
TraViQuA: Natural Language Driven Traffic Video Querying Using Deep Learning

Asım Sinan Yüksel1 , Muhammed Abdulhamid Karabıyık2*

1 Department of Computer Engineering, Süleyman Demirel University, Isparta 32100, Turkey
2 Bor Vocational School, Niğde Ömer Halisdemir University, Niğde 51100, Turkey

Corresponding Author Email: abdulhamidkarabiyik@ohu.edu.tr

https://doi.org/10.18280/ts.400213 ABSTRACT

Received: 19 August 2022
Accepted: 26 January 2023

Video cameras are widely utilized and have ingrained themselves into many aspects of our
daily life. Analysis of video contents is more challenging as the size of the data collected
from the cameras increases. The fundamental cause of this challenge is because certain data,
like the videos, cannot be queried. Our research focuses on converting traffic videos into a
structure that can be queried. Specifically, an application called TraViQuA was suggested f
or natural language-based car search and localization in traffic videos. To query and identify
cars, data including color, brand, and appearance time are used as features. The query is
initiated in real time on live traffic feed, as the user enters the search term on the application
interface. Our text to SQL conversion algorithm enables the mapping of a search term into
a SQL query. Based on the response to the natural language query, TraViQuA can start the
video from the relevant time. Deep neural networks were employed in our application for
text to SQL conversion and feature extraction. Our research reveals that color and brand
models had mean average precision of 98.714% and 91.742%, respectively. The text to SQL
conversion had an 80% accuracy rate. To the best of our knowledge, TraViQuA is the first
application that enables police officers to input a natural language description of a car and
discover the car of interest that matches the description, bridging the gap in traffic video
surveillance. Moreover, TraViQuA can be incorporated into other intelligent transportation
systems to support law enforcement officials in urgent situations like hit-and-run incidents
and amber alerts.

Keywords:
natural language processing (NLP), you
only look once (YOLO), long short-term
memory (LSTM), video query, deep learning

1. INTRODUCTION

Roads were required for the transportation of goods as
international trade relations began to grow. Large-scale roads
have been constructed in response to this requirement. Road
construction increases the risks like theft, terrorism, and
accidents. To cope with the risks, people have created a variety
of road control techniques [1, 2]. Today, this is served by
emerging technology like video surveillance cameras. The
practice of recording video camera images extended
throughout society in the 1990s [3]. As a result, new uses for
cameras in traffic and road control emerged. However, the
extent of the road networks has grown significantly over time.
For instance, Turkey has 68,526 kilometers of motorways that
are monitored by video cameras positioned at regular intervals
[4]. More personnel are needed to interpret the video camera
images [5]. The traditional manual interpretation approaches
are ineffective, time-consuming, and error-prone, facing the
enormous amounts of video data. Traffic officers must
constantly analyze an insanely large number of live video
footages as traffic camera networks continue to expand,
adding significantly to their workloads. Smart systems are
needed to reduce the error rate and the workload.

Studies on artificial intelligence have advanced quickly in
recent years and offer solutions to many issues in several
sectors [6]. Artificial intelligence will inevitably be used,
particularly in fields requiring video analysis. Natural
language processing is another field of artificial intelligence
applications. This method is typically employed in

conjunction with image processing techniques to examine
traffic camera images via natural language queries [7].

This study devises a hybrid approach coupling three
different methods to analyze traffic videos, including object
detection, video summarization, and text to SQL conversion.
As a subfield of image processing, object detection seeks to
locate objects in the content of image data by accounting for
their unique properties [8]. In this instance, cars serve as the
target objects for our system, and features to investigate
include color and brand.

Video summarization is an important topic for the big data
analysis of video images. Chen et al. [9] employed different
methods for video summarization. Hussain et al. [10]
implemented video summarization as a feature to provide
general summary or query-based summary of data. In our car-
oriented system, the images are summarized according to the
frames that include cars.

In the object recognition module, deep neural networks are
trained using the pretrained you only look once (YOLO)
models [11]. The module only has two models: a brand model
and a color model. The former was trained on the Car
Connection Picture Dataset (CCPDS) [12], while the latter was
trained by our own dataset.

The results from the above two models were used to develop
the video summarization system. Each video summary was
created by determining the changes in the video timeline,
according to the results from the brand model and the color
model.

Text to SQL conversion is an increasingly popular topic of

Traitement du Signal
Vol. 40, No. 2, April, 2023, pp. 543-553

Journal homepage: http://iieta.org/journals/ts

543

https://orcid.org/0000-0003-1986-5269
https://orcid.org/0000-0001-7927-8790
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.400213&domain=pdf

natural language processing [13]. It allows users to make
queries using natural language. Our study applies the SmBoP
model, which is developed based on semantic parsing. The
spider dataset was used for model training [14].

