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ABSTRACT
This paper outlines the prediction of a macroscopic viscoelastic response of plain weave textile com-
posites made either from basalt or carbon fiber tows impregnated by polymeric matrix. Owing to a 
natural orthotropic response at the level of yarns, the calibration of a simple meso-scale constitutive 
model from virtual laboratory tests is precluded and a fully coupled analysis is needed instead. One 
option is solving the problem in the framework of FE analysis when both the micro- and meso-scale 
problems are solved with the help of the finite element method. This requires formulation of a suit-
able computational model most often represented by a statistically equivalent periodic unit cell on 
both scales. However, such an approach may prove computationally expensive particularly at stages 
of initial design where a large parametric study is often needed to test various material and geometri-
cal configurations. A suitable method of attack then arises from the application of computationally 
efficient classical micromechanical models such as the Mori-Tanaka (MT) method. This approach is 
examined in the present study. While the present work is mostly computational, it requires an extensive 
experimental program to tune the generalized Leonov constitutive model describing the behavior of 
the matrix phase. Additionally, a series of virtual laboratory tests is carried out at the level of yarns to 
improve the predictive capability of the MT method.
Keywords: homogenization, Mori-Tanaka, multiscale, textile composite, viscoelasticity.

1 INTRODUCTION
Modeling of viscoelastic behavior of heterogeneous materials has been mostly limited to 
a two-phase material system with reinforcements being elastic. The isotropy of the matrix 
phase then considerably simplified the choice of a suitable constitute model. In some applica-
tions, the macroscopic isotropy derived from homogenization then allowed for adopting the 
same constitutive model on the macro-scale with model parameters obtained computationally 
through virtual laboratory tests [1]. Modeling of asphalt mixtures within a fully uncoupled 
multiscale computational framework is just one particular example [2].

This approach is typically precluded in fibrous composites where the aligned fibers, whether 
periodic [3, 4] or randomly distributed [5, 6, 7] in the transverse cross-section, generate a 
higher order material symmetry at the macroscopic level. The need for a fully coupled mod-
eling approach then immediately arises. When exploiting the finite element method (FEM) 
on both the micro- and meso-scale, the analysis is typically performed in the framework of 
FE2 computational strategy [8, 9, 10]. Although often supported by parallel computing [11, 
12, 13], such an analysis may prove computationally very expensive. Classical averaging 
schemes [14] such as the Mori-Tanaka (MT) method [15] then offer a suitable alternative.

However, when applied in its standard formulation assuming, in general, an n-point aver-
aging with concentration or localization factors of each phase r = 1, ..., n derived on the 
basis of elasticity, the method provides estimates of the macroscopic response, which are too 
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stiff when compared to finite element simulations. This is generally attributed to an insuf-
ficient refinement of local fields unable to represent, for example, localization of inelastic 
strains driven by microstructure even in the absence of softening. Several routs have been 
explored to address this issue. Among others, Dvorak’s transformation field analysis (TFA) 
[16, 17] combined for fibrous composites with the PHA model to calculate the transformation 
influence functions [18] deserves particular attention. A review of other potential approaches 
including the affine formulation proposed by Masson et al. [19] can be found in [9]. To keep 
the analysis as efficient as possible, a relatively simple adjustment of the original two-phase 
formulation of Hashin-Shtrikman variational principles was proposed in [20] by replacing 
the linear elastic comparison medium with the one depending on a gradually evolving secant 
shear modulus of the matrix phase supported by the choice of the generalized Leonov consti-
tutive model to represent its viscoelastic response. However, in the light of the MT method, 
the formulation proposed in [2] and further advanced in [21] proved even more elegant and 
will be employed also in the present study.

The remainder of the paper is organized as follows. The theoretical framework of both the 
first-order homogenization method and the MT micromechanical model is briefly outlined in 
Section 2. This is followed by a short description of the generalized Leonov material model 
adopted in numerical simulations both at the level of yarns and textile ply presented in Sec-
tion 4. The essential findings are finally summarized in Section 5.

