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ABSTRACT
A novel singular element is presented to evaluate the stress intensity factor (SIF) of the through- thickness 
crack in this paper. The new element takes into account the special variation of the displacements 
around the intersection of the crack front and the free surface. The intersection between the crack front 
and the free surface is named singular point. The proposed element has a vertex which coincides with 
the singular point. Accurately capturing the distribution of displacements in the vicinity of the singular 
point is of crucial importance in the implementation of dual boundary element method (DBEM) for 
the through-thickness crack problems. The element with usual shape functions doesn’t lead to accurate 
solutions unless extremely fine meshes are used. With these new singular elements, more accurate 
results for the displacement filed around the singular point and the SIF can be obtained. Numerical 
examples have demonstrated the accuracy and efficiency of the proposed method.
Keywords: dual boundary element method, stress intensity factor, through-thickness crack, vertex 
 singularity.

1 INTRODUCTION
The through-thickness crack problem widely appears in engineering problem. Accurate eval-
uation of stress intensity factor (SIF) is of great importance for this problem. Many numerical 
methods have been proposed to evaluate SIF such as the finite element method (FEM), the 
extended finite element method (XFEM) and the boundary element method (BEM). Com-
pared to FEM and XFEM, the BEM seems to be more attractive for its dimension reduction 
feature [1–2]. However, the conventional BEM cannot apply to crack problems directly, 
because a singular system of equations is always obtained for the coincidence of the crack 
boundaries. To overcome this difficulty, various methods within the scope of BEM have been 
presented, for instance the special Green’s method [3], the multi-domain techniques [4], the 
displacement discontinuity or dislocation method [5], the Galerkin symmetric method [6], a 
direct traction boundary integral equation method [7] and the dual boundary element method 
(DBEM) [8–12]. Among the above methods, the DBEM is a more promising method.

The displacements around the crack front have square root variation of r, r being the dis-
tance to the crack front. The element with the usual shape functions which allow for 
polynomial variation only is not suitable for modelling crack front regions. Many researchers 
have proposed special crack tip element, including quarter-point elements [13] and mid-side 
node elements where special shape functions are introduced [14].
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The intersection between the crack front and the free surface is named singular point. Little 
literature considers the special variation of the displacement filed around the singular point 
on the free surface, although the vertex singularity exists in the through-thickness crack prob-
lem [15–17]. Therefore, a novel singular element is proposed in the paper.

The new singular element has a vertex which coincides with the singular point. These ele-
ments are collocated on the free surfaces which include the singular points rather than on 
crack surfaces. The vertex singularity is affected by many factors, such as the Poisson’s ratio, 
the thickness of the crack and so on [15–19]. But from the results in these literature, it can be 
seen that the vertex singularity approach square root of r in most cases. For simplicity, we 
design a new element which has square root variation to model the special displacement filed 
around the singular point. Numerical examples are presented to verify that our method is 
suitable for solving the through-thickness crack problems with different Poisson’s ratio.

This paper is organized as follows. In section 2, the DBEM are described. Section 3 intro-
duces the vertex singularity. The new singular element is presented in Section 4. Numerical 
examples are given in Section 5. This paper ends with conclusions in Section 6.

2 THE DUAL BOUNDARY ELEMENT METHOD
Consider a cracked body as shown in Fig. 1, with Γ+  and Γ−  referring to the lower and upper 
crack surfaces, respectively, and S to the rest of the boundary. The displacement boundary 
integral equation in absence of body forces can be written as
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where Ps and Q are the source point and the field point, respectively. cij is a function of the 
geometry variation at the boundary point. uj and tj represent the components of displacement 
and traction. uij

*  and tij
*  are the Kelvin fundamental solutions for displacement and traction. 

The Kelvin fundamental solutions uij
*  and tij

*  are given by:
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Figure 1: Cracked body.
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where r is the distance between the source point Ps and the field point Q; G, v and dij 
 represent the shear modulus, the Poisson’s ratio and the Kronecker delta, respectively; n 
denotes the unit outward normal vector at the point Q on the boundary. ni and nj are the com-
ponents of the normal n, and r r xi i, .= ∂ ∂ , r r xj j, = ∂ ∂ .

