
© 2022 WIT Press, www.witpress.com
ISSN: 2046-0546 (paper format), ISSN: 2046-0554 (online), http://www.witpress.com/journals
DOI: 10.2495/CMEM-V10-N1-26-37

 J. H. Zhu, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 10, No. 1 (2022) 26–37

FLOW REGIME DETECTION USING GAMMA-RAY-BASED 
MULTIPHASE FLOWMETER: A MACHINE LEARNING 

APPROACH

JIAN HUA ZHU1, RITESH MUNJAL1,2, ANI SIVARAM2, SANTHIYAPILLAI RAJEEVAN PAUL2, JING 
TIAN2 & GUILLAUME JOLIVET1

1 Singapore Well Testing Center, Schlumberger, Singapore. 
2 Institute of Systems Science, National University of Singapore, Singapore.

ABSTRACT
The presence of intermittent flow regime such as slug flow could cause issues to oil-gas well pipe-
line-riser structures due to large fluctuations in pressure, leading to the production rate reduction and 
damage in the pipe structure. Monitoring multiphase flow regimes in production pipe systems is thus 
important. There are nowadays increasing use of multiphase flowmeter (MPFM) for well production 
flowrate metering. The associated phase fraction and flowrate measurement sensors in MPFMs could 
be potentially employed for multiphase-flow regime detection with no additional component required. 
In this study, a machine learning model is proposed to infer multiphase-flow regime from the measure-
ments of a vertically installed gamma-ray and Venturi-based MPFM. Flow loop tests have been carried 
out at Singapore Well Testing Center with flows of various flow regimes observed at the horizontal inlet 
pipe section, such as dispersed bubbly, stratified, intermittent (slug) and annular flow regimes. The flow 
regime has been determined by visualization from a side glass in the flow loop pipe section and from 
real-time images reconstructed by an electrical-capacitance tomography system. The MPFM real-time 
measurements and derived or calculated data (such as Venturi differential pressure and gamma-ray 
mixture density) are then used as machine learning training data, with the flow regimes to be the train-
ing target. Various machine learning methods have been experimented, such as convolutional neural 
network (CNN), long short-term memory (LSTM) and CNN-LSTM. It has been found that LSTM 
method with regularization, balancing and logarithmic normalization of the calculated parameters can 
achieve the highest accuracy on flow regime prediction (99.6%). This study is the first attempt to pre-
dict flow regime at horizontal entrance section upstream of an MPFM with measurements made at a 
vertical Venturi throat section. The study also proves that flow regime could be accurately predicted by 
a gamma-ray and Venturi-based MPFM.
Keywords: flow regime detection, gamma-ray, machine learning, multiphase flow, multiphase flowmeter.

1 INTRODUCTION
In a gas/liquid two-phase flow, there exist a number of flow structures (or flow regimes) in 
terms of phase distribution, from bubbly flow where gas presents as bubbles immersed in 
liquid as the continuous phase, to mist flow where liquid presents as small droplets dispersed 
in gas as the continuous phase. Flow regime depends on various parameters such as volume 
fractions of the phases, densities of the phases, liquid viscosity and pressure. In petroleum, 
knowing the flow regime of a multiphase flow is important in that it will help better predict 
the pressure gradient and phase holdups in the pipeline for well management. The instability 
of the flow caused by intermittent flow, i.e. slug flow, would impact on the measurement 
accuracy of multiphase flowmeter (MPFM) since it requires pseudo steady-state flow. Prior 
knowledge of multiphase flow regime would enhance MPFM’s performance. Knowing flow 
regimes are beneficial to pipe system design as well. Parsi et al. [1] did several erosion exper-
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iments and observed that the erosion in a vertical slug/churn flow is considerably higher than 
that in horizontal slug/pseudo slug flow.

In past few decades, attempts have been made to predict multiphase flow regimes by cre-
ating flow regime maps. Taitel and Dukler [2] derived a flow regime map for horizontal 
two-phase flow according to a few non-dimensional parameters. Mandhane et al. [3] pro-
posed a flow regime map according to superficial velocities of liquid and gas in a horizontal 
pipeline with air-water flow data. However, flow regime map requires inputs of flow proper-
ties such as flowrates of each individual phase which is often not available.

Flow regime could also be determined by tracking the fluctuation of signals from meas-
urement sensor caused by fluctuation of phase fractions presented in the flow. A lot of 
technologies have been used for flow regime detection by finding correlations between sta-
tistical features of the measurement data and actual flow regimes, such as capacitance probe, 
pressure sensor, ultrasonic tomography, optical probe and microwave resonance frequency 
measurement [4–8]. In above studies, flow regimes are correlated, directly or indirectly, with 
the fluctuations of sensor measurements using PDF or similar statistical tool. In recent dec-
ade, machine learning techniques are further applied to the measurement data to explore 
the correlation between the measurements and flow regimes mathematically [9–12]. These 
studies prove that machine learning is a valid method for multiphase flow regime prediction 
with fair accuracy.

