature on the relevant technologies used in ECG biometric 

recognition. Section 3 describes the proposed method. Section 

4 reports the experimental results and provides a 

comprehensive analysis. Finally, we report the conclusion of 

our study and describe areas for future work. 

2. RELATED WORK

2.1 ECG biometric recognition 

Research on ECG biometrics can be divided into two 

categories: fiducial-based and non-fiducial–based approaches 

[27, 28]. Healthy ECG heartbeat has six fiducial points, 

namely P, Q, R, S, T, and U. These fiducial points determine 

the start and end positions of each ECG signal waveform, the 

peak value, the amplitude of the waveform, and the slope of 

the waveform. In the fiducial-points–based approaches, the 

distance, angle, area, and amplitude between these fiducial 

points are usually extracted as features. Biel et al. [17] 

proposed a new approach in human identification that uses a 

standard 12-lead to record the ECG signals of 20 people aged 

20–55 and obtains a 100% recognition rate. Israel et al. [29] 

noted the lack of automatic feature extraction in the method 

presented by Biel and introduced an ECG biometric 

recognition method that does not require any waveform 

detections based on classification of coefficients from the 

discrete cosine transform (DCT) of the autocorrelation (AC) 

sequence of ECG data segments. Kyoso and Uchiyama [30] 

proposed that the feature parameters were sampled from the 

intervals and durations of the electrocardiographic waves. The 

interval is extracted using the characteristic points appearing 

on the waveform of the second-order derivative and 

discriminant analysis is used for identification. The challenge 

in the fiducial-based approaches is that the recognition rate 

depends on the positioning accuracy of the fiducial points. At 

present, there is no unified standard for positioning the ECG 

signal boundary, which somewhat affects the accuracy of 

feature extraction. 

The detection of fiducial points increases the complexity of 

ECG identification to a certain extent. However, the non-

fiducial point feature extraction approach does not need to 

locate the peak points and boundary points of the waveform. 

A non-fiducial approach is a holistic approach that extracts the 

characteristic parameters from the ECG segments of multiple 

single-cycle heartbeat signals as a whole. Plataniotis et al. [31] 

proposed to use autocorrelation characteristics of the ECG 

signal to perform identity recognition in 2006. The ECG signal 

was divided into non-overlapping windows and the standard 

autocorrelation was calculated. Jung and Lee [32] presented an 

ECG identification method based on non-fiducial feature 

extraction using window removal, nearest neighbor (NN), 

support vector machine (SVM), and linear discriminant 

analysis (LDA). 

Currently, DNNs have been used in ECG biometrics to 

improve performance. Since DNN has the ability to effectively 

learn features from data, it has become increasingly popular 

for many tasks that require ECG signals for analysis. Page et 

al. [33] devised a streamlined approach that utilized neural 

networks to both identify QRS complex segments of the ECG 

signal and to subsequently perform user authentication on 

these segments. da Silva Luz et al. [34] described an ECG-

based biometric system using a deep autoencoder to learn a 

lower-dimensional representation of heartbeat templates. 

2.2 PCA and 1DMRLBP features 

PCA is a classic feature extraction technique that can 

eliminate the correlation of the original signal to help find the 

main influencing factors of the internal connection of the 

signal. It reveals the essence of things and simplifies the 

problem. PCA is mainly suitable for data with a relatively 

large linear correlation of parameters and the ECG signal is a 

time-continuous signal. PCA can therefore use all ECG signals 

as feature vectors to obtain the global feature of the ECG. Chen 

et al. introduced a PCA method in exacting the heartbeat 

features [35]. Zhang and Zhang [36] determined the principal 

characteristics of the signal by means of the PCA technique 

and obtained satisfactory classification results. 

In the field of computer vision and image processing, the 

local binary pattern (LBP) features were first proposed in an 

earlier study [37] and classically applied on two-dimensional 

(2D) images. Houam et al. [38] proposed a new approach that 

adapts the two-dimensional classical LBP to one-dimensional 

signals to classify textures from osteoporotic and control cases. 