The traction boundary integral equation in absence of body forces can be written as

 

1
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where ni(PS) denotes one component of the unit outward normal vector at the point Ps on 
the boundary. Uijk

*  and Tijk
*  contain several derivatives of the Kelvin fundamental solutions 

together with elastic constants. Expression for Uijk
*  and Tijk

*  are:
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Traction equilibrium t P t Pk S k S( ) ( )
Γ Γ+ −=  is assumed on the crack faces. The kernels uij

*, 

tij
* , Uijk

*  and Tijk
*  have following properties:
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Thus a new pair of boundary integral equations can be obtained as follows:
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where ∆uk (Q) represents the open displacement on the crack surface, uj (Q) and tj (Q) 
 represent the displacement and traction on the uncracked surfaces. Equation (7a) is collo-
cated on the uncracked boundary and Eqn (7b) is used on the lower crack surface.

It should be noted that eqn (7a) and (b) can also be employed for the problems containing 
multiple crack surfaces in a finite space. For the problems containing multiple crack surfaces 
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in an infinite space, only eqn (7b) is required. This formulation has the advantage of a smaller 
system of equations than the conventional DBEM since only one of the crack surface needs 
to be discretized.

3 THE VERTEX SINGULARITY
In this section, we introduce the vertex singularity at the singular point (intersection of the 
crack front and the free surface). Benthem (1977) [15], by using three-dimensional separa-
tion of variables for a quarter infinite crack in a half space, showed that a vertex singularity 
exists at the singular point. Then a lot of literature [16–19] has been presented to discuss the 
singularity order at the singular point, including analytic method and numerical method. The 
results from these papers show that the vertex singularity is close to square root of r in most 
cases. The following example can also illustrate this point.

The displacements of a 3D through-thickness crack are simulated by finite element soft-
ware ABAQUS with 2.44 million elements. The displacement U2 around the crack front for 
different cross section along the thickness direction is shown in Fig. 2. The numbers 0–1.5 
represent the distance of different cross section to the free surface. 0 denotes the free surface, 
and 1.5 is the middle cross section of the cracked body along the thickness direction.

The displacements of the middle cross section in the vicinity of the crack front have square 
root variation of r. It can be seen from Fig. 2 that the displacements U2 of different cross 
section including the free surface have almost the same variation trend. This means that the 
displacements around the singular point on the free surface have similar square root variation.

4 THE NEW SINGULAR ELEMENT
From the previous section, it can be seen that the displacements around the singular point on 
the free surface have similar square root variation of r. But the accurate variation of the dis-
placement field depends on the order of the vertex singularity. For simplicity, a new singular 
element which has square root variation is presented to model the special displacement filed 
around the singular point in this section.

The new singular elements have a vertex which coincides with the singular point. These 
elements are collocated on the free surface rather than on crack surface as shown in Fig. 3. 

Figure 2: Variation of U2 with r for different cross section along the thickness direction.
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Let us assume that the singular point lies on node 2 of the new triangular element shown in 
Fig. 4. In order to get the desired square root variation, the shape functions of the new  element 
should be of the following form:
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The shape functions in eqn (8) must satisfy the conditions:
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Figure 3: The position of the new singular element.

Figure 4: The new triangular element.
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where dij is the Kronecker delta, and (xi, hi) are the functional coordinates for the discon-
tinuous element in the (x, h) coordinate system, as illustrated in Fig. 4. Using eqn (9) for 
each i in eqn (8), a set of 3×3 linear system of equations is obtained. Solving this system of 
equations will yield the coefficients aj

i . Assuming l = 0.25, the shape functions for the new 
singular element are obtained as:
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5 NUMERICAL EXAMPLES
To verify the accuracy and efficiency of the proposed singular element, several examples are 
presented in this section. The SIFs are evaluated by the following expressions:
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where E is Young’s modulus and v represents Poisson’s ratio. ∆ub, ∆un, ∆ut are projections 
of the crack open displacements on the local coordinate directions (normal, binormal and 
tangential) at the crack front as shown in Fig. 5.

