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UML metamodel, like other metamodel change through time as a result of changing needs 

and technical improvements during their life cycle. Adding new update or bug fixing can 

change UML metamodel, so potential inconsistencies with existing models that correspond 

to the previous version of the UML metamodel and may become non-compliant with the 

new version. In this approach, the refactoring facilitates a UML metamodel refactoring in 

well-defined steps from the basic features. The use of this refactoring allows extending the 

functionality of the existing UML metamodel. This research focuses on the methods and 

processes involved in adapting the UML metamodel to changing needs and technical 

improvements over time. The study highlights the potential for inconsistencies to arise from 

updates and bug fixing in the UML metamodel. The research methodology used is the 

refactoring of the UML metamodel through a well-defined process in well-defined steps. 

The study found that the refactoring process allows for the extension of the basic features 

of the UML metamodel and the introduction of new functionalities. The research concludes 

that the use of well-defined refactoring processes is essential in maintaining the evolution 

of the UML metamodel and ensuring its compliance with changing needs and technical 

improvements. 
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1. INTRODUCTION

In a realistic environment, metamodel must be adapted to 

their environment or to new requirements. As the UML 

metamodel is improved, it grows increasingly sophisticated 

and deviates from its original design as it is changed and 

adapted to new requirements, which decreases the UML 

metamodel quality. The consequence is that the majority of the 

costs of a UML metamodel are induced by maintenance. 

Refactoring addresses this problem of increasing 

complexity by enhancing structural properties of the 

metamodel. The concept of refactoring was introduced by 

Opdyke [1]. 

Refactoring is the process of making changes to a software 

system that do not change the code's external behavior while 

enhancing its internal structure. 

This paper presents a new method for UML metamodel 

refactoring, based on MDA techniques. UML metamodel 

refactoring uses rules that refine it according to the designer's 

intention. 

UML metamodel refactoring can be handled in a variety of 

methods. A refactoring technique only executes one of several 

feasible adjustments [2, 3].  

Designers can refine the UML metamodel if it does not meet 

their requirements. Therefore, refinement mechanisms are 

needed to refine existing UML metamodel when they do not 

reflect the exact intentions. 

In other words, UML metamodel refactoring creates 

varying adjustments based on the kind of UML metamodel to 

be adapted, each adaptation being formalized in a library. 

Default libraries specify recurring adaptations, which can be 

changed to match specific needs. 

A UML metamodel refactoring involves changing the 

attributes of an existing UML metamodel concept through 

assignments to its characteristics. The body of a rule can 

include various modifications to the metamodel. 

The research on refactoring UML metamodel is significant 

because it aims to improve the quality and efficiency of 

software development processes by enhancing the Unified 

Modeling Language (UML), which is a widely used language 

for modeling software systems. Refactoring the UML 

metamodel involves restructuring its underlying structure to 

make it more flexible, maintainable, and aligned with current 

software development practices. The ultimate goal is to 

support developers and designer in creating better software 

designs and reducing the time and effort required to make 

changes to those designs. The value of this research lies in the 

potential improvement of software development processes, 

which can lead to better software products, faster time-to-

market, and reduced costs. Additionally, a better-designed 

UML metamodel can increase the adoption and use of UML 

as a modeling language, leading to improved collaboration and 

communication among software development teams. 

The rest of this paper is organized as follows: Section 2 

presents some of objectives of refactoring method and 

motivation of this work. Sections 3, 4, 5, 6, 7 outline the 

related work and discussion of existing approaches and 

classification of these approaches. A section 8, 9 describes 

UML metamodel refactoring rules in this approach. Section 10 

presents the implementation of refactoring rules and some 

examples of refactoring and will end with a conclusion and 

some perspectives [2].  
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2. OBJECTIVES OF THE PROPOSED REFACTORING 

METHOD 
 

The goals and objectives to be reached for the refactoring 

method (with respect to the limits of the existing system) are 

the following: 

- A level of abstraction for refactoring this level of 

abstraction will allow refactoring to be reusable and generic. 

- The refactoring model must be open to the addition of new 

refactoring methods. 

- The refactoring model must be able to take advantage of 

the features of object-oriented refactoring. 

- A new refactoring can be defined by combining already 

defined refactoring (via inheritance or composition 

relationships). 

- Refactoring usage must be flexible and easy to manage. 

In this method the refactoring facilitates a UML metamodel 

refactoring in well-defined steps. From the basic features, new 

features are introduced to the UML metamodel. The use of this 

refactoring allows extending the functionality of the existing 

UML metamodel.  