2 THEORETICAL FORMULATION
As already intimated in the introductory part, predicting the macroscopic viscoelastic 
response of plain weave textile composites relies on a coupled two-scale analysis. Similar 
to standard FE2 scheme, we consider a statistically equivalent periodic unit cell (SEPUC) at 
the level of textile plies discretized, herein, by means of constant strain tetrahedral elements. 
However, unlike FE2 scheme, the increments of local stress averages for given increments of 
average strain in each element in the yarn are found from the application of the MT averaging 
scheme. Both methods are shortly described in a sequel.

2.1 First-order homogenization

Consider a representative volume element (RVE) Ω in the form of SEPUC loaded on its 
outer boundary, identified by an outward unit normal ni, by either prescribed displacements 
u E xi ij j=  or tractions p ni ij j= ∑ , which in turn generate microscopically uniform strains Eij
or stresses i j∑ ij in an equivalent homogeneous medium. The local strain field ε ij then admits 
the following decomposition written in the vector-matrix notation as 

 
εε εεx E x( ) = + ( )

*
,  (1)

where εε* x( )  represents the fluctuation strain associated with the fluctuation part of local 
displacements u* which, henceforth, is assumed periodic. Writing the increment of local 
stresses ∆σσ  as 

 
∆ ∆ ∆σσ µµx x x x( ) = ( ) ( ) − ( )( )εε ,  (2)

allows us to expand the Hill lemma 〈 〉 =δ σ δεε
T
∆ ∆ET

Σ  (〈⋅〉 stands for volume averaging) into 
the following discretized system of governing equations 

ℾ
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where 

 

∆ Ω ∆ Ω

Ω

f x x1 = + ( ) ( )∫Σ µµ d ,  (4)

 

∆ Ω

Ω

f B x x x2 = ( ) ( ) ( )∫
T

dµµ .  (5)

In equations (2) and (3), 
ℾ

 represents an instantaneous stiffness matrix corresponding 
either to the polymer matrix or to the homogenized stiffness of the yarn provided by the MT 
scheme, ∆μ is the eigenstrain vector here representing the creep strain developed correspond-
ingly in the polymer matrix or the yarn, B is the standard geometrical matrix, and ∆r stores 
the increments of nodal displacements of u*. Further details are available in [14, 22].

2.2 Mori-Tanaka

Suppose that a two-phase composite consisting of elastic aligned fibers embedded into a 
viscoelastic matrix is loaded by an increment of the mesoscopic strain ∆εε  (this term can be 
imagined as a strain increment in a specific element of the finite element mesh at the ply level 
discussed previously in Section 2.1). The local strain increments in the fiber (f) and matrix 
(m) phase then follow from the TFA analysis as 

 
∆ ∆ ∆εε εεf f fm m= +

� �
A D µµ ,  (6)

 ∆ ∆ ∆εε εεm m mm m= +

� �
A D µµ ,  (7)

where 
�
Ar and 

�
Drm are the instantaneous mechanical strain localization factors and strain 

transformation influence functions, respectively, and are function of instantaneous properties 
of the matrix phase. In light of the MT method, they are provided by 

 

� � � � �
A I T A T Am m f f f f mc c= +





=
−1
, ,  (8)

 

� � � �
D I A L L Lrm r m f m= −( ) −( )

−1
 (9)

where the partial strain concentration factor 
�
Tf  depends on the shape and orientation of the 

fiber and instantaneous properties of the matrix [14].
The matrix-phase constitutive equation takes a usual form

 
∆ ∆ ∆σσ µµm m m m= −( )

�
L εε ,  (10)

where 
�
Lm represents a potential dependence on the current viscoelastic modulus. The local 

stresses in the fiber phase are provided by 

 
∆ ∆�σσ f f f= L εε ,  (11)

ℾ ℾ

ℾ ℾ

ℾ

ℾ



192 M. Šejnoha, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 9, No. 3 (2021)

 
∆ ∆ ∆ ∆ ∆s f ij f ij ij f m f m f ii, , , , ,, ,= −( ) −( ) =1

1

3
ω δ� � � �σσ σσ σσ σσ  (12)

 
∆ ∆ ∆σσ σσf ij f ij ij f ms, , , ,= +δ �  (13)

where ∆ ∆s f f m, ,�σσ  represent the deviatoric and mean components of the fiber stress increment 
∆σσ f . The tensorial notation in Eqs. (12) and (13) is adopted just for the sake of convenience.