Figure 5: Local coordinate system at the crack front.
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5.1 Example 1

In the first example, we concern a through-thickness crack bar specimen of thickness t, width 
w and total height 2h, with a crack length a through the thickness as shown in Fig. 6. The ends 
of specimen are subjected to a uniform uniaxial tensile stress s in the y-direction, perpendic-

ular to the crack. The meshes are shown in Fig. 7. The normalized SIFs, (i.e. K aI /s p ) for 

Figure 6: Geometry model of a through-thickness crack.

Figure 7: Mesh model of a through-thickness crack.
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t/a = 2, w/a = 3, h/a = 1.75 along the crack front are illustrated in Fig. 8 together with the 
results obtained by Raju & Newman [20] and Mi & Aliabadi [10]. ‘DBEM with regular 
 triangular element’ represents that regular triangular elements are used around the singular 
point. ‘DBEM with new singular element’ denotes our proposed method. The SIF at the 
center of the bar evaluated by the proposed method is 2.82019. This value is within 0.24% of 
the plane strain solution in Ref. [21].

5.2 Example 2

The vertex singularity depends on the value of Poisson’s ratio. In order to verify the versatil-
ity of the proposed singular element, a series of Poisson’s ratios are presented. The problem 
considered in this example is the same as that in example 1. The SIFs evaluated at the center 
of the bar with different Poisson’s ratio are shown in Table 1. v is the Poisson’s ratio and KI 
is the normalized SIF. It can be seen from Table 1 that accurate results can be obtained for 
different Poisson’s ratio.

6 CONCLUSIONS
A new singular element with square root variation is proposed to analyze the through- 
thickness crack problem in this paper. The new element takes into account the special 
variation of the displacements in the neighborhood of the singular point. The proposed 

Figure 8: Normalized SIFs along the crack front.

Table 1: Normalized SIFs at the center of the bar with different Poisson’s ratios.

v 0.1 0.15 0.2 0.25 0.3 0.35

KI 2.78054 2.78868 2.80190 2.82019 2.8437 2.8727
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 element has a vertex which coincides with the singular point, and these elements are collo-
cated on the free surfaces rather than on crack surfaces. With the new singular elements, the 
special behavior of displacements around the singular point can be captured accurately. 
Numerical examples showed that more accurate SIF can be obtained by our proposed method 
within 0.24% of the plane strain solution.

ACKNOWLEDGEMENTS
This work was supported in part by National Science Foundation of China under grant num-
ber 11472102, in part by Open Research Fund of Key Laboratory of High Performance 
Complex Manufacturing, Central South University under grant number Kfkt2013-05, and in 
part by State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body under 
grant number 71375003.

REFERENCES
 [1] Yan, A.M. & Nguyen-Dang, H., Multiple-cracked fatigue crack growth by BEM. 

 Computational Mechanics, 16(5), pp. 273–280, 1995.
http://dx.doi.org/10.1007/BF00350716

 [2] Liu, Y.J. & Xu, N., Modeling of interface cracks in fiber-reinforced composites with the 
presence of interphases using the boundary element method. Mechanics of Materials, 
32(12), pp. 769–783, 2000.
http://dx.doi.org/10.1016/S0167-6636(00)00045-4

 [3] Telles, J.C.F., Castor, G.S. & Guimaraes, S., A numerical Green’s function approach for 
boundary elements applied to fracture mechanics. International Journal for Numerical 
Methods in Engineering, 38(19), pp. 3259–3274, 1995.
http://dx.doi.org/10.1002/nme.1620381906

 [4] Blandford, G.E., Anthony, R.I. & James, A.L., Two-dimensional stress intensity factor 
computations using the boundary element method. International Journal for Numerical 
Methods in Engineering, 17(3), pp. 387–404, 1981.
http://dx.doi.org/10.1002/nme.1620170308

 [5] Crouch, S.L., Antony, M.S. & Rizzo, F.J., Boundary element methods in solid mechan-
ics. Journal of Applied Mechanics, 50, p. 704, 1983.
http://dx.doi.org/10.1115/1.3167130

 [6] Sirtori, S., Maier, G., Novati, G. & Miccoli, S., A Galerkin symmetric boundary- 
element method in elasticity: formulation and implementation. International Journal 
for Numerical Methods in Engineering, 35(2), pp. 255–282, 1992.
http://dx.doi.org/10.1002/nme.1620350204