Natural language applications for video querying systems
have not yet been explored in the literature. There are
numerous limitations with the relevant studies. For example,
scholars have focused on specific queries made in natural
language, without considering flexible structures of natural
language expressions. The target videos cover a certain area
and have a static structure. The accuracy is often reported on
static images, which does not reflect the real-world conditions.

Similar studies have suggested AI-based models for
identifying the make and model of cars, but they ignore crucial
information like the color of the car. Color is a key factor in
ensuring that an AI model is reliable and appropriate for use
in video surveillance applications. The query "A white
Mercedes" on a highway is more useful than the query "A
Mercedes" because it includes the color feature.

TraViQuA corrects the flaws in earlier studies and suggests
a fresh, reliable model for application in practical situations
like traffic video monitoring. Our color model provides an
additional filter to narrow down the results, and minimizes the
time to recognize a car in a scene. To the best of our knowledge,
TraViQuA is the first application that fills the gap in traffic
video surveillance by offering a human-computer interface,
which enables police officers to type a natural language
description of a car and find the car of interest that matches the
description.

2. LITERATURE REVIEW

For a very long time, scholars have been exploring the
problem of text to SQL conversion. The studies in this field
were not very successful in the early phases, due to the lack of
adequately sophisticated language models. Bidirectional
Encoder Representations from Transformers, or BERT, was
launched by Google in 2018 and its use to convert text to SQL
improved conversion success rates [15].

Studies on text to SQL conversion commonly employ the
Spider dataset, which was created by Yale University's
Language, Information, and Learning Laboratory (LILY) [16].
TypeSQL, SQLNet, and SyntaxSQLNet are a few examples of
studies created using the Spider dataset [17-19]. However, the
accuracy rates of these studies continue to hover around 30%.
The BERT model helps to improve the accuracy rates. This
model has been hybridized with RatSQL (Relation-Aware
Schema Encoding and Linking), which is supported by
Microsoft [20]. Complex databases are compatible with
RatSQL. It uses a semantic parsing technique based on the
connections between the tables. RatSQL+BERT has a 61.9%
accuracy rate. By creating the RatSQL model's encoder, Rubin
and Berant developed the text to SQL transformation model
known as SmBoP (Semi-autoregressive Bottom-up Semantic
Parsing) [14]. The accuracy rate for SmBoP is 71.1%.

Based on the T5-3B pre-trained model, another model
called PICARD was developed [21] by programming
languages Haskell and Python [22, 23]. PICARD operates
with a 75.1% accuracy rate. An application called Bridge was
designed by Lin et al. using BERT as the language model.
Researchers have utilized database schema matching and input
from natural language to accomplish SQL query prediction.
Database schemas were pruned in their investigations. This

technique avoided predicting erroneous SQL queries. The
accuracy rate of the developed system is 68.3% [24]. Huang et
al. developed a text to SQL model named Rasap, using Electra
pre-trained text encoder and RatSQL database encoder. The
accuracy rate of the developed model was 70% [25, 26].

Studies on object recognition have accelerated thanks to
advances in deep learning. The YOLOv2 model was used by
Li et al. to study multiple object detection. Their research
centered on classifying the various traffic vehicle classes. Four
classes of vehicles were used in the object detection phase of
the experiments: trucks, cars, buses, and vans. Multi-object
detection achieved an accuracy rate of 89.64% whereas simple
object detection achieved a success rate of 92.09% [27]. For
the Parrot AR Drone 2, Rohan et al. created a real-time object
detection system. The system processes the images captured
by the drone's front camera. The authors used single shot
detector (SSD) and convolutional neural network (CNN)
techniques for object recognition applications. The accuracy
rate for the SSD technique, which was trained on 5100 images,
was 98.2% [28]. Ćorović et al. [11] examined real-time traffic
camera images. The research was based on the fact that
traditional networks yield sluggish results. To improve
performance, they used a quicker model called YOLOv3 with
5 object classes: cars, trucks, pedestrians, traffic signs, and
lights. The accuracy rate reached 46.6%. The low accuracy
rate was caused by very small objects in the images [11].
Eggert et al. tested the detection of small objects called "Look
Closer." The Faster R-CNN was employed to find logos of
small businesses, and achieved an 80% accuracy [29]. Stuparu
et al. tried to detect cars in satellite and drone images, using
the RetinaNet. Their vehicle detection accuracy was 72% [30].

Video summarization systems are important to applications
with a large amount of video content. Ma et al. proposed a
framework for video summarization, which focuses on
concepts that attracted people's attention in a video. A
summary video was obtained by compressing the area
occupied by the object in the time series, i.e., the area that
attracts user attention [31]. Mahasseni et al. [32] presented a
video summarization system using unsupervised learning.
Specifically, subsets of frames in the video stream were
analyzed semantically, the repetitive subsets were removed,
and the video was summarized. The video frame subsets to be
extracted were determined by the LSTM, a deep neural
network [32]. Gong et al. [33] argued that unsupervised
learning is not directed towards human thoughts, and
suggested video analysts to focus on a particular topic.
Following this train of thought, they put forward a
summarization system with selected video frame subsets, in
the context of supervised learning. The subset selection and
feature extraction were achieved using greedy algorithm and
Bayesian networks [33].