One-dimensional multi-resolution local binary patterns 

(1DMRLBP) are inspired by image-based LBP [39], but this 

method has been modified and enhanced to be suitable for one-

dimensional signals that can tolerate noise, preserve ECG 
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heartbeat morphology, and resolve the temporal variations of 

ECG signals through an extraction mechanism. In addition, the 

1DMRLBP feature type is an online feature extraction, which 

can be applied in real-time and only depends on past and 

current observations. Wang et al. [40] proposed to extract the 

multi-scale differential feature (MSDF) from the one-

dimensional ECG signal and subsequently fuse MSDF with 

1DMRLBP to generate the MSDF-1DMRLBP method. Su et 

al. [41] used 1DMRLBP as an ECG feature descriptor to 

capture the local features of the ECG signal.  

2.3 Cascade forest 

The multi-grained cascade forest is a decision tree ensemble 

approach. Here, the cascade structure of deep nets is retained 

but the opaque edges and node neurons are replaced by groups 

of random forests paired with completely random tree forests. 

In this case, there are usually two classes to predict in each 

cascade layer and four in total. There are two important stages 

in the gcForest: the multi-grained scanning stage and the deep 

cascade learning stage. The gcForest performs well in various 

domains of feature extraction compared with DNN even with 

fewer training samples. Adjusting the parameters is a tedious 

process. The gcForest can achieve excellent performance with 

almost the same set of hyperparameters and is easy to train. In 

terms of processing speed, the parallel implementation of 

gcForest is much faster than DNNs. The gcForest adaptively 

decides its model complexity by terminating training when 

there is no significant performance improvement unlike most 

DNNs where model complexity is fixed. 

At present, many researchers have adopted the gcForest 

model to obtain ideal recognition results. Ding et al. presented 

a multi-grained scanning-based weighted cascade forest that 

has been applied to fault diagnosis in chemical processes [42]. 

Lev et al. proposed a modified version of the confidence 

screening mechanism based on an adaptive weighting of every 

training instance at each cascade level of the deep cascade 

forest [43]. Liu and Yang [44] explored a novel and effective 

visual object tracking based on gcForest. 

3. PROPOSED METHODS

3.1 Base feature extraction 

3.1.1 PCA feature 

Suppose that 𝑋 = [𝑥1, 𝑥2, … … 𝑥𝑛] ∈ 𝑅𝑚  denotes n 
heartbeats. The goal of PCA is to reduce the dimension of the 

data matrix by finding p new variables smaller than m. The 

principal component projects the high-dimensional data into 

the subspace spanned by the eigenvector with the largest 

eigenvalue p, while remaining uncorrelated and orthogonal. 

Each principal component is a linear combination of the 

original variables. We now summarize the PCA method as the 

following steps: 

Step 1: Calculate the mean m of the original feature vectors: 

1

1 N

i

i

m x
n =

=  (1) 

where, N represents the number of samples and 𝑥𝑖 represents

the original feature vectors. 

Step 2: Compute the covariance matrix S: 

1

1
( )( )

N
T

i i

i

S x m x m
N =

= − − (2) 

Step 3: Process the following decomposition: 

i i ie Se = (3) 

Step 4: Compose transformation matrix W via choosing the 

first p eigenvectors that are sorted according to their 

corresponding eigenvalue λi in descending order: 

1{e }p

i iW == (4) 

Step 5: Finally, the original feature vectors xi can be 

transformed to the reduced feature vectors yi by 

T

i iy W x= (5) 

3.1.2 1DMRLBP feature 

1DMRLBP is a hybrid approach that sums local ECG 

vectors as feature vectors to extract local features. 1DMRLBP 

does not simply capture texture based on a fixed number of 

points. It considers different distances d, and points p, where 

d represents how far from the desired time sample x(t), the 

features start being extracted, and p is how many time samples 

are considered for 1DMRLBP feature extraction from each 

side. Previous work [45] extracts binary patterns (BPs) of time 

sample x(t) as follows: 

1

0

( ( )) ( ( 1)

( ))2 ( ( ) ( ))2

p

i

i i p

BP x t sign x t i p d

x t sign x t i d x t

−

=

+

= + − − +

− + + + −


(6) 

where, t represents the time index of the heartbeat, p represents 

the number of points (time samples) to be considered on each 

side of x(t), and x(t) represents the desired time sample for 

extraction using 1DMRLBP. sign(.) is defined as in Eq. (7). 

