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Approximately 50 million people worldwide suffer from Epileptic Seizure (ES), a persistent 

neurological disorder that cannot spread from person to person. Electroencephalography 

(EEG) is a tool that is often used to identify and diagnose epilepsy by observing how the 

brain works. However, analyzing EEG recordings to identify epileptic activity can be 

difficult, time-consuming, and requires specialist expertise. However, a precise and early 

diagnosis of epilepsy is necessary to start anti-seizure medication treatment and reduce the 

risk of consequences from recurrent episodes. In this paper, a modified Gorilla Troops 

Optimization with a Deep Learning based ES Prediction model (MGTODL-ESP) using EEG 

signals is implemented. The proposed MGTODL-ESP model comprises two main 

processes: feature selection and prediction. The MGTODL-ESP model uses a modified 

gorilla troops optimization (MGTO) based feature selection algorithm to select the optimal 

subset of features. The MGTO-based Gated Recurrent Unit (GRU) model predicts different 

types of ES. Finally, the Grey Wolf Optimizer (GWO) algorithm was used to tune the 

parameters of the MGTODL model. The outline of the MGTO-ESP-based feature selection 

and Grey Wolf Optimizer (GWO)-based parameter tuning indicates the novelty of this 

research. A comprehensive empirical study was conducted using a benchmark CHB-MIT 

scalp EEG database from IEEE DataPort to investigate the improved prediction performance 

of the MGTODL-ESP model. A comparison of the different methods showed that the 

MGTODL-ESP approach was the most accurate, with an accuracy rate of 98.50%. 

Keywords: 

biomedical data, EEG signals, seizure 

prediction, feature selection, deep learning 

1. INTRODUCTION

Epilepsy is a common neurological condition categorized 

by ES and ranks second among common neurological 

disorders after stroke, as per a report by the World Health 

Organization (WHO) [1]. Seizures can occur irrespective of 

the host attributes or circumstances. Patients affected by 

epilepsy suffer from unforeseen and sudden seizures; at the 

time, they cannot safeguard themselves and are susceptible to 

injury, suffocation, or death due to traffic accidents and 

fainting [2]. However, this disease can be treated with surgery 

and medications, no cure exists, and treatments with 

anticonvulsants are ineffective for different epilepsy types [3]. 

EEG plays a significant role in epilepsy identification because 

it measures variances in voltage changes among electrodes on 

the subject's scalp by sensing ionic current flows within brain 

neurons and offers spatial and temporal data regarding the 

brain [4]. Detection using EEG requires direct investigation by 

a doctor, along with a significant amount of effort and time [5]. 

Additionally, specialists with different levels of diagnostic 

experience occasionally have contradictory views on 

diagnostic outcomes [6]. Thus, developing an automated 

computer-aided technique for detecting epilepsy is urgently 

required. Several seizure-predictive studies divide successive 

epileptic EEG signals into three states: ictal (period of seizure), 

interictal (interval among seizures), and preictal (before 

seizure onset). Generally, ES prediction refers to a binary 

classifier that differentiates between interictal and preictal [7]. 

Over the decade’s, numerous advanced techniques have been 

modeled in ES estimation. Conventionally, EEG-related SP 

techniques focus on classification and feature extraction [8]. 

The authors manually framed the discriminatory features of 

EEG signals, like time-frequency domain, and time–frequency 

domain features [9]. DL, which derives discriminatory 

features automatically, is widely employed. In addition, the 

utility of neural networks (NNs) and DL methods in expanding 

computer methods for disease recognition, disease detection, 

and many other fields has attracted the attention of many 

researchers [10]. 

The adverse effect upon quality of life caused by chronic 

seizures is substantial. Epilepsy accounts for more than 0.5% 

of the global illness burden, based on the number of years lost 

by persons owing to early death and years spent in suboptimal 

health. The costs associated with treating epilepsy, avoiding 

premature mortality, and losing time at work add to a sizable 

sum over time. According to a cost-benefit analysis conducted 

in India, funding for primary and secondary treatments and 

other medical expenses can alleviate some of the financial 

strain caused by epilepsy. Managing epilepsy may be more 

difficult than dealing with the seizures themselves because of 

the widespread discrimination and stigma. Individuals with 

epilepsy may be targets of discrimination. As a result of the 

negative implications of the disease, some people may be 

reluctant to seek help. It is anticipated that by 2050, the 
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population of persons aged 65 years and over would have 

increased from 461 million to 2 billion. There will be 

significant consequences in the fields of social and medical 

healthcare because of this massive increase. Home Adaptive 

Response (HAR) is a powerful tool for tracking the 

physiological, psychosocial, and mental status of the elderly in 

their environments [11, 12].  

During the first autonomous diagnosis, the systems 

achieved 76–90% accuracy, with a false detection rate of 1%–

0.7% per hour. Therefore, developing methods with low 

computational costs is crucial. Because there is a large amount 

of information in an individual's EEG recording, it is vital to 

develop tools to oversee classification and feature selection 

procedures. Approaches to predicting seizures have certain 

limitations, including those described below. 

• The key drawback of the LSTM unit of generative 

adversarial networks is that it might lead to right or 

left amplitude preponderance in EEG measurements. 

• Secondly, the use of various algorithms, like the 

support vector machine and K-nearest neighbours, to 

forecast ES is hampered by a lack of directional and 

phase information.  

• Third, the system for SP based on the EEG spike rate 

approach does not use DL. Consequently, this 

approach cannot be used to evaluate epileptic 

episodes. 

• Fourth, the main problem with the generative 

adversarial network approach to SP is that it does not 

increase anticipation time. 

• DL approaches for SP are limited by a dwindling 

signal-to-noise ratio (SNR) and an increase in the 

number of input parameters. 