Wu et al. [34] proposed a high-density peak search
clustering algorithm for summarizing static videos. The
algorithm was developed by combining similar parts of
multiple videos. The high success rate of their algorithm was
observed through experiments [34]. Otani et al. [35] developed
a semantic approach for video summarization based on the
SumMe dataset [35], and presented the benefits of deep
semantic features in video summarization [36].

Tellex and Katz are leading researchers in the field of
natural language queryable videos. Tellex and Roy targeted
the indoor images taken from a fish-eye camera, and tried to
determine the equivalents of the words "along" and "across" in
the video. This is realized by classifying these two words with

544

decision trees [37]. Katz et al. [38] utilized four natural
language queries to identify the moving objects in videos taken
by a single camera, and applied the START method for textual
question and answer.

3. METHODOLOGY

TraViQuA is composed of three main modules. The first
module is responsible for object detection. In this module, the
video stream from the traffic surveillance camera is imported.
The input is divided into frames and sent to the color model,
which aims to identify cars and their colors. The results of the
color model, together with the time stamps and object
locations, are taken as parameters of the submodule for
clipping. This submodule converts each detected object into a
separate image, and imports it to the brand model for brand
detection.

The detection results are further sent to the video

summarization module, which evaluates the results according
to three features: color, brand and time stamp. The video
summarization module compares the results of the current
frame with those of the previous frame. If the results are
different, the current results are stored in the database. These
processes continue as long as the video stream is provided.

In the text to SQL module, the user's natural language query
is imported, and converted to an SQL query via semantic
parsing. The output is the textual summary of the video, which
is displayed to the user. These results are filtered according to
the user's query. The user can start the video from the relevant
time or see the summary of results as a list on the interface.
Figure 1 shows the general flow of the application.

TraViQuA requies a minimum of 2.5 GHz x64 processor, 8
GB RAM and 5 GB free disk space. More free space is needed
if the video input to the system grows. The interface of the
desktop application is designed to be simple and user friendly
(Figure 2).

Figure 1. General flow of the application

Figure 2. User interface of the desktop application

3.1 Object detection module

The object detection module performs operations on the
input video. The objects are detected by real-time video
processing techniques. The goal is to identify color and brand
features of the cars. Therefore, feature extraction is applied to
provide queryable structure. The results of this module are
imported to the video summarization module.

3.1.1 Color module
The input video is firstly processed in the color module,

before being divided into frames. The divided frames are
tagged with the current date and time. The date and time tags
are the key parameters for video analysis. The color module
trained with YOLOv5 is used for detecting cars and their
colors in the tagged frames. The module outputs the
coordinates, color and reliability value of each car it detects on

545

the frame. On this basis, each frame is divided into a number
of temporary frames, which are transferred to the brand
module and passed to the other module of the application.
Figure 3 explains the operation of the color module.

Figure 3. Operation of the color module

The deep neural network was trained by 1136 images

containing 6 color classes: white, gray, red, blue, yellow and
black. The dataset of the color model is prepared with car
images grouped by their colors. Full supervised learning was
adopted to label the images. For example, all the black cars are
labeled as black. In this way, each color class only contains car
objects with various brands and models (Figure 4).

There are four main parts of our YOLOv5 model for car and
color detection:

1) Backbone: This part contains a CNN acting as a
feature extraction network, which extracts and
aggregates feature maps from input images.

2) Neck: This part, connecting the Backbone to Head,
generates feature pyramids. These pyramids are
designed to ensure accuracy and speed. In YOLOv5,
PANet is used as Neck to produce feature pyramids.

3) Head: This part uses the features created by Neck to
predict boxes and classes, producing bounding box
and confidence scores.

4) Detection: This last part outputs predicted bounding
box with class label and its confidence score.

Figure 4. Car labeling

Figure 5 overviews the YOLOv5 model used to detect car

brands and car colors.

3.1.2 Brand module
This module detects the brands of the cars on the temporary

frames from the color module. The deep neural network for
brand detection was trained with YOLOv5. The temporary
frames from the color module are imported to the brand
module sequentially. The brands identified by the brand
module are transferred to the video summarization module.
The temporary frames are removed from memory at this stage.
Figure 6 explains the operation of the brand module.

The brand model was trained on the CCPDS dataset [12],
which includes 297,000 car images. These images contain
such car parts as tires, headlights, and door handles. The car
parts are unnecessary for training, for our aim is to detect the
cars as a whole in traffic surveillance videos. Therefore, as the
first step, irrelevant training images are removed from the
dataset.