 [7] Xie, G., Zhang, J., Huang, C., Lu, C. & Li, G., A direct traction boundary integral 
 equation method for three-dimension crack problems in infinite and finite domains. 
Computational Mechanics, 53(4), pp. 575–586, 2014.
http://dx.doi.org/10.1007/s00466-013-0918-8

 [8] Hong, H.K. & Chen, J.T., Derivations of integral equations of elasticity. Journal of 
Engineering Mechanics, 114(6), pp. 1028–1044, 1988.
http://dx.doi.org/10.1061/(ASCE)0733-9399(1988)114:6(1028)

 [9] Chen, J.T. & Hong, H.K., Review of dual boundary element methods with emphasis on 
hyprsingular integrals and divergent series. Applied Mechanics Reviews, 52, pp. 17–33, 
1999.
http://dx.doi.org/10.1115/1.3098922



 Yunqiao Dong et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 4, No. 2 (2016) 89

[10] Mi, Y. & Aliabadi, M.H., Dual boundary element method for three-dimensional frac-
ture mechanics analysis. Engineering Analysis with Boundary Elements, 10(2), pp. 
 161–171, 1992.
http://dx.doi.org/10.1016/0955-7997(92)90047-B

[11] Pan, E. & Yuan, F.G., Boundary element analysis of three-dimensional cracks in aniso-
tropic solids. International Journal for Numerical Methods in Engineering, 48(2), 
pp. 211–237, 2000.
http://dx.doi.org/10.1002/(SICI)1097-0207(20000520)48:2%3C211::AID-
NME875%3E3.0.CO;2-A

[12] Chen, W.H. & Chen, T.C., An efficient dual boundary element technique for a 
 two-dimensional fracture problem with multiple cracks. International Journal for 
Numerical Methods in Engineering, 38(10), pp. 1739–1756, 1995.
http://dx.doi.org/10.1002/nme.1620381009

[13] Ariza, M.P., Saez, A. & Dominguez, J., A singular element for three-dimensional frac-
ture mechanics analysis. Engineering Analysis with Boundary Elements, 20(4), pp. 
275–285, 1997.
http://dx.doi.org/10.1016/S0955-7997(97)00070-2

[14] Mi, Y. & Aliabadi, M.H., Discontinuous crack-tip elements: application to 3D boundary 
element method. International Journal of Fracture, 67(3), pp. R67–R71, 1994.
http://dx.doi.org/10.1007/BF00016267

[15] Benthem, J.P., State of stress at the vertex of a quarter-infinite crack in a half-space. 
International Journal of Solids and Structures, 13(5), pp. 479–492, 1977.
http://dx.doi.org/10.1016/0020-7683(77)90042-7

[16] Bažant, Z.P. & Luis F.E., Surface singularity and crack propagation. International Jour-
nal of Solids and Structures, 15(5) pp. 405–426, 1979.
http://dx.doi.org/10.1016/0020-7683(79)90062-3

[17] Shivakumar, K.N. & Raju, I.S., Treatment of singularities in cracked bodies. Interna-
tional Journal of Fracture, 45(3), 159–178, 1990.
http://dx.doi.org/10.1007/BF00693347

[18] Kwon, S.W. & Sun, C.T., Characteristics of three-dimensional stress fields in plates with 
a through-the-thickness crack. International Journal of Fracture, 104(3), pp.  289–314, 
2000.
http://dx.doi.org/10.1023/A:1007601918058

[19] Aliha, M.R.M. & Saghafi, H., The effects of thickness and Poisson’s ratio on 3D mixed-
mode fracture. Engineering Fracture Mechanics, 98, pp. 15–28, 2013.
http://dx.doi.org/10.1016/j.engfracmech.2012.11.003

[20] Raju, I.S. & Newman, J.C., Three dimensional finite-element analysis of  finite-thickness 
fracture specimens. NASA, Washington, DC, 1977.

[21] Murakami, Y. & Hasebe, N. (eds), Stress Intensity Factors Handbook, Elsevier Science: 
Amsterdam/New York, 2001.