The problem of declining classification accuracy in SP 

systems has been the subject of several research studies. 

Because patients' EEG recordings will show seizures in 

different places and at different intensities, most SP algorithms 

must be tailored to each user. Traditional SP methods include 

signal pre-processing, feature selection, and classification [13-

16]. 

 

1.1 Motivation 

 

The development of DL over the last several years has 

increased the use of DL to diagnose epilepsy. When it comes 

to feature engineering, DL algorithms do not require a time-

consuming human feature design procedure and have the 

potential to provide better outcomes than traditional methods. 

On the other hand, automated EEG data analysis can improve 

patient care by reducing the time that diagnostics take and the 

amount of human error that occurs. The focus of this research 

is on one of the first steps involved in identifying whether a 

person's brain activity is typical or abnormal, which is the 

starting point for EEG interpretation. Analyzing the signals 

produced by the frontal lobes is a potential method for 

diagnosing seizure disorders.  

The driving force behind this work is to enhance the 

precision and efficiency of forecasting seizures using EEG 

signals. The present method is arduous and requires 

specialized knowledge, but an accurate and early diagnosis is 

critical for proper treatment. The MGTODL-ESP model aims 

to tackle these obstacles by incorporating a changed 

optimization algorithm and deep learning techniques. The 

proposed work demonstrate that the MGTODL-ESP approach 

yields the highest accuracy with a rate of 98.50%. Thus, this 

work aims to improve the existing techniques for predicting 

seizures and develop a model that is more accurate and 

efficient, thereby improving the standard of living for those 

who suffer from epilepsy. 

Researchers are now facing several obstacles while 

attempting to identify seizures experienced by epileptic 

patients using brain imaging techniques and DL approaches.  

• First, it’s important to note that just a small fraction of 

EEG recordings is included in the existing databases. 

Therefore, these signals cannot be implemented in 

practical settings. Therefore, it is difficult to recognize 

real-time warnings, and the clinical information may be 

inaccessible to the general public. 

• Second, these enormous quantities of information cannot 

be combined because they have different sampling rates 

and frequencies. It is also impossible to train a model with 

such a small amount of usable data. By Diagnosis of 

epilepsy, patients will get specific alert messages that will 

be sent to physicians, relatives, hospitals, and family 

members using wearable gadgets, ensuring patients 

receive the appropriate therapy promptly. 

 

1.2 Research objectives 

 

This research study presented a model of EEG-based 

approach for forecasting ES, named “Modified Gorilla Troops 

Optimization with Deep Learning," was discussed in this work 

(MGTODL-ESP). The primary objective of the MGTODL-

ESP method is to categorise across various kinds of seizures. 

The initial step in preprocessing the EEG data was a Z-score 

normalisation. The optimal characteristics were chosen using 

the MGTO technique. In order to forecast seizures, the grey 

wolf optimizer (GWO) was combined with the gated recurrent 

unit (GRU) framework. The GRU hyperparameters may be 

optimised with the support of the GWO approach.  

The remaining sections of this work are arranged as follows: 

The current techniques for predicting seizures, as well as the 

drawbacks of such approaches, are discussed in Section 2. 

Section 3 provides a thorough explanation of the methodology 

proposed for the SP model. Section 4 contains the proposed 

SP model's results, discussion, and performance evaluation. 

The research is concluded in Section 5. 

 

 

2. LITERATURE REVIEW 

 

As time has progressed, DL methods have become 

increasingly important in a variety of fields. Numerous 

methods have been developed by earlier studies, even in the 

realm of EEG signal analysis. This paper discusses the current 

DL methods being utilised for SP. 

Bhandari and Huchaiah [11] formulated new seizure 

recognition in EEG signals utilizing novel extracting feature 

and classifier methods. The early phase of the presented 

technique was signal preprocessing. With this selective feature, 

a development was presented with weighted feature selecting 

method, whereas the weighted can be maximized by hybrid 

metaheuristic techniques termed Jaya-Cat Swarm Optimized 

(J-CSO). After, J-CSO-related heuristically Improved ELM (I-

ELM) was presented in the detection stage, which was 

modelled by 3 distinct methods such as LSTM, Fuzzy 

classifier, and DNN. Escorcia-Gutierrez et al. [12] proposes 

Automatic DL-Enabled Brain Signal Classification for 

Epileptic Seizure Detection (ADLBSC-ESD). Furthermore, 

590



 

this approach includes the model of Improved TLBO (ITLBO) 

approach for choosing features in EEG signals. Likewise, the 

DBN method was leveraged for classifying the EEG signals 

effectively, and hyperparameters of DBN technique were fine-

tuned utilizing Swallow Swarm Optimization Algorithm 

(SSA). 

A new seizure detection technique related to the deep 

bidirectional LSTM (Bi-LSTM) network was modelled in the 

study [13]. To conserve the non-stationary nature of EEG 

signals when declining computing burden, statistical feature 

extraction, and the local mean decomposition (LMD) process 

were presented. The deep architecture was then devised by 

integrating 2 independent LSTM networks including opposite 

propagation directions one sends data from back to front, and 

another from front to back. In the study [14], a devised new 

epileptic seizure detection technique was with integration of 

empirical mode decomposition, mutual information-related 

optimal individual feature (MIBIF) selective method, and 

MLP-NN. Firstly, fixed length EEG epochs were decomposed 

as to amplitude and frequency-modulated elements named 

intrinsic mode function (IMF). Glory et al. [15] presented a 

new DL method for epileptic seizure recognition that 

hybridizes Adaptive Haar Wavelet-oriented Binary GOA and 

DNN (AHW-BGOA-DNN).  