Figure 5. Overview of YOLOv5 model

546

Figure 6. Operation of the brand module

Next, the remaining images are preprocessed through

rescaling and cropping. YOLO detects objects with the help of
anchor boxes. These boxes must be of the right size and
number to reduce the time to detect these anchors and improve
the positioning accuracy of cars. For this purpose, rescaling is
carried out to optimize the aspect ratio and provide robust
learning. As a result, the training and detection images share
the same aspect ratio. Cropping ensures that training image
only contains the car objects. It is a useful pre-processing
method where the position of the car has large variance [39].
After pre-processing, 31583 images with 40 brand classes
were obtained. Among them, 27582 images were used for
training. Finally, car images with a reliability over 80% were
selected for training YOLOv5 [39].

3.2 Video summarization module

The video summarization module runs our breakpoint

detection algorithm on the objects detected by the previous
module. The steps of the breakpoint detection algorithm are as
follows:

1) Extract the frames from the video as a sequence of
images.

2) Detect the cars in the current frame and store them in
a list (newCarList). For example: 1 White Mercedes,

1 Blue Audi.
3) Pass the newCarList to the control function named

“detectBreakPoint”.
4) Run detectBreakPoint(currenCarList, newCarList):

Check if the detected objects in the newCarList are
same with the cars in the currentCarList. If not, update
the currentCarList and store it in the database.

Two sample scenarios are presented to better illustrate the
flow of the breakpoint detection algorithm.

Scenario 1. If there is one car in the current frame and in the
next frame(s): A White Mercedes appears in the current frame.
Since no white Mercedes appears in our empty currentCarList,
the algorithm marks it as a new car. Therefore, the first
appearance time of the car in the frame is stored in the database
as a breakpoint. Then, the currentCarList is updated with the
new car (White Mercedes). If the White Mercedes still appears
in the following frames, nothing is done for only the first
appearance time is needed.

Scenario 2. If new car(s) appear(s) in the following frame(s):
A White Mercedes appears in the current frame and a Blue
Audi appears near it in the next frame. In this scenario, the
algorithm works as the same way in Scenario 1, and stores the
first appearance of White Mercedes as a breakpoint. When the
Blue Audi appears in the next frame, this appearance creates
two new breakpoints: one for the White Mercedes and one for
the Blue Audi. These are also stored in the database. Therefore,
2 breakpoints are determined for White Mercedes and 1
breakpoint for Blue Audio. The creation of another breakpoint
for White Mercedes is to ensure that our system captures the
natural language queries entered by user such as “show me the
White Mercedes and Blue Audi that appeared together on
cam1 between 13:00 and 15:00” or “show me all the White
Mercedes cars that appeared on cam1 and cam2” etc.

Figure 7 illustrates the flow of the breakpoint detection
algorithm.

The video summarization module offers a semantic
approach. The results of the module include date, time, car
color, car brand, camera information and camera location.
These results serve as an index for making queries on the video.

Figure 7. Flow of the breakpoint detection algorithm

547

3.3 Text to SQL conversation module

The LSTM is a deep learning model widely applied in real-
world problems, namely, robot control, machine translation,
human action recognition, speech recognition, and grammar
learning. Our problem resides in the domain of machine
translation. During the translation, the source language is
transferred to the target language through AI models, without
any human intervention. In our case, the aim is to translate
sentences from a natural language, i.e., English (e.g., show me
white cars appeared in cam1) to SQL language (e.g. Select *
from cars where color = “white” and location=”cam1”), so that
users can query our database with SQL. The input from our
natural language query interface is converted into an SQL
query. It is more efficient and more accurate for an average
user to locate a car using a natural language instead of SQL,
which requires the mastery of technical knowledge. The
natural language text is converted into SQL query in 4 steps:
dataset collection, pre-processing, word embedding, LSTM
treatment (Figure 8).

Dataset: We used the Spider dataset annotated by 11 Yale
students. This large-scale cross-domain semantic parsing and
text to SQL dataset contains 10,181 questions and 5,693
unique complex SQL queries on 200 databases with multiple
tables covering 138 different domains.

Pre-processing: Mathematical representation of natural

language without errors increases the success of translation.
Therefore, preprocessing is needed to make the mathematical
representation of natural language expression error-free. In
this case, we adopted such preprocessing methods as spelling
correction, tokenization, entity recognition, and stop word
removal.

Word embedding: Since machine learning models cannot
process text directly, we converted textual data into numerical
data through word embedding, which helps to capture the
semantic and syntactic context of a word, and improve the
understanding of how similar/dissimilar it is to other term.

LSTM treatment: The problem of language translation can
be solved by converting text to SQL. For this purpose, we
employed semantic parsing algorithm. The algorithm converts
sequences from one domain (sentences in English) to
sequences in another domain (SQL). The LSTM-based
SmBoP was adopted to realize the text-to-SQL conversion.
Figure 9 shows the operation of our text to SQL module.

