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ABSTRACT
This paper is concerned with the evaluation of effective material properties of wood. Since both 
mechanical loading and climatic changes play a crucial role in the prediction of wood response, we 
consider not only stiffness, but also non-mechanical properties driving the heat and moisture transport 
and thus indirectly addressing the swelling and shrinkage properties of wood. In this regard, classi-
cal micromechanical models as well as numerical simulations based on the Extended Finite Element 
Method are examined. A special attention is devoted to the influence of microstructural details of the 
porous phase. To that end, the X-ray computational micro-tomography is adopted when seeking for 
information beyond the volume fraction of phases that can be identified at various levels of a hierarchi-
cal arrangement of wood. A spruce wood is selected as one particular example to compare individual 
computational approaches.
Keywords: Conductivity, diffusivity, homogenization, microfibril angle, micro-tomography,  Mori-Tanaka 
method, nanoindentation, stiffness, X-FEM.

1 INTRODUCTION
Timber structures have been recognized as a promising alternative to traditional   steel/ concrete/
masonry construction approaches. The glued laminated timber (GLT) beams in particular 
have enjoyed a particular attention. These are typically of higher grade in  comparison to solid 
timber and thus less sensitive to local defects being the source of damage evolution. While 
mechanical loading is certainly the most severe load contribution, the  climatic changes, the 
wood structures are often exposed to, may considerably influence the structure durability and 
thus its service life [1, 2]. A rigorous fully coupled  hydro- thermo- mechanical model capable 
of accounting for moisture induced stresses is therefore of paramount importance. This has 
been confirmed in [3] clearly demonstrating the  mechanosorption effects investigated 
 experimentally at the level of annual rings during creep experiments through the  measurements 
of local strains using the grid method. Similar works allowing for full field measurements of 
strain profiles, although limited to free swelling caused by moisture uptake, were reported in 
[4, 5] exploiting the digital image  correlation method.

For such a complex model to provide reliable predictions at structural level, the proper 
determination of material parameters at this level of observation is doubtless one of the most 
important steps. This issue gains in complexity if accepting the natural variability of wood 
properties. Regarding the structural behavior, this issue has been addressed, e.g. in [6, 7]. 
Much effort has also been devoted to the effect of microstructural details. The determination 
of variability of microfibril angle (MFA) has been studied in [8, 9] following the steps set in 
[10]. It has been observed that MFA not only reduces the wood stiffness, but also increases 
shrinkage [11], which inherently depends on the variation of moisture content in wood. While 
hierarchical arrangement of wood has been addressed in number of contributions to arrive at 
effective transport properties such as thermal conductivities [12] and moisture diffusivities 
[13] the influence of MFA variation has been examined in the light of elastic stiffness 
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properties so far. The analytical micromechanics models such as the Mori-Tanaka or 
 Self-consistent schemes have been adopted to arrive at effective properties [14, 15] thus lim-
iting the attention to volume fraction and shape and orientation of inclusions. On mesoscale 
(the level of earlywood and latewood) as well as on macro-scale (the level of annual rings) 
the former variable is often related to the wood density [16]. Although the phase volume 
fraction seems pivotal in the prediction of effective properties, the number of contributions 
attempting to account for more detailed morphological description of wood microstructure is 
scarce. Some preliminary studies that promote the use of computational micro-tomography 
can be found in [17].

Some of the previous issues are revisited in this paper with emphases on the effect of 
 microstructural details. Attention is limited to steady state or quasi-static analysis. Section 2 
addresses some of the microstructure related parameters such as the MFA, phase volume 
 fractions, and geometrical details of the porous phase. The adopted computational methods 
are shortly described next in Section 3. The homogenized properties are summarized in 
 Section 4 for the spruce wood as the most typical type of wood used in the construction of 
GLT beams in the Czech Republic. The most important concluding remarks are finally 
 provided in Section 5.

2 WOOD MICROSTRUCTURE
The literature offers a number of contributions being concerned with a highly irregular micro-
structure of wood, which progresses across several scales [11, 16, 15, to cite a few]. Three 
such scales can be identified in Fig. 1(a) making also distinction between earlywood and 
latewood. They differ not only in the volume of lumens (the hollow tubes surrounded by the 
cell wall material), but also in their geometrical characteristics, see Figs. 1(b,c).1 Further 
details can be found in the previously cited literature.

2.1 Microfibril angle

If zooming in to the cell wall displayed in Fig. 1(d) one may recognize several sequentially 
deposited layers building up the wall. About 80−90% of the total cell wall thickness is taken 
by the secondary layer (S2) [16, 18], which is the major contributor to the mechanical prop-
erties of wood cell walls. The material species found within individual layers can be assumed 
tissue independent, universal to all woods. The cell wall microstructure thus invites addi-
tional downscaling as adopted in [16, 15]. Among all species the crystalline cellulose deserves 
a particular attention. This is because the orientation of microfibrils of the crystalline 

1 Material axes in the transverse plane represent the radial (R) and tangential (T) direction.

Figure 1: Hierarchical arrangement of softwood (spruce): (a) annual rings, 
(b) early-wood, (c) latewood, (d) cell wall.
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cellulose, or rather their deviation from the direction of lumens, considerably influences the 
cell wall stiffness [18, 15] and other wood properties such as shrinkage or swelling [11].