This refactoring facilitates a UML metamodel refactoring in 

well-defined steps. From the basic elements, new elements are 

introduced by the construct. The use of refactoring allows 

extending the functionality of the UML metamodel. In this 

way, the similar concepts are often explicit. The construction 

allows reusing these concepts by specialization. 

Generalization and specialization allow refactoring of the 

UML metamodel. By changing particular steps, UML 

metamodel designers can alternate designs. 

This method is based on the principles of both object-

oriented refactoring and model refactoring. By combining 

these two approaches a foundation for autonomous adaption 

of UML metamodel is established. 

The method defines several rules to ensure the refactoring 

of the UML metamodel. They have been used to derive 

semantic conservation and instance properties of the UML 

metamodel refactoring. The concepts described here can also 

be applied to other structural descriptions. In addition, a set of 

rules has been developed to facilitate the automatic refactoring 

of the UML metamodel through progressive adaptation. 

Implementation and preservation rules have been developed 

for each refactoring. 

 

 

3. RELATED WORK 
 

This section gives a summary of related work on refactoring 

and automated detection of refactoring, the focus is on the 

most closely related approaches. 

Refactoring is an essential process in software 

reengineering [1], which aims to reorganize existing software. 

Refactoring is merely the final stage in this process and the 

technical challenge of (semi-)automatically altering the 

software to incorporate a new solution. The most essential 

difficulties, however, are selecting which elements of the old 

software should be converted and how to convert them 

precisely, taking into consideration the limits encountered by 

the reengineers as well as the possible impact of the proposed 

modifications.  

Refactoring also seems to fit well into a reengineering 

process driven by the MDA model. One purpose of model-

driven architectures is to make UML metamodel refactoring 

easier. 

Refactoring can be used to convert current model designs 

into a format that an MDA tool's reverse engineering 

capabilities can understand. 

The work on refactoring has been directed from the 

beginning towards the transformation of object-oriented 

programs [4]; Opdyke [1] gives two reasons for this 

refactoring: 

-Compared to more traditional development approaches, 

object-oriented programming facilitates refactoring because it 

makes the necessary structural information explicit. 

-Refactoring is especially important in object-oriented 

programming.  

In some cases, the best way to improve the design of a 

program is to rewrite it; in other cases, redesigning it may be 

easier. 

Refactoring is described as a critical tool for controlling the 

refactoring of software by Brant and Roberts [5]. They claim 

that because typical waterfall development methodologies 

position maintenance at the end of the software life cycle, they 

fail to account for software evolution. They also point out that 

other spiral life cycle-inspired methods, such as Joint 

Application Development and, more recently, Extreme 

Programming, provide better support for software evolution. 

These methods promote the use of fourth generation 

languages such as UML and integrated development 

environments, making them better suited for refactoring. Since 

UML appears to be more in line with the spirit of the first type 

of methods than the more agile methods. 

Recent methodologies, such as Catalysis [6], which uses 

UML as a notation, consider the evolution of software, and 

consequently the evolution of design. Furthermore, because 

certain tools now allow the creation of design meta-models 

from source code, refactoring might be used to edit this code 

and improve the design of current programs. However, in fact, 

it is difficult to assess the true impact of changes on the many 

aspects of the design as well as the execution. 

This is especially true for uml: Iits numerous structural and 

dynamic views might share many meta-model features; for 

example, when a method of a concept is destroyed, it is 

impossible to discern at first glance, without the assistance of 

a tool, what the method was. 

Tokuda and Batory [7] define large architectural changes in 

the different settings as a long series of small redesigns. They 

assume that automated refactorings are ten times faster than 

manual refactorings. Recent refactoring research extends the 

analysis for automated refactorings with more successful 

methods. 

Tip et al. [8] use type constraints to aid in the analysis of 

refactoring that introduce generalized statement. 

Garces et al. [9] provide a set of heuristics to process 

automatically the equivalences and differences between two 

metamodel variants to adapt the models to their evolved 

metamodel and thus follow a correspondence co-evolution 

approach. The computed equivalences and differences are 

saved in a so-called adaptation model, which serves as input 

to a higher-order transformation HOT [10], creating an 

implementable transformation adaptation. 

The method presented by Cicchetti et al. [11] is comparable 

to that of Garces et al. [9] in that it is once more focused on a 

metamodel representation of the difference that serves as an 

input for a higher order transformation. Additionally, the 

computed differences are divided into: (i) unbreakable 

changes, (ii) brittle and resolvable changes, (iii) brittle and 

insurmountable changes. 
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Wachsmuth [12] suggests fusing concepts from object-

oriented refactoring and grammatical adaptation. 