During the text to SQL conversion, the database design
directly affects the conversion accuracy. The conversion
accuracy is high, if databases do not have a large number of
tables. Therefore, our database is designed based on a single
table. Date, time, brand, color, camera information and camera
coordinates are all stored in the database.

The number of queries that can be made on the traffic videos
are limited. Figure 10 shows the possible parameters for a car.

Figure 8. Operation of text to SQL module

Figure 9. Operation of text to SQL module

548

Figure 10. Possible parameters for a car

4. RESULTS AND DISCUSSIONS

Three deep neural networks are utilized to develop

TraViQuA (Table 1).

Table 1. Deep learning models

Module Model Data Set Model Size Output
Color YOLOv5 Custom 659.4 Mb Colors
Brand YOLOv5 CCPDS 661.1 Mb Brands

Text to SQL SmBoP Spider 1.27 Gb SQL

Specifically, YOLOv5, SSD, and Faster R-CNN were

compared experimentally for model selection. The
comparison intends to determine the colors of the cars. During
the experiment, a dataset of 1136 images was divided into a
training set and a test set at the ratio of 4:1. The success rates
of the models is shown in Table 2.

Table 2. Comparison of the models

Model mAP

YOLOv5 0.97321
Faster R-CNN 0.93100

SSD 0.79890

Compared with the literature, the YOLOv5 was more

successful than other models [40, 41]. For this reason,
YOLOv5 was chosen for our application. Next, a dataset
consisting of 1136 images with 6 color classes was used to
train the YOLOv5-based color detection model. Figure 11
shows the image distributions for each class.

The color model was trained for 200 epochs. Figure 12
shows the trends of the loss functions. It can be seen that the
loss functions form a descending curve. As the training
continues, the losses approach zero, indicating that the model
produces successful results.

YOLOv5 calculates the final loss score by combining its
three loss functions, namely, box_loss, cls_loss, and obj_ loss.
Mean squared error (MSE) is used for box_loss. This is the
simplest and most commonly used loss function. The MSE can

be calculated by taking the difference between model
predictions and the ground truth. The difference is then
squared, and averaged across the whole dataset. The equation
for MSE can be expressed as:

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (1)

where, n is the number of samples; 𝑦𝑦�𝑖𝑖 is the predicted value; yi
is the ground truth.

Binary cross entropy (BCE) is used for Obj_loss loss
function. It represents the confidence of object presence. The
equation for BCE can be expressed as:

𝐵𝐵𝐵𝐵𝑀𝑀 = −
1
𝑛𝑛
�𝑦𝑦1 log(𝑦𝑦�𝑖𝑖) − (1 − 𝑦𝑦𝑖𝑖) log(1 − 𝑦𝑦�𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 (2)

where, 𝑦𝑦�𝑖𝑖 is the i-th predicted value in the model output; 𝑦𝑦𝑖𝑖 is
the corresponding target value; n is the number of scalar values
in the model output.

Categorical cross entropy (CCE) is used for Cls_loss
function. Formally, it is designed to quantify the difference
between two probability distributions. The equation for BCE
can be expressed as:

𝐵𝐵𝐵𝐵𝑀𝑀 = −�𝑦𝑦𝑖𝑖 log(𝑦𝑦�𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 (3)

The mAP metric was selected to compare the actual

bounding box with the detected box, before returning a score.
The higher the score, the more accurate the object detection.
YOLOv5 gives mAP values in two ranges. mAP_0.5 is the
mAP with 0.5 at the IoU (Intersection over Union) threshold.
mAP_0.5:0.95 is the average mAP over different IoU
thresholds ranging from 0.5 to 0.95. In both ranges, it is
expected that the curve rises towards 1. As can be seen in
Figure 12, the curve moves above 0.95 for the color model,
indicating that our model is highly successful. Figure 13 shows
the sample test results using the color model.

Figure 11. Image class distributions for the color model

549

Figure 12. Training results for the color model

Figure 13. Sample test result for a yellow car

Next, a dataset of 27582 images on which 40 brand classes

was used to train the YOLOv5-based brand detection model.
Figure 14 displays the image distributions for each class in the
brand dataset.

The imbalance in the class distributions can be attributed to
two factors: One is the scarcity of special production vehicles,
which is frequently encountered in real life. That is why it is
impossible to create an evenly distributed dataset between
classes. The second is the pre-processing on CCPDS dataset.
During the preprocessing, car images with a reliability above
80% were selected. Figure 15 shows the trends of the loss
functions.

It can be seen that the mAP curve approaches 0.91,
suggesting that our model is highly successful. Figure 16
shows the sample test results using the brand model.

The text to SQL accuracy was evaluated by the exact match,
i.e., a natural language query produced an SQL query identical
to a predefined true query. The model used for text to SQL
conversion was tested with different queries in natural
language, producing an 80% accuracy.