The increments of mesoscopic stresses ∆σσ  and eigenstrains ∆µµ  follow from

 
∆ ∆ ∆ ∆σσ σσ µµ µµ= =

=

∑
r

r r m m mc c
1

2

, ,
�
BT  (14)

where c r f mr , ,= , is the volume fraction of a given phase and 
�
Bm is the so-called stress con-

centration factor of the matrix phase. The second term in Eq. (14) is called the Levin formula 
[14].

The damage like parameter ω was introduced in Eq. (12)1 in analogy with [2, 21] to reduce 
the stresses carried by the fiber phase. One may associate that with a debonding like failure, 
which in turn simulates the formation of shear bands in real microstructures once loading the 
composite beyond the elastic limit. Its evolution as a function of the equivalent deviatoric 

stress in the matrix phase τm eq m ij m ijs s, , ,=
1

2
 is proposed on the basis of the adopted gener-

alized Leonov nonlinear viscoelastic model in the form, note Eq. (17)2, 
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where M, N, T, are the model parameters, t stands for the current time instant, and τ0 is the 
parameter of the generalized Leonov model to be introduced later in Section 3.

3 MATERIAL MODEL OF THE MATRIX PHASE
The viscoelastic behavior of the matrix phase is assumed to be well represented by the gener-
alized Leonov model which, similarly to von Mises plasticity, limits the nonlinear viscoelastic 
response to the deviatoric stress components while the bulk response remains elastic so that 
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Equation (16) resembles the Maxwell chain rheological model with M Maxwell units, where  
G
µ
 is the shear modulus of the elastic spring of the µ-th unit and eij

p,µ is the deviatoric creep 
strain developed in the µ-th dashpot in accord with the Eyring flow model 
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where ηµ

0  is the zero shear viscosity, a
σ
 is the stress-dependent shift factor to address the 

dependence of the response on the current stress stress level and thus also on the applied 
strain rate, and τ0 is the model parameter determined experimentally [14, 21, 23]. 

In the present study, we adopt the data pertinent to 285/500 aero Havel epoxy resin and 
derived in [21] from a series of creep tests performed at different stress levels and a series 
of tensile tests carried out at different strain rates. The latter ones allowed us to determine τ0 , 
while the former ones served to construct the compliance master curve. It has been shown 
that this experimentally obtained master curve can be well approximated by 10 units of the 
Dirichlet series. The resulting compliances J

µ
 for a-priory selected retardation times τ

µ
 are 

listed in Table 1. The Laplace transform was then employed to get the corresponding pairs 
for relaxation times θ

µ
 and stiffnesses E

µ
 to describe the relaxation function more suitable for 

numerical simulations. The shear moduli G
µ
 in Eq. (16)1 were found from E

µ
 for the selected 

Poisson ratio in the matrix νm = 0 39. . The same Poisson ratio was used to derive the bulk 

modulus K
E

m
=

−( )

∑
µ µ

ν3 1 2
 in Eq. (16)2.

The elastic properties of the examined fibers are stored in Table 2 together with the corre-
sponding volume fractions extracted from the images of real microstructures.

Table 2: Elastic properties of carbon and basalt fibers and their volume fractions.

Fibers EA  ET GA GT ν A  
c f

[GPa] [GPa] [GPa] [GPa] [-] [-] 

Carbon 294 13 12 5 0.24 0.52 

Basalt 70 65 28 26 0.40 0.56 

Table 1: Parameters of Maxwell chain model.