Gamma-ray-based MPFM is one of the most accurate flowmeters to measure oil-water-gas 
three phase flowrates without the need of prior phase separation. As the gamma-ray sensor 
directly measures the phase fractions and their dynamics, it could capture the fluctuating 
patterns of the flow and thus has good potential to predict the flow regimes. Particularly, as 
a flowmeter, those flow parameters that are required inputs for flow regime prediction are 
usually available with MPFM. In this study, an attempt was made to derive upstream hori-
zontal multiphase flow regimes from measurements of a gamma-ray-based vertical MPFM, 
using ANN modelling approach. As gamma-ray-based MPFM has been a new trending in 
petroleum field, the current study would stretch its potential on flow regime detection with 
no additional hardware cost.

2 METHODOLOGY

2.1 Flow loop test data acquisition

A commercial MPFM (Vx Spectra 29 mm, Schlumberger) was used as measurement instru-
ment. It is a gamma-ray-based Venturi flowmeter. The measurement from Venturi provides 
total flowrates of the flow, while the phase fractions of oil, water and gas phases measured 
from gamma-ray sensor allow individual phase flowrate calculation from total flowrates. It is a 
compact solution with only two main electrical components: multivariable transmitter (MVT) 
and gamma-ray sensor. Below show the parameters measured by these two components:

MVT: P, T, DP
Gamma-ray sensor: CLE, CHE

where P is the line pressure of the fluid, T is the temperature of the fluid, DP is the differential 
pressure between Venturi inlet and throat, CLE is the nuclear counts of low-energy level of the 
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radioactive source and CHE is the high-energy level of the radioactive source. The source that 
is used in Vx Spectra has three energy levels while two of them are used for phase fraction 
measurement (CLE and CHE).

With inputs of densities of oil, water and gas (ρo, ρw, ρg), phase fractions of oil, water and 
gas (αo, αw, αg) are derived from nuclear counts of the two energy levels.

The MPFM was tested in multiphase flow loop facility in Singapore Well Testing Centre 
(SWTC, Schlumberger) to acquire data from flow of various flow regimes simulated by the 
flow loop. Below shows the capacity of SWTC flow loop:

Gas rate: 5–1,140 Am3/h
Oil rate: 0.5–160 m3/h

Water rate: 0.5–160 m3/h
Pressure range: 3–28 barg

In flow loop (Fig. 1), liquid pumps are placed in single-phase oil and water lines; two two-
phase compressors are installed in the single-phase gas line. Water and oil flows are mixed 
together at the liquid mixing point and then combined with gas flow at gas-liquid mixing 
point to form an oil-water-gas three-phase flow. There are two parallel pipe lines with differ-
ent sizes (3″ and 6″) connected between gas-liquid mixing point and test section for devices 
of different sizes. In current study, 3″ line was used for testing with the 3″ size Vx Spectra 
29 mm. At upstream, from mixing point to the entrance of the device under test (DUT), the 
length of pipeline is around 25 metres (equivalent to 321 D) to ensure a naturally developed 
flow regime of the flow before entering DUT. After DUT, multiphase flow returns to liquid/
gas separator for liquid and gas separation and then to oil/water separator for oil and water 
separation. The separated fluids are then returned to pumps (oil and water) and compressors 
(gas) for recirculation.

As shown in Fig. 2, 31 gas-oil flow conditions were selected for four different flow regime 
simulations according to Taitel-Dukler flow regime categorization [2]. Five test points are in 

Figure 1: Schematic diagram of test setup in SWTC flow loop.
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the regime of dispersed bubble flow, 5 in the regime of annular-dispersed liquid flow, 12 in 
the regime of intermittent flow and 9 in the regime of stratified flow.

2.2 Flow regime validation

To validate the true flow regimes of proposed test points, two approaches are used. One is 
from a side glass placed upstream of the DUT for flow regime visualization. Figure 3 shows 
the views from side glass of dispersed bubble liquid flow and stratified flow. In a stratified 
flow, gas phase and liquid phase are well separated due to gravity, and thus, the two phases 
could be well identified from the side glass. In a dispersed bubble liquid flow, due to low gas 
fraction and high velocity, gas and liquid phases are well mixed; hence, a uniform distribution 
of the two phases is formed.