Table 3 compares TraViQuA with other video
summarization systems (VSS) in the literature. All video
summarization systems share the video playback feature. But
these systems take the places of interests from the videos and
create a summary video shorter in size than the normal video.
In our system, there is no interference with the videos.
Playback is started by going directly to the places of interests
in the video.

The VSSs were compared against three reference values:
the video summarization algorithm; the queryable output

structure; the use of semantic or clustering approach in video
summarization.

Our end-to-end test reports a 70% success rate. In this test,
a natural language query was inputted into the system. Then,
the results corresponding to the query were examined on the
video and the accuracies were evaluated.

The studies on natural language expressions have a common
difficulty: they cover very large domains. TraViQuA only
considers the transportation domain, specifically the features
of the cars. Working in a specific domain makes the results
more decisive. Of course, the TraViQuA design allows for
extensions. In future studies, the application can be improved
by adding features such as traffic signs, vehicle types and
traffic accidents to the query criteria.

In the video summarization module, the properties of the
traffic video used for querying are stored in the database. A
single database table is sufficient for the features. The use of a
single table improves the accuracy of text to SQL conversion.
However, a single table may not be sufficient to add features
for future studies. To prevent the potential accuracy decline,
the domain definitions of the newly created tables should be
expressed clearly and each table should be designed to hold a
feature.

Figure 14. Image class distributions for the brand model

550

Figure 15. Training results for brand model

Figure 16. Sample results for Chevrolet brand

Table 3. Comparison with other systems

VSS Approach Queryable
Output Algorithms

TraViQuA Semantic X YOLOv5
Mahasseni et al.

[32] Clustering - LSTM &
GAN

Gong et al. [33] Clustering - VRHDPS
Wu et al. [34] Clustering - VRHDPS
Fajtl et al. [35] Clustering - LSTM
Otani et al. [36] Semantic - DNN

5. CONCLUSIONS

This paper puts forward TraViQuA, an application that

processes video streams of traffic surveillance cameras and
analyzes cars based on the following features: their color and
brand features, their appearance on the camera as date-time
information and in which camera they were appeared as
location information. Specifically, color and brand models
were developed using the YOLOv5 pre-trained model and
video images were analyzed semantically. Finally, the changes
in the video images were detected and a queryable summary
of the video was obtained.

There are two main challenges in querying videos with
natural language: it is difficult to make sense of the natural
language, and the videos are not in a queryable structure.
TraViQuA successfully overcomes these challenges by
utilizing deep learning techniques. Our highly accurate query
module enables traffic officers to find the car of their interest
in a traffic surveillance video. They only need to type in
natural language through a graphical user interface, without
knowing technical knowledge.

In future studies, the scope of analysis can be expanded by
adding more features, such as traffic accidents, car body types
and traffic rule violations. TraViQuA supports the analysis of

multiple cameras, and stores the coordinates of the cameras in
the database, paving the way for vehicle route determination.
In addition, the structure of our application can be extended to
be used in many different fields, where there is a need for
automatic analysis and querying of video files.

REFERENCES

[1] Rümeysa, K.A.R.S. (2019). Osmanlı’da Ticarî Yol

Sistemi ve Taşımacılık: Konya Örneği (1700-1750).
Journal of Universal History Studies, 2(2): 296-307.
https://doi.org/10.38000/juhis.582506

[2] Huang, C.J., Hu, K.W., Ho, H.Y., Chuang, H.W. (2021).
Congestion-preventing routing and charging scheduling
mechanism for electric vehicles in dense urban areas.
Information Technology and Control, 50(2): 284-307.
https://doi.org/10.5755/j01.itc.50.2.27780

[3] O’Regan, T. (1991). From piracy to sovereignty:
international video cassette recorder trends. Continuum:
Journal of Media & Cultural Studies, 4(2): 112-135.
https://doi.org/10.1080/10304319109388202

[4] KGM. Road Network Information.
https://www.kgm.gov.tr/Sayfalar/KGM/SiteEng/Root/G
dh/GdhRoadNetwork.aspx, accessed on May 29, 2022.

[5] Luff, P., Heath, C. (2012). Some ‘technical challenges’
of video analysis: social actions, objects, material
realities and the problems of perspective. Qualitative
Research, 12(3): 255-279.
https://doi.org/10.1177/1468794112436655

[6] Chakraborty, T., Sikdar, S.S., Ganguly, N., Mukherjee,
A. (2014). Citation interactions among computer science
fields: a quantitative route to the rise and fall of scientific
research. Social Network Analysis and Mining, 4: 1-18.
https://doi.org/10.1007/s13278-014-0187-3

[7] Zhang, C.M., Lu, Y. (2021). Study on artificial
intelligence: The state of the art and future prospects.
Journal of Industrial Information Integration, 23: 100224.
https://doi.org/10.1016/j.jii.2021.100224

[8] Amit, Y., Felzenszwalb, P., Girshick, R. (2020). Object
detection. Computer Vision: A Reference Guide, 1-9.
https://doi.org/10.1007/978-3-030-03243-2_660-1