In this way, the definitions of instance preservation and 

semantic preservation are built upon the definitions of 

metamodel relations. 

A group of transformations that are based on QVT relations 

are also suggested, and they are categorized as refactoring, 

construction, and reduction transformations.  

In Models employing the Model Change Language (MCL) 

[13] are presented with a co-evolution approach. The 

relationships between the components of the various 

metamodel versions are defined by the evolver. Relationships 

can take many different forms, from straightforward one-to-

one mappings between classes to more intricate mappings for 

adding items to new subclasses or modifying the confining 

hierarchy. 

Herrmannsdoerfer et al. [14] in order to minimize the 

migration effort, COPE proposes an integrated way to define 

the linked development of métamodèles and models. In this 

regard, a collection of so-called linked transactions, which 

together make up a larger co-evolution issue of modular 

transformations, achieve the co-evolution of métamodèles and 

related models. In order to reduce the work required for 

migration, coupled transactions are further classified into 

custom coupled transactions and reusable coupled transactions. 

Reusable coupled transactions are those that are preset and do 

not require user input [15, 16]. 

EMF Compare [17] is a tool which can match, combine 

(two and three ways), and compare EMF/Ecore models. 

Instead of using distinctive identifiers, it employs a distance 

connection to match similar parts. UMLDiff [18] employs a 

distance relationship that takes structure and names into 

consideration and is also non-ID based. Unlike EMF Compare, 

which covers EMF/Ecore-based models like Ecore, UML, etc., 

UMLDiff focuses exclusively on UML models. The UMLDiff 

technique is expanded by DSMDiff [19] to handle domain-

specific modeling languages. 

Williams et al. [20] use a search-based methodology to 

compute a (near) optimum history model. As a result, the 

historical model will include a variety of possible 

modifications that might lead to a model changing from one 

edition to another. A fitness function that chooses the much 

more likely evolution was defined by the authors. Be aware 

that this method depends on an operator-based tool, the adapt 

tool, rather than directly detecting complicated changes. It 

provides a list of operators that may undergo atomic alterations 

as well as complicated ones. As a result, they concentrate more 

on identifying the ideal arrangement of operators to 

characterize the change. 

Di Ruscio et al. [21] description of a language enables users 

to actively define the evolution's alterations. A different option 

is to evaluate electromagnetic fields. May be used to determine 

their list of modifications. 

The Model Change Language (MCL) was developed by 

Levendovszky et al. [22] to allow for the specification of co-

evolution and metamodel evolution techniques. 

A matching rule known as an idiom looks for a right-hand 

side (RHS) in the evolved metamodel and a left-hand side 

(LHS) in the original metamodel. A modification is recognized 

if both are discovered. In order to identify both atomic and 

complicated changes. 

Garcés et al. [23] suggest computing the difference using a 

number of heuristics represented as transformations in the 

Atlas Transformation Language (ATL). Garcés et al. [23] still 

don't fully understand the nature of the complicated alterations 

or how to spot them. 

By comparing MFEs, Langer et al. [4] suggested that 

complicated alterations may be detected. They specify a 

complicated change using the left side (LHS) and the right side 

(RHS) of a graphical transformation (RHS). When LHS is 

present in the original version and RHS is present in the 

evolved version, a complicated change is discernible. Two 

snapshots of an original metamodel and its evolving form can 

be used to represent DHS and RHS. So, a complicated 

change's variability is not addressed. 

Precision and recall were tested by Langer et al. [4] and 

averaged 98% and 70%, respectively. They want to make sure 

their detection is accurate despite the lack of some necessary 

adjustments. 

In order to identify atomic changes, Garcia et al. [24] 

compare EMFs as a preliminary step. They then use predicates 

that look for instances of the atomic change class to detect 

complicated changes. For each complicated modification, the 

predicates are implemented as ATL transformation scripts. 

They suggest that the overlap issue can be somewhat solved 

by identifying the most difficult changes without the enclosed 

updates, which may result in fewer calls. They do not, however, 

take variable complicated modifications into consideration.  

 

 

4. LIMITATIONS OF EXISTING WORK AND 

CONTRIBUTION 

 

It has been discovered that further research is necessary to 

establish which refactoring techniques can be implemented, 

where and when in a meta-model driven reengineering process, 

and which other techniques are complementary to reach meta-

model refactoring. This was the result of a thorough analysis 

of the existing work in meta-model refactoring. Narayanan's 

approach defines the MCL "Model change language" [12] 

using an MOF compliant metamodel. MCL is a high-level 

visual language to describe the evolution of the metamodel. 