Another approach for flow regime identification is from an electro-capacitance tomography 
instrument. AC-based ECT system (ECT Instruments LTD) was used for flow visualization 
of phase distribution structure over the cross section. ECT system measures capacitance 
between pairs of electrodes placed over a pipe cross section. Capacitance is correlated to 
permittivity of the fluid that fills between the two electrodes which reflects phase fraction 

Figure 2: Test points on Taitel-Dukler flow regime map [2].

Figure 3: Flow phase distribution from side glass window.
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of the fluid. With multiple pairs of electrodes, local permittivity and phase fraction could 
be inverted. Tomography on phase distribution could be constructed from local fraction dis-
tribution. The tomography would then be used for flow regime analysing. Unlike side glass 
visualization as a surface evaluation, ECT provides a non-intrusive way to peek on the flow 
inside the pipeline. In this study, eight electrodes were placed over a cross section in the 
horizontal pipe section at 6D before the entrance of the MPFM with 45 degree apart between 
two adjacent electrodes.

Figure 4 shows flow regimes detected by ECT with the four categories defined by Tait-
el-Dukler flow regime map [2]. Subplot (a) is the tomography representing intermittent flow 
where the phase distribution periodically changes between liquid-rich fluid (red) and gas-
rich fluid (blue). The left side shows fraction change of liquid and gas phases with time at 
cross-section centre line. The middle and right plots show phase distributions at gas-rich 
instance and liquid-rich instance, respectively. Subplot (b) is an example of annular-dispersed 
flow where the liquid forms a ring over the cross section and gas phase occupies the centre 
of the cross section. Subplot (c) shows the dispersed bubble liquid flow where gas exists as 
dispersed bubbles inside the liquid. Subplot (d) shows the stratified flow.

According to the flow regime validation approaches described earlier, flow regimes of all 
the 31 test points are confirmed to be the same as predicted from flow regime map shown in  
Fig. 1.

2.3 Data pre-processing

Raw files from VxSpectra of each of the 31 test points were loaded according to actual 
timeline to make a continuous waveform pattern. As mentioned earlier, the data from meas-
urement sensors of Vx Spectra contain P, T, DP, CLE and CHE. Besides above measurement 
data, mixture density of the multiphase fluid was calculated as additional input as well, which 
was defined as

 ρmix = αoρo + αgρg. (1)

Each of the 31 test points of different flow regimes contains 5- to 10-minute test data. In Vx 
Spectra, gamma-ray system is reading the data at 45 Hz, while MVT at 1 Hz. Figure 5 shows the 
number of data points at different flow regimes that are obtained (gamma-ray system), where 
intermittent flow has most of the data points and dispersed bubble liquid flow has the least.

Figure 4: Flow regimes detected from ECT.
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To enhance the balance of the data among different flow regimes, down sampling of slug 
class and up sampling of dispersed class were done using random Gaussian noise approach. 
Table 1 shows numbers of data points after resampling, which are in the same order.

As a first step, the data were scaled in the range of 0–10 and broken into rolling window 
sequence of 200 data points with an overlap of 50% to be used as model inputs. Logarithmic 
normalization was reported to significantly improve the performance and training stability 
of neural network for multiphase flow pattern detection which is also applied to the data in 
current study [9].

The data were then divided into the training (80%) and validation (20%) data. Some of the 
data collected was kept separated from the training and validation data to check the perfor-
mance of the model on unseen data.

2.4 Model design

The approach we took was to use the best methodology to capture time-series data, so long 
short-term memory (LSTM) was selected as one of the methods. We also used convolutional 
neural network (CNN) and CNN-LSTM as CNN helps to improve the training speed and 
captures the spatial features effectively. Combination of CNN-LSTM was selected to try 
capturing spatial and temporal features to get the best accuracy.

CNN model was created using one-dimension convolution layers. The sequential model 
had first layer of CNN with 32 filters, kernel size of 3 and activation layer as ReLU. The 
next layer consisted of 16 filters, kernel size of 3 and activation layer as ReLU. The output 
from second layer was passed to dropout layer and then max-pooled together and fed into the 
dense layer to give output as 4 required classes using the SoftMax activation function.

We used simple architecture of LSTM layers with dropout layer to prevent overfitting and 
dense layer to consolidate the features from the input waveforms. The output of the model 
was the confidence score of 4 output classes. Regularizer and Gaussian noise was added pro-

Figure 5: Number of data points versus flow regimes.

Flow regimes Intermittent Annular Stratified Dispersed

Number of data points 100,000 74,700 95,850 67,500

Table 1: Number of data points after resampling.
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gressively to generalize the model well on any kind of input waveforms. Experiments were 
conducted by using these models on different input waveforms (as mentioned in Section 3) 
to select the best model. The final model is as shown in Fig. 6:

The combination of CNN and LSTM was formed by feeding the sensor input into the con-
volution layers to extract features, and the output features were fed into the dropout layer to 
prevent overfitting and max-pool layer to consolidate the features. The output from max-pool 
was flattened and fed into the LSTM layer which was consolidated using dense layers, and 
output was obtained as 4 required classes using SoftMax activation function.