[9] Chen, B.W., Wang, J.C., Wang, J.F. (2009). A novel
video summarization based on mining the story-structure
and semantic relations among concept entities. In IEEE
Transactions on Multimedia, 11(2): 295-312.
https://doi.org/10.1109/TMM.2008.2009703

551

[10] Hussain, T., Muhammad, K., Ding, W.P., Lloret, J., Baik,
S.W., de Albuquerque, V.H.C. (2021). A comprehensive
survey of multi-view video summarization. Pattern
Recognition, 109: 107567.
https://doi.org/10.1016/j.patcog.2020.107567

[11] Ćorović, A., Ilić, V., Ðurić, S., Marijan, M., Pavković, B.
(2018). The real-time detection of traffic participants
using YOLO algorithm. In 2018 26th
Telecommunications Forum (TELFOR), IEEE, 1-4.
https://doi.org/10.1109/TELFOR.2018.8611986

[12] Gervais, N. (2020). The Car Connection Picture Dataset.
https://github.com/nicolas-gervais/predicting-car-price-
from-scraped-data/tree/master/picture-scraper/, accessed
on May 29, 2022.

[13] Wang, P., Shi, T., Reddy, C.K. (2020). Text-to-SQL
generation for question answering on electronic medical
records. In Proceedings of The Web Conference 2020,
350-361. https://doi.org/10.1145/3366423.3380120

[14] Rubin, O., Berant, J. (2021). SmBoP: Semi-
autoregressive bottom-up semantic parsing. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies,
Association for Computational Linguistics, 311-324.
https://doi.org/10.18653/v1/2021.naacl-main.29

[15] Devlin, J., Chang, M.W., Lee, K., Toutanova, K. (2019).
Bert: Pre-training of deep bidirectional transformers for
language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Association for Computational
Linguistics, 4171-4186.
https://doi.org/10.18653/v1/N19-1423

[16] Brunner, U., Stockinger, K. (2021). Valuenet: A natural
language-to-SQL system that learns from database
information. In 2021 IEEE 37th International Conference
on Data Engineering (ICDE), IEEE, pp. 2177-2182.
https://doi.org/10.1109/ICDE51399.2021.00220

[17] Yu, T., Li, Z., Zhang, Z., Zhang, R. and Radev, D. (2018).
TypeSQL: Knowledge-based type-aware neural text-to-
sql generation. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Association for Computational
Linguistics, 588-594. https://doi.org/10.18653/v1/N18-
2093

[18] Gur, I., Yavuz, S., Su, Y., Yan, X.F. (2018). DialSQL:
Dialogue based structured query generation. In
Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, Association
for Computational Linguistics, 1339-1349.
https://doi.org/10.18653/v1/P18-1124

[19] Huo, S.Y., Ma, T.F., Chen, J., Chang, M., Wu, L.F.,
Witbrock, M. (2019). Graph enhanced cross-domain
text-to-SQL generation. In Proceedings of the Thirteenth
Workshop on Graph-Based Methods for Natural
Language Processing (TextGraphs-13), Association for
Computational Linguistics, 159-163.
https://doi.org/10.18653/v1/D19-5319

[20] Wang, B.L., Shin, R., Liu, X.D., Polozov, O., Richardson,
M. (2020). RAT-SQL: Relation-aware schema encoding
and linking for text-to-SQL parsers. In Proceedings of
the 58th Annual Meeting of the Association for
Computational Linguistics, Association for

Computational Linguistics, 7567-7578.
https://doi.org/10.18653/v1/2020.acl-main.677

[21] Nogueira, R., Jiang, Z.Y., Pradeep, R., Lin, J. (2020).
Document ranking with a pretrained sequence-to-
sequence model. In Findings of the Association for
Computational Linguistics: EMNLP 2020, Association
for Computational Linguistics, 708-718.
https://doi.org/10.18653/v1/2020.findings-emnlp.63

[22] Dobesova, Z. (2011). Programming language python for
data processing. In 2011 International Conference on
Electrical and Control Engineering, IEEE, pp. 4866-4869.
https://doi.org/10.1109/ICECENG.2011.6057428

[23] Hudak, P., Peyton Jones, S., Wadler, P., Boutel, B.,
Fairbairn, J., Fasel, J., et al. (1992). Report on the
programming language Haskell: A non-strict, purely
functional language version 1.2. ACM SigPlan Notices,
27(5): 1-164. https://doi.org/10.1145/130697.130699

[24] Lin, X.V., Socher, R., Xiong, C. (2020). Bridging textual
and tabular data for cross-domain text-to-SQL semantic
parsing. In Findings of the Association for
Computational Linguistics: EMNLP 2020, Association
for Computational Linguistics, 4870-4888.
https://doi.org/10.18653/v1/2020.findings-emnlp.438