MCL defines a set of idioms and a compositional approach for 

specifying migration.  

Using a metamodel that complies with MOF, Narayanan's 

method constructs the MCL "Model change language" [12]. 

MCL is a high-level visual language for describing the 

métamodèles development. For describing migration, MCL 

specifies a collection of idioms and a compositional method. 

The most typical metamodel evolution scenarios, such as 

introducing a new concept, modifying an element, removing 

an element, adding new subtypes, updating local models, and 

automating the migration of instance models, may all be 

specified using rules. For common migrating scenarios, MCL 

employed a basic model that consisted of a "Maps To" link 

between an LHS element from the old metamodel and an RHS 

element from the new metamodel. The model uses a different 

unique connection named "WasMappedTo" to identify a node; 

it already underwent migration due to a prior migration 

regulation. MCL is more effective since it gives a DSML 

domain-specific modeling language as a specification 

language, as opposed to the sprinkling approach's [13] generic 

program for the migratory. The MCL is expressive, modular, 

and enables for reuse of knowledge migration. It also offers a 

straightforward graphical syntax. MCL can also define 

intricate connections between meta entities. But in MCL, some 

rules must be manually resolved, and in other situations, the 

creator of the transformation's purpose must be taken into 
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consideration. 

In contrast to the previously mentioned approaches, the 

proposed approach addresses metamodel evolution using 

already-in-use transformation languages rather than domain-

specific or M2M transformation languages. 

It’s possible to avoid copying elements that are resilient to 

metamodel changes and are supported by COPE by using 

specialized metamodel merging algorithm. Additionally, 

unlike other systems that need manual development, this 

approach enables for the automated removal of obsolete model 

components that are no longer covered by the updated 

metamodel. 

In contrast, utilizing the unified metamodel together with in 

place refactoring, the method just requires one metamodel to 

define evolution rules. 

Last but not least, automated development of refactoring 

rules for disruptive and reversible modifications is favored. 

 

 

5. UML METAMODEL REFACTORING 

 

In this method, a UML metamodel refactoring has the 

objective to improve its design described. Refactoring may be 

viewed as a restructuring of the information included in the 

UML metamodel as a whole. The original UML metamodel 

gets turned into a portion of it. Since the input UML 

metamodel is modified in place, it is more effective to 

implement a refactoring as an update transformation. 

 

5.1 Description and characteristics of UML metamodel 

concept 

 

The Unified Modeling Language (UML) metamodel is a 

standardized representation of the concepts and relationships 

used in UML, a widely used modeling language for software 

and systems design. The UML metamodel defines the 

structure and behaviour of UML models and provides a way 

to automatically describe and manipulate them [22, 25]. 

Some of the characteristics of the UML metamodel are: 

 

• Abstraction: The UML metamodel provides abstractions 

for UML model elements such as classes, interfaces, 

associations and state machines. 

• Extensibility: The UML metamodel is designed to be 

extensible so that new elements can be added to it on 

demand. 

• Consistency: The UML metamodel provides a consistent 

and well-defined structure for UML models, ensuring that 

they can be easily understood and used by different 

stakeholders. 

• Semantics: The UML metamodel provides a clear and 

concise definition of the semantics of UML models, 

making it easier for them to be automatically interpreted 

and manipulated. 

• Object orientation: The UML metamodel is well suited for 

modeling complex systems and software applications 

because it is based on object-oriented principles. 

• Platform independence: The UML metamodel is platform 

independent, meaning that UML models can be created, 

manipulated and transformed on any platform that 

supports the UML metamodel. 

 

Overall, the UML metamodel is a powerful tool for software 

and systems design, enabling users to create, manipulate and 

transform UML models in a standardized and automated way. 

 

5.2 Example of UML metamodel refactoring 

 

• Adding a concept: A refactoring rule's body might 

generate new UML metamodel items. It is mandatory to 

link a recently established UML metamodel concept to the 

rest of the UML metamodel and use a structure property 

for such activity. 

• Duplicating a concept in certain cases, it’s like to see a 

same notion in several portions of a UML metamodel. 

• Finally, the last fundamental operation involving a UML 

metamodel is concept deletion. 

• Refactoring, when used frequently, is a potent strategy. 

Only the designer's selected subset has to be refactored 

and modified. 

• Manual refactoring of UML metamodel can cause errors 

and may result in inconsistencies. Moreover, it is very 

difficult to perform all parts of the refactoring potentially 

in a manual way. 