BP(x(t)) is assigned a value of zero when its parameters 

require information that is out of bounds. BP(x(t)) becomes out 

of bounds when t+i+d>k, where k represents the heartbeat 

length, and when t+i<p+d.  

The level of quantization for the acquisition instrument is 

known. However, the highest peak in the ECG signal remains 

unknown. Consequently, a modified equation is designed to 

capture the morphology of the ECG signal by adding a margin 

in the binary pattern extraction to accommodate this issue. A 

parameter ε is included in Eq. (7) to account for quantization 

error. In addition, the inclusion of this margin reduces the 

influence of ripples (noise) on the ECG signals. Thus, sign(.) 

is defined as follows: 

sign(x)={
1  𝑖𝑓 𝑥 + 𝜀 ≥ 0
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(7) 

3.2 Getting new class vector (GNCV) 

In the multi-grained deep cascade model, we formulate a 

getting new class vector (GNCV) function, which in the ECG 

signal coding part, that transforms the whole ECG signal into 

softmax vectors activated by the softmax function on the 

representation error. In this study, two different representation 

(coding) models, namely, a sparse representation and nuclear 
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norm matrix regression are used in the GNCV function to 

obtain softmax vectors. 

It is worth pointing out that more suitable coding methods 

that are beneficial to recognition can be freely selected and 

integrated into GNCV in the proposed multi-grained deep 

cascade model. 

GNCV based on sparse representation is described as 

follows: 

Suppose that we have C classes of subjects, d represents a 

query sample and D=[D1,D2,…,Dn] represents the dictionary 

(a basis group). The representation model can be transformed 

into the following minimization problem in terms of the sparse 

representation-based classifier (SRC) and dictionary learning: 

2

2 1
min d D   = − + (8) 

where, the parameter λ is a scalar constant and ||•||2 and ||•||1 

represent the Frobenius norm of two matrices: l2-norm and l1-

norm, respectively. After solving the coding coefficients α, the 

representation error of each class can be computed as follows: 

2

2c C Cr d D = − (9) 

where, DC denotes the sample set with respect to class C, and 

αC is the coefficient vector associated with class C. Next, the 

proposed softmax vector SVRC can be computed as follows 

using the softmax function: 

1 2

1 1 1

, ,...,
c c c

T

r r rc

V c c c
r r r

c c c

e e e
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e e e

− − −

− − −

= = =

 
 
 =
 
 
 
  

(10) 

where, C represents the number of classes. Si
D should be bigger 

than other atoms in the softmax vector SV, which shows class 

discrimination, if the testing sample d belongs to class i(≤C). 

For clarity, this process of obtaining the softmax vector SV is 

defined as GNCV conditioned on dictionary D (i.e., GNCVD). 

For convenience, we define the whole procedure of computing 

the softmax vector SV for a given query sample y as 

(y, ,C)V DS GNCV = (11) 

3.3 Multi-grained deep cascade model 

Figure 1. The overall framework of the multi-grained deep cascade learning model. The model supposes that there are two 

classes for prediction and the size of the sliding window is 50 dimensional and 100 dimensional. Multiple cascade layers are used 

for the final prediction 

Figure 2. The feature re-representation example using sliding window scanning. Each group of signals has a window size of 50 

dimensional and 100 dimensional 
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The main structure of the multi-grained deep cascade model 

includes two main components shown in Figure 1. The first 

component is the multi-grained scanning stage, which 

transforms the original feature vector to a high dimensional 

feature vector. The second component is the deep cascade 

learning stage, which performs the final feature classification 

using the high-dimensional feature vectors and the class 

vectors obtained from previous levels. 