Choi et al. [16] devised a multi-scale 3D-CNN including 

DNN method for non-patient-specific seizure recognition. The 

author takes temporal, spectral, and spatial features into 

account. The EEG signals were transmitted to frequency 

domain utilizing Short Time Fourier Transform (STFT) for 

extracting spectral attributes. The spectral attributes were 

mapped to 2-D images for preserving electrode's position. The 

presented method has bidirectional GRU and 3D-CNN for 

extracting temporal and spatial features from 2D mapped 

images. Singh and Malhotra [17] presented a method of 

automatic epileptic seizure recognition method utilizing 

Stacked AE (SAE) related DL method, which is an advanced 

form of ML, used for effectively managing the issue of big 

data with reduced processing time and complexity to make this 

procedure realtime compatible with minimal delays. After, 

such EEG segments were given to SAE for classifying into 

distinct epileptic seizure levels such as ictal, normal, and 

preictal. Abdelhameed and Bayoumi [18] introduce a new DL 

technique for identifying seizures in pediatric patients based 

on the categorization of raw multichannel EEG signal 

recordings with little pre-processing. This innovative method 

uses the automated feature learning capabilities of a two-

dimensional deep convolution autoencoder (2D-DCAE) 

connected to a neural network-based classifier to construct a 

unified system. This system is trained in a supervised manner 

to obtain the highest possible accuracy rate between the ictal 

and interictal brain state signals.  

Sari ć et al. [19] designed an FPGA-based approach for 

generalized and localized ES categorization utilizing a feed-

forward multilayer neural network framework (MLP ANN). 

Aileni et al. [20] offered many features of diagnosing ES 

utilising EEG signal classification with supervised learning 

methods. This work showed the relevant learning techniques 

that are associated with those provided features. A 

methodology using support vector machine (SVM) has been 

applied to identify ES. In the context of supervised learning, a 

classifier known as SVM is officially described as an 

algorithm whose outputs indicate an ideal separation 

hyperplane based on training data. hyperplane. Almustafa et al. 

[21] outperforms several methods of categorization and these 

methods are applied to a dataset including information about 

ES in this work. These results showed that the random forest 

approach (with 97.08% accuracy, ROC = 0.996, and RMSE = 

0.1527) was superior to the k-nearest neighbours (K-NN), 

naïve Bayes (NB), Logistic Regression (LR), Decision Tree 

(D.T.), Random Tree (RT), J48, and Stochastic Gradient 

Descent (S-G-D) models. Gao et al. [22] had made certain 

tweaks to the conventional network topology, ResNet can 

solve the gradient vanishing issue that arises during the 

training of DCNN. This central aspect is a concept for a 

simplified version of the fundamental building component of 

networks called residual blocks and improved to GoogLeNet’s 

infrastructure, which has allowed Inception-v3 far more robust 

architectural foundation. To minimize operational complexity 

and increase nonlinear feature representation, large 

convolution kernels are divided into smaller convolution 

kernels in Inception-v3.  

The majority of the aforementioned approaches have 

drawbacks, such as a lack of data, which are addressed in this 

study using a standard dataset. It is also worth noting that these 

methods did not use optimization techniques to obtain the best 

possible answer. In contrast, in this study, the parameters were 

optimized using modified Gorilla troop optimization. The 

aforementioned approaches were all computationally 

intensive and time consuming; however, the suggested method 

optimized the classifier to lower the runtime of the latter. The 

use of EEG data for SP and classification has been the subject 

of several published classification studies. Although ML and 

DL models in the literature may enhance the prediction 

accuracy, more work has to be done in this area. Overfitting 

occurs in DL models when the number of parameters increases 

rapidly, owing to the relentless deepening of the model. 

However, the performance of the GRU model is highly 

sensitive to several hyperparameters. In particular, choosing 

appropriate hyperparameters, such as the epoch count, batch 

size, and learning rate, is crucial for a successful conclusion. 

Metaheuristic algorithms may be used instead of the time-

consuming and sometimes incorrect trial-and-error approach 

for hyperparameter tuning. Therefore, in this study, a 

Greywolf optimizer (GWO) method was used to fine-tune the 

GRU model parameters.  

This paper presents a model for predicting different kinds 

of epileptic seizures based on EEG signals called Modified 

Gorilla Troops Optimization with DL (MGTODL-ESP). An 

MGTO-based feature selection is developed in the proposed 

MGTODL-ESP concept to choose the best possible subsets of 

features. For further ES prediction, a GRU-based classifier 

was developed. The Grey wolf optimizer is also used for fine-

tuning GRU model parameters (GWO). The MGTODL-ESP 

model that has been suggested is described here. This model 

includes data preprocessing, MGTO-based feature selection, 

GRU-based classification, and GWO-based parameter 

adjustment. According to our information, the MGTODL-ESP 

concept has not before been published. The originality of this 

work is shown by the methods used to pick features using 

MGTO and tune parameters using GWO. The MGTODL-ESP 

model was validated using the standard CHB-MIT Scalp EEG 

dataset. 

 

 

3. THE PROPOSED MODEL 

 

In this proposed work an effective feature selection model 

using a DL-based ES prediction method called the MGTODL-
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ESP model was created to use EEG signals to predict different 

types of seizures.  As shown in the MGTODL-ESP technique, 

there are four main steps: data preprocessing, MGTO-based 

selective feature selection, GRU classification, and GWO-

based hyperparameter optimization. A block diagram of the 

MGTODL-ESP system is shown in Figure 1. 

Figure 1. Block diagram of proposed MGTODL-ESP 

approach 

3.1 Data pre-processing 

Initially, the presented OAOFS-DBNECD methodology 

converts the EEG signals into .csv format to make it 

appropriate to more processing. Then, the pre-processing of 

the EEG signals was carried out with the use of Z-score 

normalization [23]. It can be defined as the process of 

acquiring ranges of input data or normalized values from 

unstructured data through concepts such as standard deviation 

and mean. This can be established by dividing presented data 

of every data instance by standard deviation of all gates, as in 

equation, and subtracted mean of all data instances from that 

value. Equation was employed for mapping the values of 

transformed input among the target range [x, y]. 