 μ  τµ [s] J
µ

 [MPa]–1 θ
µ
 [MPa ⋅s] E

µ
 [MPa] 

1 0.001 2.606512 × 10–4 9.927397 × 10–3 2.787166 × 101

2 0.01 1.905071 × 10–6 9.966502 × 10–2 1.278184 × 101

3 0.1 8.808431 × 10–7 9.815126 × 10–1 7.056602 × 101

4 1 4.934025 × 10–4 9.543319 × 10+0 1.711529 × 102

5 10 1.276165 × 10–6 9.344254 × 10+1 2.334448 × 101

6 100 1.969419 × 10–5 9.580883 × 10+2 1.418353 × 102

7 1000 1.290521 × 10–5 8.275395 × 10+3 5.659977 × 102

8 10000 6.291266 × 10–5 9.647045 × 10+4 1.586346 × 102

9 100000 7.887707 × 10–6 2.005373 × 10+5 1.944645 × 103

10 1000000 1.577867 × 10–3 4.168654 × 10+5 5.096147 × 102
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4 NUMERICAL SIMULATION
The computational part begins with the calibration of parameters M, N, T of the damage 
model in Eq. (15). Once these are known, the MT method can be exploited as a stress updater 
at the level of yarn in the multiscale analysis of plain weave textile composite, which is the 
principle objective of this contribution. These computational steps are described next.

4.1 Calibration of damage model parameters

The model parameters M, N, T are found by comparing the mesoscopic in-plane shear 
response of the fiber tow predicted by the detailed finite element simulations and the MT 
method. In the present study, we adopt a certain simplification and approximate the actual 
microstructure by the periodic hexagonal array (PHA) model in Fig. 2. Therefore, the two 
fiber systems differ only geometrically by the volume of the fiber phase. Note that the local 
z-axis is aligned with the fiber direction.

To appreciate the need for a suitable modification of the MT method, we loaded the 
composite by the prescribed mesoscopic shear strain rate 2 10

4� �εεxy xy= =
−

γ s–1. The corre-
sponding mesoscopic strain-stress diagrams for the two composite systems are plotted in 
Fig. 1. We clearly see that the original MT formulation with ω = 0 significantly overestimates 
the predictions obtained from PHA simulations. On the contrary, introducing the gradually 
evolving damage parameter ω = 0 with properly adjusted parameters N, M, T provides almost a 
perfect match.

An obvious step forward is to check whether fitting the model parameters to shear loading 
only provides satisfactory results for other types of loading conditions. To that end, we loaded 
the system in tension by the prescribed tensile strain rate �εεxx =

−
10

4s–1 in the direction nor-
mal to the fiber. The results appear in Fig. 2(c). While a certain improvement is observed for 
the basalt fiber–based system, the response obtained for carbon fibers is slightly more com-
pliant than that of PHA model. This may suggest a more general calibration step combining 
the data from several loading directions and strain rates. While this issue is being currently 
examined, we accept the values of N, M, T obtained purely from shear loading as satisfactory 
for further study aimed at a macroscopic behavior of textiles.

It is worth mentioning that all simulations assumed strain control loading conditions. This 
means that we prescribed all strain components of the mesoscopic strain rate vector �εε, i.e.  
� �εε εε

T
= { }xx , , ,0 0 0 in case of transverse tension along the x-axis and plane-strain state of 

Figure 1: Mesoscopic shear strain-stress curves: a) carbon fibers, b) basalt fibers.
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stress. Similar loading scenarios are also considered in the next section devoted to the ply 
level where we substitute the mesoscopic strains εε by their macroscopic counterparts E.

4.2 Macroscopic response of textile ply

Although typically supplied in terms of laminates, we limit our attention in this preliminary 
study to a single ply composite. The computational model for carbon-fiber-based composite 
is shown in Fig. 3 identifying basic geometrical data (Fig. 3(a)) to construct the most simple 
RVE, a periodic unit cell (PUC) of a plain weave textile ply (Fig. 3(b)). Note that the two 
types of composite systems differ again in their geometrical details only. These are available 
in Table 3.

Figure 2:  a) PHA computational model, b) Finite element mesh, c) Mesoscopic tensile strain-
stress curves.