3.3.1 Multi-grained scanning stage 

In the multi-grained scanning stage, we use two types of 

feature vectors as an original feature for input: global ECG 

features extracted by PCA and local ECG features extracted 

by 1DMRLBP. We have used sliding windows of multiple 

sizes to generate differently grained feature vectors. In 

addition, we introduce the GNCV function based on sparse 

representation into the deep cascade model. This step is 

beneficial not only because sparse representation can 

effectively remove the noise of ECG signals, but also because 

it can obtain a better classification result. 

An example of the general procedure for the multi-grained 

scanning stage is shown in Figure 2. We suppose that the raw 

features are m-dimensional, the size of the sliding window is 

n-dimensional, the training set includes k categories for

prediction, and (m-n+1)*k-dimensional feature vectors are

generated by scanning each raw instance sequentially. The raw

features are 400-dimensional, the size of the sliding windows

was 50-dimensional, and there are two classes to predict as

shown in Figure 2. Then, 351 two-dimensional class vectors

are produced by each classifier, which generates a 702-

dimensional transformed feature vector that finally

corresponds to the original 400-dimensional feature vector.

Similarly, using a sliding window with a size of 100-

dimensional will produce a 602-dimensional transformed

feature vector of the original 400-dimensional feature vectors.

The transformed feature vector has many more dimensions

and an enhanced feature representation compared with the

original vector. After multi-grained scanning, the original

features are converted into high-dimensional feature vectors.

3.3.2 Deep cascade learning stage 

We propose an end-to-end deep cascade learning model 

without back-propagation to seek more discriminative 

information. The most significant feature of the deep cascade 

learning stage is the layer-by-layer processing. In this stage, 

we use the sparse representation-based GNCV function to 

transform the ECG features into softmax vectors. The 

transformed softmax vectors of 702-dimension are fed into the 

classifier and converted into class vectors, which are 

connected with the raw features as the first level input of the 

cascade layer, as shown in Figure 1. This procedure will be 

repeated until convergence of the validation performance, 

which means that the deep cascade model can adaptively 

determine the complexity of the model. The cascade layers 

stop growing if the addition of a new layer does not improve 

performance. In this way, we obtain the final prediction feature 

vector. Users can try more grains if computational resources 

are sufficient for difficult tasks. 

3.4 Recognition 

In the deep cascade learning stage, we obtain the final 

prediction feature vector VRC, where C is the number of the 

class. In recognition of a query heartbeat y , we can obtain its 

class label by the final prediction feature vector V as follows: 

( ) arg max
i

Label y V= (12) 

We can also determine whether the probe is an impostor or 

a genuine factor by comparing the distance dis(V,T) to the 

threshold, where dis(V,T) is the distance of the final prediction 

feature vector and the corresponding template T. 

4. EXPERIMENTS

4.1 Datasets 

We wanted to validate comprehensively the effectiveness of 

the proposed multi-grained deep cascade model with global 

and local features for ECG biometric recognition. We 

therefore conducted extensive experiments on the following 

four widely used benchmark datasets: MIT-BIH Arrhythmia 

(MITDB), CYBHiDB, PTB Diagnostic ECG Datasets, and the 

University of Toronto ECG Datasets (UofTDB). 

The MIT-BIH Arrhythmia dataset has become the 

experimental data used as a test standard in most of the current 

electrocardiogram analysis. The dataset comprises ECG data 

recorded from 47 subjects at Beth Israel Hospital in Boston, 

USA, from 1975 to 1979. The dataset has 48 records, taken 

every 30 minutes, and the sampling frequency is 360 Hz. 

These ECGs are first marked by two or more ECG research 

experts and finally reach a unified marking result. Each 

marked result includes the location of the wave peak of R and 

the type of ECG heartbeat. In this study, we chose 60% of the 

data for training and 40% for testing the MITDB dataset in this 

study. 