 

Also, manual refactoring of UML metamodel according to 

such changes is very time consuming and is a source of errors. 

Such an issue becomes very relevant when dealing with the 

refactoring of complex UML metamodel with a considerable 

number of rules.  

Short macro commands are utilized to streamline repetitive 

tasks during UML metamodel refactoring. Refactoring is 

applied based on UML metamodel changes; the default 

refactoring can be expanded or even modified by designers, 

who can define new refactoring rules to modify or replace the 

refactoring adaption. 

This allows, for example, a designer to use two different 

refactoring. The assumption is that refactoring should only 

change concepts that the designer has explicitly chosen. By 

extension, refactoring are concrete transformations that 

preserve the behavior of an application. Such transformations 

only affect the appearance without adding functionality, but 

allow a better understanding of the system or facilitate later 

functional modifications. 

The development cycle of large projects can be long for 

various reasons, such as the complexity of the project, the 

number of team members involved, and the need for thorough 

testing and quality assurance. 

As for coordinating changes in the reconstruction of the 

UML underlying building meta-model, it requires a well-

defined development process, clear communication among 

team members, and a robust version control system. The 

development team should establish clear guidelines for 

making changes and ensure that everyone is on the same page 

regarding the expected outcome. Additionally, regular 

meetings and progress updates can help to keep everyone 

informed and prevent any misunderstandings. The use of a 

version control system, such as Git, can also help keep track 

of changes made to the UML meta-model and ensure that 

everyone is working with the most up-to-date version. 

 

 

6. THE REFACTORING PROPOSED IN THIS 

METHOD 

 

The refactoring proposed in this method applies essentially 

to three concepts: concepts, methods, and variables. These 

refactoring can be classified into five basic types of operations:  
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• Add. 

• Modify. 

• Deletion. 

• Generalization of UML metamodel elements. 

• Specialization of UML metamodel elements.  

 

The last two types move elements through the inheritance 

hierarchy, along with the generalization relationships. Most of 

the elements that make up the meta-model can have a direct 

connection to other elements of the same UML metamodel. 

Adding and removing elements 

It is possible to add member’s (attributes or methods) to a 

concept if the new member or association does not have the 

same signature as any other member or association of the 

considered concept, of a super-concept or a sub-concept of it. 

The deletion of associations and members is only possible 

if the deleted element is not referenced in the UML metamodel.  

When the inheritance structure is taken into consideration, 

adding and removing concepts becomes especially interesting. 

One can insert a generalization instance in the middle of a 

generalization relation, between two parent elements; the 

inserted element must not introduce any behavior, and 

especially be of the same type as the two other concepts.  

Deleting a generalization instance has the opposite effect: 

One removes a useless element to link its sub-concepts directly 

to its super-concepts; the element must then not be referenced 

in other concepts, neither directly or indirectly - through 

instances, members etc. 

Generalization refactoring may be applied to concepts' 

constituents such as attributes, relationships, methods, and 

operations. 

Private members cannot be relocated in this manner since 

they are not available from the sub-concepts. This refactoring 

suggests that all of the super-immediate concept's sub-

concepts have an identical element, for attributes, associations 

or operations this equivalence can be checked structurally, but 

the problem is more difficult for methods. 

Specialization refactoring is the reverse of the previous one: 

it sends an element of a concept to all its sub-concepts. 

Informally, it preserves the behavior if the original concept is 

not the reference context of the element, i.e., if the element is 

only used via instances of sub-concepts of the original concept.  

Other problems may arise if the existence of multiple 

inheritances is neglected. It is necessary to check that the 

concepts that will receive the transferred element do not have 

a common sub concept, i.e., that the traditionally problematic 

inheritance pattern in diamond does not occur. 

 

6.1 List of refactoring rules  

 

The proposed method offers a list of refactoring rules to the 

designer and he should be able to specify rules tailored to his 

needs. 

The modifications made to the UML metamodel concern 

the concept itself.  

-Addition and deletion of a concept, modification of the 

concept name. 

-The definition of a concept (addition or deletion of an 

attribute, modification of the name of an attribute, addition or 

deletion of a parameter). 

-Methods (e.g., modification of a method name or signature). 

As well as a dynamic management of their modification.  

The proposed method has a tool that allows to select an 

element of the UML metamodel to be modified, to proceed to 

the modification and to propagate the modification through the 

UML metamodel by creating if necessary new versions of the 

concepts. The tool will also give the possibility to modify 

refactoring strategies and their corresponding rules and reuse 

them. Refactoring operations supported in this method; Table 

1 shows a table with all supported operations. 