𝐴𝑍𝑎(𝑡) =
𝐴(𝑡)−𝐴𝑗(𝑡)

𝐴𝑗(𝑡)
(1) 

𝐴𝑍𝑎𝑑(𝑡) = 𝑐 +
(𝑑 − 𝑐)(𝐴𝑍𝑆(𝑡) − 𝐴𝑍𝑆min)

𝐴𝑍𝑆 max − 𝐴𝑍𝑆min

(2) 

The scaling values of z‐score normalized field 𝐴𝑍𝑎(𝑡)were

shown here as 𝐴𝑍𝑎𝑑(t). 𝐴𝑖(𝑡) and Aj(t), which are computed

from the trained data sets, denoted the standard deviation and 

mean at each gate time t, where 𝐴𝑍𝑆max and 𝐴𝑍𝑆𝑚𝑖𝑛
 were

absolute final and initial gate values noted for all provided gate 

periods in test datasets. 

3.2 Feature selection 

Feature selection refers to the process of narrowing down a 

large pool of potential features (predictive variables) to a 

manageable number. As a result of this process, the model 

should be more accurate and interpretable, with less overfitting 

and more efficient computing. Several methods exist to 

accomplish this goal, including dimensionality reduction, 

feature importance calculation, and correlation analysis. 

Here once the preprocessing stage is completed, then 

implementing a method called feature section. In this stage, 

reduction of features takes place and it also makes an attempt 

to forecast which characteristics are more significant and 

relevant to our proposed model. 

3.2.1 Steps involved in MGTO based feature selection 

The MGTO (Modified Gorilla Troops Optimization) 

algorithm was used to select the best features. Gorilla troop 

optimization (GTO) is a technique based on swarms. It was 

inspired by the social life of the gorilla, which was the biggest 

primate on Earth [24]. There are two parts of this method: 

exploitation and exploration. Five different operators attempt 

to copy the optimization function for a gorilla's behavior. 

During the exploration phase, there were 3 operators: moving 

to a known position, moving to a new position, and moving to 

other gorillas. During the exploitation phase, the search was 

run by two operators who tracked the silverbacks and 

competed for adult females. 

Silverback is in charge of a group of gorillas and he can do 

everything. Gorillas sometimes go to places in nature that are 

new to them, or that they have been to before. In each step of 

the optimization process, the best candidate solution was 

called a "silverback solution.” Eq. (3) is used to represent the 

three strategies in the exploration phase, where 𝑝 refers to the 

variable within [0,1] and is applied to choose the migration 

strategy for an unknown position. if rand<p, the algorithm for 

migration to an unknown location is selected. While p is a 

variable in the range [0,1] used to determine the best migration 

technique for a location whose exact coordinates are uncertain. 

if rand<p, the algorithm for migration to an unknown location 

would be selected. Next, when rand≥0.5, the next model, that 

of movement towards remaining gorillas, would be chosen. 

The algorithm for migration to a known location is preferred 

when rand<0.5, 

𝐺𝑋(𝑡 + 1) = {

(𝑈𝐵 − 𝐿𝐵) × 𝑟1 + 𝐿𝐵 𝑟𝑎𝑛𝑑 < 𝑝
(𝑟2 − 𝐶) × 𝑋𝑟(𝑡) + 𝐿 × 𝐻 𝑟𝑎𝑛𝑑 ≥ 0.5

𝑋(𝑖) − 𝐿 × (𝐿 × (𝑋(𝑡) − 𝐺𝑋𝑟(𝑡)) + 𝑟3 × (𝑋(𝑡) − 𝐺𝑋(𝑡))) 𝑟𝑎𝑛𝑑 < 0.5
 (3) 

whereas GX(t+1) represents the candidate location vector of 

gorillas in the second iteration, and X(t) indicates the existing 

location vector of the gorilla. Furthermore, r1, r2, r3 and rand 

specifies a randomized value between 0 and 1. UB and LB 

represents the upper and lower boundaries, respectively. Xr 

and GXr denote the candidate location vector of gorillas 

chosen randomly 

𝐶 = 𝐹 × (1 −
𝐼𝑡

Max𝐼𝑡
) (4) 

In Eq. (4), 𝐼𝑡 and MaχIt represent the existing and maximal 

iteration values, respectively. Initially, the variation value is 

produced in a larger interval, and later the rehabilitated 

interval of the variations value might be reduced at the end of 

the optimization phase: 

𝐹 = cos(2 × 𝑟4) + 1 (5) 

In Eq. (5), r4 denotes the random number within [-1,1]: 
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𝐿 = 𝐶 × 𝑙 (6) 

 

Eq. (6), l indicates a random number within [0,1]. 

Furthermore, Eq. (6) was applied to simulate the silverback 

leadership. Due to a lack of experience, silverback gorilla has 

difficulty in making the right decision to manage the group or 

find food. However, they can attain extreme stability and 

adequate experience with the leadership method. Furthermore, 

H in Eq. (3) can be evaluated using Eq. (7). Z in Eq. (7) can be 

evaluated using Eq. (8), whereas Z denotes a random number 

within [-C,C]. 

 

𝐻 = 𝑍 × 𝑋(𝑡) (7) 

 

𝑍 = [−𝐶, 𝐶] (8) 

 

In the last exploration, a group function was implemented 

to calculate the cost of each GX solution. Once the cost is 

recognized as (t)<X(t), the X(t) solution is substituted with the 

GX(t) solution. Thus, a better solution can be considered as 

silverback. 