3 RESULTS
Based on the above pre-processed data, extensive machine learning experiments were done 
to explore model performance with various model inputs and modelling approaches. The 
accuracy of the model is assessed by evaluating the proportion of test points that are correctly 
categorized, such as

 Accuracy =
∑ ×Number of samples withcorrect classificationlabels 1000

∑Total number of samples  (1)

First, DP, P and T were used as inputs with modelling approaches of LSTM, CNN and 
CNN-LSTM. As shown in Fig. 7, with all the three modelling approaches, intermittent flow 
has the highest prediction accuracy, followed by annular-dispersed and stratified flow. LSTM 
outperforms CNN and CNN-LSTM with highest overall accuracy for flow regime detection 
(Table 2), followed by CNN-LSTM and CNN.

Figure 6: Number of data points versus flow regimes.
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In the second experiment, measurement from gamma-ray sensor was used as model inputs. 
Normalization scale of 0–10 was applied to the inputs data, and LSTM, CNN and CNN-
LSTM were used as modelling approaches. In general, intermittent flow and annular flow 
are well predicted. However, stratified flow and dispersed flow are poorly predicted (Fig. 8). 
CNN-LSTM has the highest prediction accuracy, followed by CNN and LSTM, as shown in  
Table 3.

In another modelling experiment, gas fraction derived from gamma-ray sensor meas-
urements was used as model input. Overall, it is still intermittent and annular-dispersed 
flows that are better predicted compared to stratified and dispersed bubble liquid flows 
(Fig. 9 and Table 4). Among the three modelling approaches, CNN has the highest mod-
elling accuracy followed by CNN-LSTM and LSTM, which is worse than previous two 
experiments.

Figure 7: Accuracy plots from LSTM, CNN, and CNN-LSTM with P, T and DP as inputs.

Modelling approaches LSTM CNN CNN-LSTM

Modelling accuracy (%) 86.96 65.22 78.26

Table 2: Accuracy on modelling with P, T and DP as inputs.
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Last attempt was done using DP and mixture density as modelling inputs. With these 
approaches, all the four flow regimes are generally well predicted (Fig. 10). LSTM 
provides the highest modelling accuracy (99.6%) followed by CNN-LSTM and CNN 
(Table 5).

From the above results, LSTM model provided the best accuracy and precision followed 
by CNN-LSTM and CNN model subsequently. The LSTM model was selected as the model 
to be deployed as not only it was the most accurate but also the size of the model was consid-
erably smaller (218 KB) than CNN-LSTM model (1,431 KB), which is a crucial factor to be 
considered for deployment on edge device.

Figure 8: Accuracy plots from LSTM, CNN and CNN-LSTM with CLE and CHE as inputs.

Modelling approaches LSTM CNN CNN-LSTM

Modelling accuracy (%) 58.03 63.73 65.61

Table 3: Accuracy on modelling with CLE and CHE as inputs.
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4 CONCLUSION
This study demonstrates that machine learning concepts such as LSTM can be effectively 
applied to traditional industrial applications like estimating multiphase flow parameters to 
proactively identify the flow patterns in well flows.

Figure 9: Accuracy plots from LSTM, CNN and CNN-LSTM with gas fraction as input.

Modelling approaches LSTM CNN CNN-LSTM

Modelling accuracy (%) 23.65 46.41 34.91

Table 4: Accuracy on modelling with gas fraction as input.

Modelling approaches LSTM CNN CNN-LSTM

Modelling accuracy (%) 99.6 87.09 98.94

Table 5: Accuracy on modelling with DP and mixture density as input.
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Figure 10:  Accuracy plots from LSTM, CNN and CNN-LSTM with DP and mixture density 
as input.

Inputs of the machine learning models have to be carefully selected in order to achieve 
high accuracy model prediction. Inputs with mixture density and differential pressure were 
proved to provide the best accuracy on flow regime prediction. Differential pressure reflects 
the kinetical energy that is contained in the flow, while mixture density of the fluid provides 
phase fractions which are the two essential elements to determine a flow regime: velocity and 
phase fraction. This explains why it works so well.

The highest prediction accuracy is 99.6% over all the test points with four flow regimes. 
This indicates that the model could be used for flow regime prediction with great accuracy. 
Especially, gamma-ray-based MPFM is a well-established solution whose number keeps 
growing in petroleum field. The model built could be easily applied to these MPFMs enabling 
flow regime detection of upstream horizontal flow with no additional cost.
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