 

Table 1. Some example of a UML metamodel refactoring 

operations 

 

Refactoring  

Rename a concept 

Move a property of a concept 

Extract concept 

Association to concept 

Concept to association  

Generalise/restriction of proprieties  

Construction  

Add a concept  

Add a property 

Add a relationship 

Edit hierarchy 

Destruction 

Delete a concept 

Delete a property 

Delete the legacy 

 

6.2 Refactoring algorithm 

 

The refactoring is performed in two phases: 

1- Firstly, all modules and types (concepts, enumerations, 

and data types) are constructed in the step. The algorithm 

examines each package and type before adding them to the 

new UML metamodel. 

2-The second step is concerned with the accurate design of 

concept internal structure. This involves adding characteristics, 

references, and operations. This second step also includes the 

assignment of super concepts. 

A case of UML metamodel refactoring can be described by 

a problem section and a solution section: 

1. The problem section contains. 

a- a semantic specification of the refactoring. 

b- The previous UML metamodel prior to the refactoring. 

2. The solution section contains.  

a- the description of the refactoring steps (UML metamodel 

components that have been added, updated, or deleted). 

b- The refactored UML metamodel. 

A refactoring rule can edit any component of the model; its 

intended scope is not restricted to the components supplied as 

real inputs. The cause for this is that the number of elements 

that may be altered in a rule is limitless. It is often impractical 

to define the components to be updated through collections or 

requests. 

Most of the time, a refactoring is described by a group of 

rules rather than a single rule. Each rule can have a unique 

signature, and a rule's guard (condition) can apply to the 

guards of other rules in the same iteration. It is possible, for 

example, to declare a rule that can only be performed when 

some other rule is disabled. 

A refactoring to change a public attribute to a private 

attribute is an example of a more sophisticated refactoring. 

- Refactoring process 

The refactoring process is separated into many actions: 

1. Determine which components of the model must be 

refactored. 

2. Choose the refactoring(s) to use at these situations. 

3. Ensure that the refactoring, once done, maintains the 

system's behavior. 
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4. Execute the refactoring. 

5. Consider the impact of refactoring on UML metamodel 

quality level. 

6. Keep the refactored UML metamodel and its model 

consistent. 

 

 
 

Figure 1. The proposed method for UML metamodel 

refactoring 

 

The proposed method allows high-level refactoring of UML 

meta-models. 

It provides a visual notation for defining meta-model 

refactoring chains it is supported by a GUI and a runtime 

engine that loads the appropriate models and executes the 

refactoring in the predefined path. 

To ensure the refactoring the engine starts by reading the 

UML metamodel then it looks for the refactoring that are 

activated. Once these refactoring are identified, they are 

loaded and executed, and produce the corresponding output 

metamodel. The process continues until that no activated 

refactoring remains unexecuted. Figure 1 shows the process 

for refactoring of UML meta-models. 

Then the next refactoring is activated and executed. The 

current version of the runtime executes the refactoring 

sequentially. 

The proposed approach supposes that the designer who 

validates and verifies the refactoring. 

After UML metamodel refactoring, designers can perform 

verification to ensure that the changes made to the UML 

metamodel have the intended effects on the code operation. 

The following are some ways to verify the UML metamodel 

validity after refactoring: 

Simulation: The designer can simulate the behavior of the 

UML metamodel to ensure that it meets the requirements of 

the system and that the changes made during refactoring have 

not introduced any errors or unintended behavior. 

Model Generation: The designer can generate model from 

the updated UML metamodel and compare it from the original 

UML metamodel to verify that the changes made during 

refactoring is valid. 

Model Review: The designer can perform a model review 

to verify that the model generated from the updated UML 

metamodel meets the design and implementation standards of 

the organization. 

Performance Testing: The designer can perform 

performance testing to verify that the changes made during 

refactoring have not impacted the efficiency of the model. 

These are others verification methods that can be used after 

UML refactoring. The exact methods used will depend on the 

specific requirements and constraints of the project. These 

methods will be studied and explored in future work. 

 

6.3 Refactoring the UML metamodel in complex system 

 

There are several steps involved in refactoring the UML 

metamodel for a complex system: 

1. Analysis: Before making any changes, it is important to 

thoroughly analyze the existing metamodel to understand its 

strengths and weaknesses and to identify areas for 

improvement. The various aspects and domains involved in 

the system, including hardware and software components, as 

well as the static structure and dynamic behaviour, should be 

considered in this analysis. 