In the exploitation phase, competition for adult females and 

the two behaviors of the silverback were adopted. If the 

silverbacks and other gorillas were younger, they implemented 

their duties well. For example, a male gorilla follows a 

silverback. Furthermore, every member influence other 

member. When C≥W, the following approach can be 

implemented. 

 

𝐺𝑋(𝑡 + 1) = 𝐿 × 𝑀 × (𝑋(𝑡) − 𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘)𝑋(𝑡) (9) 

 

In Eq. (9), Xsilverback indicates the vector of silverback that 

present the optimum solution: 

 

𝑀 = (|
1

𝑁
∑ 𝐺𝑁

𝑖=1 𝑋𝑖(𝑡)|
𝑔)

1

𝑔  (10) 

 

In Eq. (10), GXi(t) denotes the vector position of the 

candidate gorilla at time t; N denotes the total number of 

gorillas;  

 

𝑔 = 2𝐿 (11) 

 

Adolescent gorillas have a significant phase of puberty 

during which they compete with other males for the attention 

of females. This kind of rivalry is often intense, may last for 

many days, and has an impact on those around it. 

 

𝐺𝑋(𝑖) = 𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘

− (𝑋𝑠𝑖𝑙𝑣𝑒𝑟𝑏𝑎𝑐𝑘 × 𝑄 − 𝑋(𝑡) × 𝑄)
× 𝐴 

(12) 

 

𝑄 = 2 × 𝑟5 − 1 (13) 

 

𝐴 = 𝛽 × 𝐸 (14) 

 

𝐸 = {
𝑁1, 𝑟𝑎𝑛𝑑 ≥ 0.5
𝑁2, 𝑟𝑎𝑛𝑑 < 0.5

 (15) 

 

Eq. (15), Q was adopted to simulate the effect, which was 

evaluated using Eq. (13). Furthermore, r5 indicates a random 

number between 0  and 1. Eq. (14) an be utilized for 

calculating the coefficient vector of the degree of violence in 

conflict, whereas β indicates the variable that should be 

provided beforehand in the optimization technique. E can be 

used to stimulate the effects of violence in the solution 

dimension. When rand≥0.5, E is equivalent to random values 

in the uniform distribution and problem dimensions.  

To accelerate the converging speed of the GTO algorithm 

and fortify the optimization capability, the MGTO technique 

was modeled using the opposition-based learning (OBL) 

method for screening N initial populations. The steps of the 

multistage population initialization algorithm joining OBL 

and logistic mapping are as follows: 

1) leverage logistic mapping for generating N the number 

of individuals to form original populationN1;  

2) Use Eq. (16) for finding an opposed solution for all 

individuals to form a reverse population N2; 

 

�̃�𝑖
𝑑 = 𝑈𝑏

𝑑 − 𝐿𝑏
𝑑 + 𝑋𝑖

𝑑 (16) 

 

Equation Xi
d signifies the reverse individual of initial 

individual. Eventually, combine the reverse population, and 

original population, compute the fitness values and chooses 

the first N amount of individuals with small fitness to form 

final initial population. 

The fitness function (FF) of the MGTO considered the 

classifier accuracy and count of selected features. It optimizes 

the classifier accuracy and decreases the selected features set 

size. Hence, the following FF was employed for assessing 

individual solutions, as given in Eq. (17). 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼 ∗  𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 + (1 − 𝛼)
#𝑆𝐹

#𝐴𝑙𝑙_𝐹
 (17) 

 

whereas Error Rate means classifier error rate exploiting the 

selected features.  

 

3.3 Seizure prediction process 

 

In this work, the GRU model is applied to predict epileptic 

seizures. RNN can be a kind of ANN that was suitable to 

investigate and process time sequence datasets, in 

contradiction to traditional NN [25]. It depends primarily on 

the weight connections amongst the layers. The RNN applied 

the hidden layer (HL) to maintain dataset in previous instant, 

and output can be affected by current conditions and prior 

memory. Here, x〈t〉 and �̂�〈𝑡〉 represents input and output at time 

t, a〈t〉 signifies the outcome of single HL at time t, and 𝜔𝑎𝑎
〈𝑡〉

, 

𝜔𝑎𝑥
〈𝑡〉

, and 𝜔𝑎𝑦
〈𝑡〉

 correspondingly shows HL, input, and output 

weighted matrices.  

 

𝑎〈𝑡〉 = 𝑔1(ω𝑎𝑎𝑎
〈𝑡−1〉 + ω𝑎𝑥𝑥

〈𝑡−1〉 + 𝑏𝑎), 

ŷ〈𝑡〉 = 𝑔2(ω𝑎𝑦𝑎
〈𝑡〉 + 𝑏𝑦), 

(18) 

 

whereas ba and by correspondingly shows the bias vector of 

single HL and output. g1 and g2 signifies nonlinear activation 

function. The RNN accomplishes well when the outcome was 

neighboring to relevant input; although, when the time interval 

was lengthy and weight count becomes large, input would be 

smaller effect on output due to gradient vanishing problems. 