[25] Ni, P., Okhrati, R., Guan, S., Chang, V. (2022).
Knowledge graph and deep learning-based text-to-
GraphQL model for intelligent medical consultation
chatbot. Information Systems Frontiers, 1-20.
https://doi.org/10.1007/s10796-022-10295-0

[26] Clark, K., Luong, M.T., Le, Q.V., Manning, C.D. (2020).
Electra: Pre-training text encoders as discriminators
rather than generators. arXiv preprint arXiv:2003.10555.
https://doi.org/10.48550/arXiv.2003.10555

[27] Shi, B.B., Li, X., Nie, T.T., Zhang, K.B., Wang, W.J.
(2021). Multi-object recognition method based on
improved yolov2 Model. Information Technology and
Control, 50(1): 13-27.
https://doi.org/10.5755/j01.itc.50.1.25094

[28] Rohan, A., Rabah, M., Kim, S.H. (2019). Convolutional
neural network-based real-time object detection and
tracking for parrot AR drone 2. IEEE Access, 7: 69575-
69584. https://doi.org/10.1109/ACCESS.2019.2919332

[29] Eggert, C., Brehm, S., Winschel, A., Zecha, D., Lienhart,
R. (2017). A closer look: Small object detection in faster
R-CNN. In 2017 IEEE International Conference on
Multimedia and Expo (ICME), IEEE, pp. 421-426.
https://doi.org/10.1109/ICME.2017.8019550

[30] Stuparu, D.G., Ciobanu, R.I., Dobre, C. (2020). Vehicle
detection in overhead satellite images using a one-stage
object detection model. Sensors, 20(22): 6485.
https://doi.org/10.3390/s20226485

[31] Ma, Y.F., Hua, X.S., Lu, L., Zhang, H.J. (2005). A
generic framework of user attention model and its
application in video summarization. IEEE Transactions
on Multimedia, 7(5): 907-919.
https://doi.org/10.1109/TMM.2005.854410

[32] Mahasseni, B., Lam, M., Todorovic, S. (2017).
Unsupervised video summarization with adversarial
LSTM networks. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), IEEE, pp. 202-
211. https://doi.org/10.1109/CVPR.2017.318

[33] Gong, B., Chao, W.L., Grauman, K., Sha, F. (2014).
Diverse sequential subset selection for supervised video
summarization. Advances in Neural Information
Processing Systems, 27.

552

[34] Wu, J.X., Zhong, S.H., Jiang, J.M., Yang, Y.Y. (2016).
A novel clustering method for static video
summarization. Multimedia Tools and Applications, 76:
9625-9641. https://doi.org/10.1007/s11042-016-3569-x

[35] Fajtl, J., Sokeh, H.S., Argyriou, V., Monekosso, D.,
Remagnino, P. (2019). Summarizing videos with
attention. In Computer Vision-ACCV 2018 Workshops:
14th Asian Conference on Computer Vision, Perth,
Australia, December 2-6, 2018, Revised Selected Papers
14, Springer International Publishing, pp. 39-54.
https://doi.org/10.1007/978-3-030-21074-8_4

[36] Otani, M., Nakashima, Y., Rahtu, E., Heikkilä, J.,
Yokoya, N. (2017). Video summarization using deep
semantic features. In Computer Vision-ACCV 2016:
13th Asian Conference on Computer Vision, Springer
International Publishing, pp. 361-377.
https://doi.org/10.1007/978-3-319-54193-8_23

[37] Tellex, S., Roy, D. (2009). Towards surveillance video
search by natural language query. In Proceeding of the
ACM International Conference on Image and Video
Retrieval, pp. 1-8.

https://doi.org/10.1145/1646396.1646442
[38] Katz, B., Lin, J., Stauffer, C., Grimson, E. (2003).

Answering questions about moving objects in
surveillance videos. In Proceedings of 2003 AAAI
Spring Symposium on New Directions in Question
Answering, California.

[39] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., et al. (2014). Microsoft COCO: Common
objects in context. In Computer Vision-ECCV 2014:
13th European Conference, Springer International
Publishing, pp. 740-755. https://doi.org/10.1007/978-3-
319-10602-1_48

[40] Kim, J.A., Sung, J.Y., Park, S.H. (2020). Comparison of
faster-RCNN, YOLO, and SSD for real-time vehicle type
recognition. In 2020 IEEE International Conference on
Consumer Electronics-Asia (ICCE-Asia), IEEE, pp. 1-4.
https://doi.org/10.1109/ICCE-Asia49877.2020.9277040

[41] Zhu, Y.Z., Yan, W.Q. (2022). Traffic sign recognition
based on deep learning. Multimedia Tools and
Applications, 81(13): 17779-17791.
https://doi.org/10.1007/s11042-022-12163-0

553

	1. Introduction
	4. RESULTS AND DISCUSSIONS
	5. CONCLUSIONS