2. Planning: A plan for the refactoring process, including 

goals, scope and schedule, should be created based on the 

analysis. 

3. Model decomposition: Decompose the existing UML 

metamodel into smaller, more manageable parts. This makes 

it easier to modify and understand. This may involve breaking 

the UML metamodel into separate models for hardware and 

software components, for example. 

4. Model transformation: Use model transformation 

techniques to modify the UML metamodel, such as updating 

class and component diagrams, adding or removing classes 

and relationships, and changing model structure. 

5. Validation: Validate the updated UML metamodel to 

make sure that it is an accurate reflection of the desired 

behaviour of the system, both statically and dynamically. This 

may involve testing the model with simulation and validation 

tools. 

6. Documentation: Document the changes made to the UML 

metamodel and any associated updates to the development 

process to ensure that the updated UML metamodel is well 

understood by all team members. 

It is important to continue to communicate and collaborate 

with team members throughout the refactoring process, and to 

make sure that everyone is aware of the goals and progress of 

the refactoring effort. 

 

 

7. REFACTORING IMPLEMENTATION 

 

The described method was implemented using EMFs, 

which may be thought of as an implementation of the Essential 

Meta Object Facility (EMOF) (Applied to the UML class 

diagram metamodel) [26, 27]. A UML metamodel is used to 

Express MM2MM refactoring, a script is used to conduct 

MM2MM refactoring based on distinct UML metamodel, and 

a library is used to provide automated data copying in 

endogenous refactoring. 

A number of examples of UML metamodel refactoring 

operations are illustrated in a series of from Figure 2 to Figure 

11. 
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Figure 2. Rename property 

 

 
 

Figure 3. Move a new property 

 

 
 

Figure 4. Delete a proporty 

 

 
 

Figure 5. Add a new class 

 
 

Figure 6. Delete a new concept and reference 

 

 
 

Figure 7. Modification of a concept and refrence 

 

 
 

Figure 8. Change a concept name 
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Figure 9. Modification of a reference 

 

 
 

Figure 10. Delete a reference 

 

 
 

Figure 11. Modification of reference type 

 

7.1 Implementation of refactoring rules 

 

The ATL language will be used to implement several 

refactoring rules in the following sections. 

 

7.1.1 Rule of Redundant Inheritance 

According to this rule if a class inherits another through two 

or more separate inheritance pathways, delete all but one path 

if possible. A duplicate inheritance adds no information to the 

model but complicates it. The first inheritance is superfluous 

and should be eliminated (see Listing 1). 

 

Listing 1 Rule of Redundant Inheritance 

 

 
 

7.1.2 Rule of removing an association class (see Listing 2) 

 

Listing 2 Rule of removing an association class 
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7.1.3 In the modification case 

The objective of this refactoring is to transform a RootA 

element into a RootB, and transform an ElementA element 

into an ElementB. There are some additional constraints to be 

respected (see Listing 3): 

- The order of the elements in the list must be preserved. 

- An ElementB must be created from the name of a RootA. 

This element is added to the first position of the list. 

- The name of each ElementB must start with 'B_'. 

In summary, the created list will contain one more element 

than the original list. This extra element is created from of the 

name of the root of the list. It will be placed in the first position 

on the list. 

 

Listing 3 code ATL in modification case 

 

 
 

7.1.4 In the case of addition 

 

Listing 4 ATL code for addition case 

 

 

For a UML metamodel element, new UML metamodel 

element is produced: Visibility and packageableElement_ 

visibility have the same name and are connected to the same 

OwnMember. 

Another Class element is created for a Class element that 

has the same name, visibility, and packageableElement 

_visibility, as well as the same features, isAbstract, isLeaf, and 

isActive, and is linked to the same OwnAttribute. Additional 

Property element is produced for a property element. 

With the same name, visibility and packageableElement_ 

visibility (see Listing 4). 
 

7.1.5 In the case of deletion  

The source and target of the refactoring have the same 

metamodel: UML2 (see Listing 5). 

Rule model: For each model element, another model 

element containing the following elements is created: 

The attribute name is also the same, and the same with the 

other UML metamodel elements. 
 

Listing 5 ATL code in the case of deletion 
 

 
  
The UML metamodel contains also three important 

relations that can be implemented using ATL: 

1. Equivalence: This relation is used to indicate that two or 

more concepts are equivalent (see Listing 6). 

2. Implementation Inheritance: This relation is used to 

indicate that the implementation of a class is derived from 

another class (see Listing 7).  