The GRU framework has been demonstrated in Figure 2, 

whereas σ and tanh signify activation function, c〈t-1〉 represent 

input of existing unit, that is outcome of previous unit, 𝑐〈𝑡〉 

specifies output of existing unit, which interconnects to input 

of subsequent unit. x〈t〉 signifies input of trained dataset, �̂� 

specifies results of unit, generated by activation function, 𝛤𝑟  

593



 

and 𝛤𝑢  correspondingly represents reset and upgraded gate, 

and candidate activation �̃�〈𝑡〉  can be equally evaluated. It 

comprises of 2 gates in GRU, i) upgrade gate, which continues 

previous dataset to the current state; the values of 𝛤𝑢 ranges 

from 0 to 1, the nearby 𝛤𝑢 was to 0, the other previous dataset 

it conserves; another was reset gate that can be applied to 

describe whether the existing state, as well as previous dataset, 

are incorporated or not. The value of 𝛤𝑟  range in -1 to 1, while 

value gets lesser of 𝛤𝑟 , the other previous dataset get ignores: 

 

𝛤𝑢 = 𝜎(𝜔𝑢[𝑐
〈𝑡‐1〉, 𝑥〈𝑡〉] + 𝑏𝑢), 

𝛤𝑟 = 𝜎(𝜔𝑟[𝑐
〈𝑡‐1〉, 𝑥〈𝑡〉] + 𝑏𝑟), 

�̃�〈𝑡〉 = 𝑡𝑎𝑛ℎ(𝜔𝑐[𝛤𝑟 ∗ 𝑐〈𝑡‐1〉, 𝑥〈𝑡〉] + 𝑏𝑐), 

𝑐〈𝑡〉 = (1 − 𝛤𝑢) ∗ 𝑐〈𝑡‐1〉 + 𝛤𝑢 ∗ �̃�〈𝑡〉, 

(19) 

 

whereas, ωu, ωr, and ωc correspondingly indicates trained 

weighted matrices of upgrade and reset gate and candidate 

activation �̃�〈𝑡〉, and bu, br, and bc denotes bias vector. 

 

 
 

Figure 2. Framework of GRU 

 

To modify the hyperparameter values of the GRU method, 

the GWO is used. Mirjalili et al. developed a new SI optimized 

technique named GWO [26]. Indeed, it is original method that 

accelerates hunting and social hierarchies of GW. To develop 

the social performance of GW, it is classified into 4 states 

namely α, β, δ, and ω. α considering that optimal solution 

implemented by β and δ, correspondingly, and residual 

solution derives in 𝜔. The first 3 fittest wolves called α, β, and 

δ are nearby the prey support ω to distinguish the food from 

complex areas. In the surrounding stage, wolf increases the 

place of, β, or δ as demonstrated in Eqns. (20) and (21): 

 

�⃗⃗� = |C⃗ ⋅ 𝑋 𝑝(𝑡) − 𝑋 (t)| (20) 

 

𝑋 (t + 1) = 𝑋 𝑝(𝑡) − 𝐴 ⋅ �⃗⃗�  (21) 

 

Now t shows the existing iteration, 𝑋 𝑝(𝑡)  signifies the 

present location of prey and 𝑋 (t) implies the present place of 

wolves. �⃗⃗�  denotes the distance amongst wolf and prey, and 

co-efficient vectors 𝐴  and C⃗  resulting in mathematical 

processes in the following. 

 

 

𝐴 = 2𝑎 𝑟1⃗⃗⃗  − 𝑎  (22) 

 

C⃗ = 2 𝑟2⃗⃗  ⃗ (23) 

 

where, 𝑟l⃗⃗  and 𝑟2⃗⃗  ⃗  implies the 2 vectors lie within [0,1], the 

component of 𝑎  has linearly reduced from 2 to 0. Now, α, β, 

and δ describes location nearby to prey locations. In the 

process of hunting, topmost 3 are optimal solutions and 

residual wolves ω are suitable for substituting on the first 3 

optimal wolves: 

 

D⃗⃗ 𝛼 = |C⃗ 1 ⋅ 𝑋 − 𝑋 | (24) 

 

�⃗⃗� 𝛽 = |𝐶 2 ⋅ 𝑋 − 𝑋 | (25) 

 

�⃗⃗� 𝛿 = |C⃗ 3 ⋅ 𝑋 − 𝑋 | (26) 

 

X⃗⃗ 1 = 𝑋 𝑎 − A⃗⃗ 2 ⋅ (D⃗⃗ 𝛼) (27) 

 

𝑋 2 = 𝑋 𝛽 − 𝐴 2 ⋅ (�⃗⃗� 𝛽) (28) 

 

𝑋 3 = 𝑋 − 𝐴 ⋅ (�⃗⃗� 𝛿) (29) 

 

𝑋 (t + 1) =
𝑋1⃗⃗⃗⃗  ⃗+�⃗� +𝑋3⃗⃗⃗⃗  ⃗

3
  (30) 

 

whereas 𝑋 𝛼  indicates the location of 𝛼, X⃗⃗ 𝛽  determined the 

location of 𝛽, 𝑋𝛿
⃗⃗ ⃗⃗   denotes the location of 𝛿, 𝑋  shows the 

location of current solutions, C1
⃗⃗⃗⃗ , C2

⃗⃗⃗⃗  and C3
⃗⃗⃗⃗  suggests the vector 

produced arbitrarily. At this time, 𝐴 1, 𝐴 2  and 𝐴 3 indicates 

arbitrary vector, and 𝑡 indicates the iteration count. The step 

size of ω wolf implemented then α, β, and δ are demonstrated 

in Eqns. (24)-(26). Later, the resulting location of ω wolf has 

assessed by Eqns. (27)-(30). 

The GWO method makes a derivate of fitness function (FF) 

to have greater classifier outcome. It defines a positive value 

for designating higher outcomes of candidate solutions.  