Figure 3:  Example of periodic unit cell of a single ply textile composite: a) basic geometrical 
data, b) fiber tows, and c) finite element mesh.
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More complex geometrical models taking into account various types of imperfections 
including voids are also available [14, 24], but this goes beyond the present scope.

The multiscale modeling strategy adopted in the present study is evident in Fig. 4. The 
finite element mesh of basalt-fiber and carbon-fiber based composite consisted of 51087 and 
84448 constant strain tetrahedral elements, respectively. Similarly to FE2 scheme, each ele-
ment of the yarn was considered as a two-phase unidirectional fibrous composite loaded 
by the increment of a mesoscopic strain ∆εε as seen in Fig. 4. But instead of solving this 
sub-problem by FEM exploiting another PUC, for example, the one in Fig. 2(a), we adopt 
the MT averaging scheme to provide the piecewise uniform averages of local fields and their 
corresponding mesoscopic counterparts. 

For illustration, we compare the macroscopic response of both material systems to in-plane 
and out-of-plane shear and in-plane tension. To that end, we loaded the unit cells in turn by 
the macroscopic in-plane 2 10

4�Exy =
− s–1 and out-of-plane 2 10

4�Exz =
− s–1 shear strain rates 

and by the macroscopic tensile strain rate �Exx =
−

10
4s–1. The results are plotted in Fig. 5.

To confirm the fact that viscoelastic response is driven by the deviatoric components of 

the stress field, we plot in Fig. 6(a) the evolution of the mean Σ Σm ii=
1

3
 and equivalent 

deviatoric J ij ij ij ij m ij= = −
1

2
S S S, ,Σ Σ σ  stresses clearly identifying the elastic bulk response. A 

rather small deviatoric stresses also explain a more or less elastic response of the textile ply 

when loaded in tension, recall Fig. 5(b).
When using commercial codes, the direct derivation of shear response in Fig. 5(a) by 

applying the macroscopic shear strain might not be possible. In that case, the in-plane shear 

Table 3: Geometrical parameters of periodic unit cell.

Parameter [μm] Basalt Carbon 

Yarn period (2a) 1726 4072 

Yarn width (b) 87 140 

Inter-yarn gap (g) 312 490 

Ply height (h) 183 314 

Figure 4: Multiscale computational scheme.
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stresses might be derived by loading the composite by combined tension and compression, 
for example, by setting � � �E E Exx yy xy= − = 2 2/ . Given the loading condition to construct  
2Exy xy×Σ  curve in Fig. 5(a), we thus set � �E Exx yy= − = ×5 10

5. The results are plotted in  
Fig. 6(b). An almost perfect agreement with 2 �Exy loading has been achieved. This is attrib-
uted here to a perfect symmetry in the weft and warp directions resulting in zero out-of-plane 
stresses.

However, a word of caution is needed. When considering the same exercise with PHA 

model on meso-scale, it is seen in Fig. 7 that the relation σ σ σxy xx yy= −( )
1

2
 breaks at the 

onset of nonlinear response. This is because of evolution of axial normal stress σ zz due to vis-
coelastic strain in the matrix and the mesoscopic constraint ε zz = 0. The transverse isotropy 
valid for elasticity is then lost.

5 SUMMARY AND CONCLUSIONS
The paper described an application of the MT averaging scheme in multiscale analysis of the 
viscoelastic response of textile composites. It has been shown that such a relatively complex 

Figure 5:  Macroscopic strain-stress curves due to: a) macroscopic in-plane 2Exy and out-of-
plane 2Exz shear strain, b) macroscopic in-plan tensile strain Exx.

Figure 6:  a) Bulk and deviatoric response of the textile ply loaded by the prescribed tensile 
strain rate �Exx, b) Shear response due to combined tension compression � �E Exx yy= − .
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task can be solved very efficiently, which would not be the case when employing the standard 
FE2 computational approach, unless a massive parallel computation is used. Nevertheless, 
there are still some open questions including more complex optimization procedure to tune 
the parameters of the proposed damage model and to validate the applicability of the MT 
method experimentally. Both issues are currently under investigation.
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