ECG records in CYBHiDB were collected from hand palms 

and fingertips. These hand palms and fingertips are acquired 

at a 1,000-Hz sample frequency with 12-bit resolution on a 

BioPLUX device. CYBHiDB contains two types of short-term 

and long-term datasets. The short-term dataset was collected 

from 65 healthy participants consisting of 49 males and 16 

females, with ages between 22 and 41. The sessions were 

taken once every other day. The long-term dataset was 

collected from 63 healthy participants, consisting of 14 males 

and 49 females, with ages between 18 and 23. The group 

includes two distinct sessions obtained within a period of three 

months. In the long-term dataset, there are more inter-class 

variations in the heartbeat waveform over time. We therefore 

chose the long-term dataset as our experimental data. We 

chose the first and second sessions from the long-term dataset 

T1 and T2, respectively. We chose T1 for training and T2 for 

testing in this study as we did for the CYBHiDB dataset. 

The PTB Diagnostic ECG dataset includes 549 recordings 

from 290 subjects and individuals with various cardiac 

conditions (including myocardial infarction, dysrhythmia, 

hypertrophy, or heart failure). There were 1–5 records for each 

topic, which ranged from 38.4 to 104.2 seconds, taken from all 

12 criteria and 3 Frank clues. In this study, we chose 248 

subjects whose range was longer than 100 seconds, and every 

subject had one record. We also chose 60% of the data for 

training and 40% for testing as for the PTB dataset. 

The ECG signals in UofTDB were captured from the 

thumbs of both hands at a sample rate of 200 Hz and 12-bit 

resolution. UofTDB is the largest off-the-person public dataset. 

It contains ECG data captured from 1,020 subjects, and 

consists of 398 males and 622 females with ages 18 to 52 years. 
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ECG sessions were acquired from five postures. We use all the 

instances of UofTDB S1 data for training and evaluate on the 

S2, S3, S4, and S6 in this study for the UofTDB dataset. 

4.2 Performance metrics 

In the proposed model, each sample is represented by three 

heartbeats that are segmented in the preprocessing stage. The 

subject recognition rate is used as the evaluation criterion for 

the identification problem. This recognition rate is the 

percentage of correctly recognized probe samples and it is 

defined as follows: 

_correct_

_test
  

_

samples
Subject Recognition Rate

samples

N

N
= (13) 

where, N_test_samples is the total number of probe samples 

and N_correct_samples is the number of probe samples that 

are correctly identified. The equal error rate (EER) is the 

measurement for the verification problem. EER is acquired 

from the FRR and FAR, which are defined as follows:  

FP
FRR

TP FP
=

+
(14) 

FN
FAR

TN FN
=

+
(15) 

where, FRR is the false reject rate, FAR is the false accept rate, 

TP is the true positive, FP is the false positive, TN is the true 

negative, and FN is the false negative. EER is defined by the 

value where FRR is equal to FAR. 

4.3 Parameter evaluation 

First, we set the regularization coefficient in the sparse 

representation. The expression of λ is as follows: 

1.2

m
 = (16) 

where, m is the characteristic dimension. 

Next, we evaluate the number of cascade levels as follows: 

It is apparent from Figure 3 that the subject recognition rate 

increases as the number of layers increases. However, when 

the number of layers reaches 5, the result is stable. Therefore 

the number of layers finally obtained is five. 

Finally, we evaluate the number of iterations. 

The subject recognition rate of the algorithm is more or less 

stable as the number of iteration times increases (see Figure 4). 

We therefore set the number of iterations to 70 after which the 

subject recognition rate gradually stabilizes. 

4.4 Influence of the deep cascade learning model 

We conducted three groups of feature experiments on four 

data sets to more intuitively illustrate the influence of the 

cascade model proposed in this study on the feature extraction 

process. The first group used PCA and 1DMRLBP approaches. 

The second group combined the two methods with the deep 

cascade learning model. The last group used both PCA and 

1DMRLBP approaches combined with the deep cascade 

learning model. The recognition rates corresponding to the 

various methods are shown in Table 1. 