 

Algorithm 1: Pseudo code of GWO technique  

Initializing Population: Grey wolves Xi(i=1,2,..,n) 

initialize Parameters: a, A, and C 

define fitness value of each searching agent 

Xα=best searching agent 

Xβ=second optimum searchagent 

=third optimum searching agent 

while (t<Max_number_iterations) 

    for each searching agent 

          Upgrade the position of present search agent 

    End for 

    Upgrade a, A and C 

    define fitness value of each searching agent 

   Upgrade Xα, Xβ, and Xδ 

    Increment t 

End while 

Return Xα 

 

In this article, the minimal classifier rate of errors indicates 

the FF, as given in Eq. (31). 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100 

(31) 

 

 

4. RESULTS AND DISCUSSIONS 

 

In this section, the experimental validation of the 

MGTODL-ESP method is validated on the EEG signal dataset 

[27, 28], comprising 40000 samples. The dataset contained 
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two classes with 20000 samples as presented in Table 1. The 

CHB-MIT dataset is a compilation of EEG recordings 

obtained from children suffering from epilepsy, as shown in 

Table 2. The dataset is a product of research carried out by a 

team from the Children's Hospital of Boston and MIT. The 

dataset included EEG recordings from 23 individuals and a 

total of over 16 h of data. The recordings were made using the 

International 10-20 system, a widely accepted method for 

positioning electrodes on the scalp. Researchers have used this 

dataset in their studies on EEG signal processing and analysis. 

The CHB-MIT dataset is available for download on the IEEE 

DataPort, a platform that enables researchers to access and 

share scientific datasets, as shown in Table 3. 

 

Table 1. Dataset details 

 
Class No. of Samples 

Seizure 20000 

NoSeizure 20000 

Total Number of Samples 40000 

 

 
 

Figure 3. Confusion matrices of MGTODL-ESP system (a-b) 

TR and TS databases of 60:40 and (c-d) TR and TS databases 

of 70:30 

 

The confusion matrices produced by the MGTODL-ESP 

methodology on varying database sizes are reported in Figure 

3. The MGTODL-ESP approach has properly recognized the 

seizure and non-seizure instances. For instance, on 60% of TR 

database, the MGTODL-ESP methodology has recognized 

11707 instances under seizure class and 11613 instances under 

no seizure class. In addition, on 40% of TS database, the 

MGTODL-ESP approach has detection 7764 instances under 

seizure class and 7834 instances under no seizure class. 

Table 2 depicts a brief seizure classification result of the 

MGTODL-ESP model on 60% of TR data and 40% of TS data. 

Figure 4 depicts an overall seizure classifier outcome of the 

MGTODL-ESP methodology on 60% of TR database. With 

seizure class, the MGTODL-ESP system has obtained accubal 

of 97.24%, sensy of 97.24%, specy of 97.09%, Fscore of 97.18%, 

MCC of 94.33%, and Gmean of 97.17%. Also, with no seizure 

class, the MGTODL-ESP methodology has reached accubal of 

97.09%, sensy of 97.09%, specy of 97.24%, Fscore of 97.16%, 

MCC of 94.33%, and Gmean of 97.17%. 

Figure 5 illustrates an overall seizure classifier outcome of 

the MGTODL-ESP approach on 40% of TS database. With 

seizure class, the MGTODL-ESP method has reached 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 

of 97.53%, sensy of 97.53%, specy of 97.45%, Fscore of 97.48%, 

MCC of 94.97%, and Gmean of 97.49%. Besides, with no 

seizure class, the MGTODL-ESP technique has reached 

accubal of 97.45%, sensy of 97.45%, specy of 97.53%, Fscore of 

97.50%, MCC of 94.97%, and Gmean of 97.49%. 

Table 3 illustrates a brief seizure classification outcome of 

the MGTODL-ESP approach on 70% of TR and 30% of TS 

databases. Figure 6 showcases an overall seizure classifier 

outcome of the MGTODL-ESP technique on 70% of TR 

database. With seizure class, the MGTODL-ESP algorithm 

has acquired accubal of 97.91%, sensy of 97.91%, specy of 

99.07%, Fscore of 98.48%, MCC of 96.99%, and Gmean 

of98.49%. Followed by, with no seizure class, the MGTODL-

ESP system has reached accubal of 99.07%, sensy of 99.07%, 

specy of 97.91%, Fscore of 98.50%, MCC of 96.99%, and Gmean 

of 98.49%. 
 

 
 

Figure 4. Seizure classification outcome of MGTODL-

ESP approach under 60% of TR database 
 

 
 

Figure 5. Seizure classification outcome of MGTODL-ESP 

approach under 40% of TS database 
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Table 2. Seizure classification outcome of MGTODL-ESP approach under 60:40 of TR/TS databases 

 
Class Accuracybal Sensitivity Specificity F-Score MCC G-Mean 

Training Phase (60%) 

Seizure 97.24 97.24 97.09 97.18 94.33 97.17 

NoSeizure 97.09 97.09 97.24 97.16 94.33 97.17 

Average 97.17 97.17 97.17 97.17 94.33 97.17 

Testing Phase (40%) 

Seizure 97.53 97.53 97.45 97.48 94.97 97.49 

NoSeizure 97.45 97.45 97.53 97.50 94.97 97.49 

Average 97.49 97.49 97.49 97.49 94.97 97.49 

 

Table 3. Seizure classification outcome of MGTODL-ESP approach under 70:30 of TR/TS databases 

 
Class Accuracybal Sensitivity Specificity F-Score MCC G-Mean 

Training Phase (70%) 

Seizure 97.91 97.91 99.07 98.48 96.99 98.49 

NoSeizure 99.07 99.07 97.91 98.50 96.99 98.49 

Average 98.49 98.49 98.49 98.49 96.99 98.49 

Testing Phase (30%) 

Seizure 98.05 98.05 98.95 98.49 97.00 98.50 

NoSeizure 98.95 98.95 98.05 98.51 97.00 98.50 

Average 98.50 98.50 98.50 98.50 97.00 98.50 

 

 
 

Figure 6. Seizure classification outcome of MGTODL-ESP 

approach under 70% of TR database 

 

 
 

Figure 7. Seizure classification outcome of MGTODL-ESP 

approach on 30% of TS database 

 

Figure 7 depicts an overall seizure classifier outcome of the 

MGTODL-ESP method on 30% of TS database. With seizure 

class, the MGTODL-ESP algorithm has obtained 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of 

98.05%, 𝑠𝑒𝑛𝑠𝑦  of 98.05%, specy of 98.95%, Fscore of 98.49%, 

MCC of 97%, and Gmean of 98.50%. Moreover, with no seizure 

class, the MGTODL-ESP system has obtained accubal of 

98.95%, sensy of 98.95%, specy of 98.05%, Fscore of 98.51%, 

MCC of 97%, and Gmean of 98.50%. 