3. Interface Inheritance: This relation is used to indicate that 

the interface of a class is derived from another interface (see 

Listing 8). 
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Listing 6 ATL code for equivalence relation 

This code defines a module named "Equivalence Relation". 

It creates an output UML metamodel of type "Target" from an 

input UML metamodel of type "Source". In this example, the 

name of each class in the "Target" UML metamodel is set to 

the name of the corresponding class in the "Source" UML 

metamodel . 

Listing 7 ATL code for implementation of inheritance 

Listing 8 ATL code for interface inheritance 

This code defines a module named 

"ImplementationInheritance".  

It creates an output model of type "Target" from an input 

UML metamodel of type "Source". The rule ParentClass 

specifies the transformation from elements of type Class in the 

"Source" UML metamodel to elements of type Class in the 

"Target" UML metamodel for parent classes. The rule 

ChildClass specifies the transformation for child classes that 

inherit from a parent class. 

In this example, the name and abstract status of each class 

in the "Target" UML metamodel is set to the name and abstract 

status of the corresponding class in the "Source" UML 

metamodel. For child classes, the name of the super class in 

the "Target" UML metamodel is set to the name of the 

corresponding super class in the "Source" UML metamodel. 

This code defines a module named "InterfaceInheritance". 

It creates an output model of type "Target" from an input UML 

metamodel of type "Source". The rule ParentInterface 

specifies the transformation from elements of type Interface in 

the "Source" UML metamodel to elements of type Interface in 

the "Target" UML metamodel for parent interfaces. The rule 

ChildInterface specifies the transformation for child interfaces 

that inherit from a parent interface. 

In this example, the name of each interface in the "Target" 

UML metamodel is set to the name of the corresponding 

interface in the "Source" UML metamodel. For child 

interfaces, the names of the super interfaces in the "Target" 

UML metamodel is set to the names of the corresponding 

super interfaces in the "Source" UML metamodel. 

The other proposed refactoring rules are not presented 

because their complexity is identical to the preceding instances, 

and it is beyond the scope of this work to detail all of them. 

7.2 Application software for refactoring 

In this research work an application software has been 

developed that performs the proposed refactoring, this 

application software allows loading the Ecore file of UML 

metamodel in zone 1. 

After loading the Ecore file the designer must select the 

series of rules used during the refactoring (are displayed in 

area 3 (the rules are executed in the order chosen by the 

designer). 

The description of the rule will be presented in zone 2. 

The designer can add a new rule using the 'add new Rule' 

button, he can also delete a selected rule using the 'delete 

selected Rule' button or modify the rule using the 'update 

selected Rule' button. 

Once the Ecore file has been loaded and the series of rules 

chosen, the designer can launch the refactoring execution and 

see the result in zone 1 or cancel the refactoring using the 

'cancel refactoring' button, the Application software is 

presented in Figure 12. 

Figure 12. Application software for refactoring 
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8. CONCLUSIONS 

 

Very often UML metamodel designer has to modify and 

refactor the existing UML metamodel. 

The MDA proposes a refactoring of the UML metamodel in 

several steps; however, this requires the management of UML 

metamodel and the copying of data between the corresponding 

UML metamodel. If large parts of the UML metamodel remain 

unchanged, designers have to specify many copy operations to 

avoid this problem. 

 The primary aim of this paper is to shed light on the 

refactoring of the UML metamodel. Firstly, a thorough 

investigation of existing approaches to UML metamodel 

refactoring was conducted. The study resulted in the 

identification of different classifications of these approaches. 

Subsequently, critical evaluation criteria were selected and 

applied to the studied approaches. Upon completion of the 

comparative analysis, it was observed that no approach 

fulfilled all the selected criteria. 

As a result of the analysis, guidelines were established. 

These guidelines aim to solve the refactoring problem with 

more expressiveness.  

Clarity and support the change and scalability of the 

refactoring strategy to ensure its accuracy. 

In addition, the use of standard tools such as EMF and ATL 

allows the solution to be widely distributed and facilitates its 

interoperability with other systems. 

In this paper, the results of the initial experimentation 

utilizing the in-place refactoring approach for UML 

metamodel refactoring have been reported. The experiences 

indicate that refactoring of UML metamodel may be easily 

described with current in place refactoring languages.  

As future work, it is planned to address the consistence 

problems caused by the UML metamodel refactoring and 

managing the refactoring via a graphic interface and improve 

the refactoring tools. Also, it is intended to measure the 

performance of UML metamodel refactoring rules. 
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