The 1DMRLBP method has distinct advantages over PCA 

in recognition performance due to its multi-resolution concept. 

The two methods are combined with the deep cascade learning 

model and the performance is clearly improved. The best 

performance is obtained by combining the two methods with 

the deep cascade learning model, which is also the feature 

extraction method adopted in this study. 

Figure 3. Results with different numbers of cascade levels Figure 4. Influence of iteration number on performance 

Table 1. Recognition rates for the different approaches 

PCA (%) 1DMRLBP (%) PCA+Cascade (%) 1DMRLBP+Cascade (%) Ours (%) 

MIT-BIH 63.41 93.6 98.04 98.18 99.87 

CYBHiDB 61.81 94.78 98.02 98.43 99.06 

UofTDB 62.17 90.2 97.83 97.65 98.74 

PTBDB 62.45 98.17 97.24 97.61 98.17 
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Table 2. Comparison with the state-of-the-art methods 

Dataset Method Subject recognition rate (%) EER (%) 

MIT-BIH 

Wang et al. [40] 94.68 2.73 

Louis et al. [45] 93.6 5.03 

Ergin et al. + PCA [28] 95.0 - 

Ours 99.87 0.68 

PTBDB 

Pal and Singh [46] 97.1 - 

Paiva et al. [47] 97.5 - 

Ours 98.17 1.92 

CYBHiDB 

da Silva Luz et al. [34] - 1.3 

da Silva et al. [48] 94.4 - 

Lourenço et al. [49] 95.2 - 

Ours 99.06 1.34 

UofTDB 

Louis et al. [45] 90.2 2.55 

da Silva Luz et al. [34] - 14.27 

Rehman et al. [50] - 3.7 

Ours 98.74 2.56 

4.5 Comparison with the state-of-the-art methods 

Comparisons between our method and other state-of-the-art 

methods on the ECG dataset are summarized in Table 2. 

The equal error rate (EER) of our method is significantly 

lower compared with the state-of-the-art methods. We 

specifically compared with the methods using PCA [28, 47] 

and 1DMRLBP [40, 45] for the MIT-BIH data set and the 

results indicate that our better performance is more significant. 

Our method also had satisfactory performance for the other 

datasets compared with the method of using the deep neural 

network for feature extraction [48, 49]. The results indicate 

that our method achieves satisfactory recognition performance 

on the four datasets. Recognition rates of 99.87, 98.18, 99.06 

and 98.74% were achieved for MIT-BIH, PTBDB, CYBHiDB, 

and UofTDB, respectively. The main reason why our method 

is superior to the state-of-the-art methods is that both PCA and 

1DMRLBP are used to extract the ECG features and convert 

the ECG signals into softmax vectors using the GNCV 

function based on spare representation. More importantly, the 

combination of our method with the deep cascade learning 

model can significantly improve the recognition performance. 

5. CONCLUSIONS

In this study, we propose a multi-grained deep cascade 

learning model for ECG biometric recognition using global 

and local features. First, we combined PCA and 1DMRLBP 

methods to extract the global and local features of the ECG 

signals, respectively, thereby improving the accuracy. Second, 

we performed a multi-granularity scanning on the extracted 

ECG features and converted them to softmax vectors. Class 

differentiation was achieved using the GNCV method based 

on sparse representation. Finally, we proposed a multi-grained 

deep cascade learning model without back propagation and 

combined it with the GNCV function to greatly improve the 

classification accuracy. Extensive experimental results on the 

four datasets demonstrate that our approach is superior to 

several state-of-the-art techniques. In addition, our method is 

general and not only applicable to ECG biometrics but also to 

other traits biometric recognition. The good performance for 

ECG biometrics has been achieved with our approach. 

However, there is still room for improvement of the proposed 

ECG biometric recognition model, especially for large-scale 

ECG applications. In future work, we will further study the 

attribute information of the ECG signals to improve the 

accuracy of classification. 
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