The TACC and VACC of the MGTODL-ESP system are 

examined on seizure classification performance in Figure 8. 

The figure referred that the MGTODL-ESP algorithm has 

shown higher performance with enhanced values of TACC 

and VACC. It is noticeable that the MGTODL-ESP 

methodology has reached superior TACC outcomes. 

 

 
 

Figure 8. TACC and VACC analysis of MGTODL-ESP 

methodology 

 

 
 

Figure 9. TLS and VLS analysis of MGTODL-ESP approach  
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The TLS and VLS of the MGTODL-ESP system are tested 

on seizure classification performance in Figure 9. The figure 

stated that the MGTODL-ESP method has demonstrated 

superior performance with lower values of TLS and VLS. It is 

visible that the MGTODL-ESP model has resulted in 

decreased VLS outcomes. 

An evident precision-recall study of the MGTODL-ESP 

system in the test database is described in Figure 10. The 

figure pointed out the MGTODL-ESP algorithm has resulted 

in greater values of precision-recall values in two classes. 

A comprehensive ROC investigation of the MGTODL-ESP 

system in the test database is portrayed in Figure 11. The 

outcome stated the MGTODL-ESP technique has presented its 

capability in cataloguing two classes.  

In Table 4 and Figure 12, a widespread comparative 𝑎𝑐𝑐𝑢𝑦 

analysis is made with recent models. The experimental values 

indicated that the SVM and LR technique has revealed least 

accuy values of 82.39% and 81.32% respectively.  

Followed by the ResNet-152, Inceptionv3, and EESC 

models have obtained certainly increased accuy of 90.63%, 

91.89%, and 93.92% respectively. Although the DCAE-MLP 

model has reported reasonable accuy of 97.17%, the 

MGTODL-ESP model has attained maximum accuy of 

98.50%. These outcomes assured the enhanced seizure 

prediction results of the MGTODL-ESP model. 

 

 
 

Figure 10. Precision-recall analysis of MGTODL-ESP 

approach  

 

 
 

Figure 11. ROC curve analysis of MGTODL-ESP approach 
 

 
 

Figure 12. Comparative analysis of MGTODL-ESP 

approach with other recent systems 

 

Table 4. Comparative analysis of MGTODL-ESP 

methodology with other recent systems 
 

Methods Accuracy (%) 

MGTODL-ESP 98.50 

DCAE-MLP 97.17 

SVM Model 82.39 

LR Model 81.32 

ResNet-152 90.63 

Inception-V3 Model 91.89 

EESC Model 93.92 

 

Here are some additional limitations that can be considered: 

• The study only used a single dataset, and further 

validation of the MGTODL-ESP model is needed on 

a larger and more diverse set of EEG recordings to 

generalize the results to a broader population.  

• The current model may not be suitable for real-time 

prediction of epileptic seizures, as the processing 

time for the optimization algorithm and deep learning 

model is still relatively long.  

• The complexity of the MGTODL-ESP model may 

also make it challenging to implement in a clinical 

setting, where user-friendly and low-cost solutions 

are preferred.  

• The model may also have limited generalization 

ability for different types of epilepsy and different 

EEG recording settings, which would require further 

investigation and improvement. 

These limitations suggest that there is room for further 

research and improvement in the field of EEG-based 

prediction of epileptic seizures. 

 

 

5. CONCLUSION 

 

In this study, an automated seizure prediction model named 

the MGTODL-ESP model has been developed to predict 

different classes of seizures on EEG Signals. In the presented 

MGTODL-ESP technique, four major processes are involved 

such as data pre-processing, MGTO related selective feature, 

GRU classification, and GWO related hyperparameter 

optimization. For the optimal selection of features, the MGTO 

approach is used. Finally, the GWO with GRU method was 
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executed for the seizure prediction procedure where the GWO 

algorithm helps in optimal selection of GRU hyperparameters. 

To validate the enhanced performance of the MGTODL-ESP 

system, a varied range of simulations were performed on 

medical dataset. The resultant values established the better 

performance of the MGTODL-ESP system over other existing 

models. In the future, feature reduction and data clustering 

techniques will be used to scale up the prediction performance 

of the MGTODL-ESP method. 

The proposed MGTODL-ESP model is a promising 

approach for improving the accuracy and efficiency of 

predicting epileptic seizures using EEG signals. The model, 

which combines a modified Gorilla Troops Optimization 

algorithm and Deep Learning techniques, demonstrated an 

accuracy rate of 98.50% in the empirical study using a 

benchmark CHB-MIT scalp EEG database. Despite these 

promising results, the proposed work also has limitations. 

These include limitations in data access and the methodology 

used. However, these limitations provide opportunities for 

future research to further deepen this topic. Future research 

directions could involve exploring alternative methods for 

feature selection, improving the prediction performance of the 

model with more complex algorithms, and validating the 

model with larger datasets. Additionally, incorporating other 

signals such as electrocardiography (ECG) and 

electromyography (EMG) into the model may provide more 

comprehensive information for the prediction of epileptic 

seizures. 
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