In this regard, a direct estimation of MFA from image processing can successfully be sub-
stituted by indirect measurements using indentation combined with homogenization. This 
appears much advantageous as nanoindentation combined with homogenization at the cell 
wall level or macroindentation using the Pilodyn device, where homogenization across all 
scales is needed, allows us to obtain the whole transversely isotropic stiffness matrix of the 
cell wall material. For further details the interested reader is referred to [19, 10, 6, 8, 9]. For 
illustration we plot in Fig. 2(a,b) the probability distribution functions of indentation modulus 
obtained from two samples of spruce and the corresponding MFA derived from the applica-
tion of anisotropic theory of nanoindentation [20, 21] to advocate a random character of 
MFA. How severely the stiffness properties are dependent on MFA is evident from Fig. 2(c).

2.2 Volume fraction of wood on various scales

The volume fractions of individual components entering the micro-scale (cell wall level) 
homogenization step can be identified from their weight fractions and apparent densities as 
presented in [16] for a large group of wood plants. Similar procedure can be adopted for the 
derivation of the volume fraction of pores (lumens) of earlywood (cLE ) and latewood (cLL) as 
well as the volume fractions of earlywood (cEW ) and latewood (cLW ).

Another option is to employ an image analysis to acquire the volume fractions from 
two-dimensional binary images of a real microstructure. An illustrative example pertinent to 
the earlywood of spruce is presented in Fig. 3. The results obtained from the two approaches 

Figure 2: Probability distribution function of: (a) indentation modulus, (b) 
MFA; (c) variation of indentation modulus as a function of MFA.

Figure 3:  Images of earlywood of spruce: (a) original grayscale image, 
(b) transformed binary image.
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are then compared in Fig. 4.2 This opens some questions as to the reliability of the prediction 
of effective properties if not addressing the microstructure with its all details. This issue is 
partially explored in the next section.

2.3 X-ray computational microtomography

Much higher degree of information about the wood microstructure and thus also about the 
degree of porosity can be obtained with the help of computational micro-tomography (µCT). 
The stepping stone in the construction of a suitable computational model (representative 
volume element, RVE) from the voxel structure of the reconstructed 3D image containing the 
entire grayscale. Such image must therefore be segmented to computationally identify the 
structure and volume of individual phases.

A suitable method of attack is the procedure based on the grayscale histogram thresholding 
using hierarchical cluster analysis [22]. This method can be briefly characterized as follows. It is 
assumed that the target histogram contains N different nonempty gray levels which can be grouped 
into several upwardly ordered clusters Ck, k =1, . . . , K. At the beginning of the segmentation 
process each cluster accommodates only one gray level (K = N). A certain measure of dissimilar-
ity of two adjacent clusters Ci, Cj, termed the cluster distance in [22], is then evaluated as

 
Distance C C C C C Ci j I i j A i j, ,( ) = ∪( ) ∪( )s s2 2

 (1)

where the so called inter-class variance sI
2 ( ∪ )C Ci j  is defined as the sum of the square 

 distances between the means of the two clusters and the total mean of both clusters and is 
sA jC C2

i( ∪ ) defined as the variance of all pixel values in the merged cluster, see [22] for their 
particular forms. The pair of clusters with the smallest distance is then merged. This reduces 
the number of clusters and has to be repeated N − M times to obtain M desired clusters.

A graphical representation of the above smoothing process applied to the sample of early-
wood of spruce is displayed in Fig. 5. Unfortunately, this approach crucially depends on the 
quality and spacial resolution of the starting image. If the noise is too high or the resolution 

2 The values corresponding to image analysis are labeled with superscript (IA). These were found for wood initially 
dried in the oven at 60°C to correspond to values calculated from dry wood density rwood

dry

Figure 4: Volume fractions plotted as a function of dry wood 
density: (a) volume fractions of lumens, (b) volume 
fractions of earlywood and latewood.
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and contrast too low then only some feature descriptors can be determined. The main  difficulty 
lies in distinguishing the objects (defects) from one another and the correct determination of 
material interfaces.

This obstacle has been overcome by repeating this process twice taking advantage of the 
available single source double-energy CT scans [23]. First, the reconstructed images for two 
energy levels (low (LE) and high (HE)) are segmented based on the described hierarchical 
clustering. The material is unambiguously determined for pixels where both segmentations 
give the same results. The material of remaining pixels is determined based on the segmenta-
tion of the weighted summation of a set of spectra W = cLEWLE + cHEWHE, where cLE and cHE 

are the weights of respected CT scans (cLE + cHE = 1, cLE ,cHE > 0). These  coefficients are 

fitted to minimize the error between the resulting combined spectra histogram and the spectra 
histograms for given energy levels. 

The resulting reconstructed images distinguishing between cell wall material and the 
structure of lumens are shown in Fig. 6. The volume fractions rendered by individual 
approaches are listed in Table 1. Clearly, the volume fraction of earlywood provided by the 

Figure 5: Histograms of the grayscale for the selected number of clusters 
during the segmentation process: (a) 201, (b) 43, (c) 2.

Figure 6: Reconstructed 3D images from single source double-energy 
method: (a) annual rings, (b) earlywood, (c) latewood.

Table 1: Volume fractions of earlywood and 
latewood from individual approaches.

Method Earlywood Latewood

Wood density 0.78 0.47

2D image analysis 0.42 0.18

µCT dual-energy 0.75 0.20
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2D image analysis is highly underestimated. Furthermore, owing to the difficulty associated 
with the determination of volume fraction of latewood from available CT-scans and remem-
bering, on the contrary, a good match for earlywood, we may support the determination of the 
volume fraction from the wood density with sufficient reliability. From a different prospec-
tive, a variability of results from individual approaches suggests treating the volume of pores 
as a random variable. Such a viewpoint fits well within the concept of parameter identifica-
tion based on the Bayesian inference, see e.g. [9] for more details.

3 COMPUTATIONAL APPROACH
The derivation of homogenization (effective) material properties relies in general on two 
types of approaches. One based on the solution of the Eshelby transformation inclusion prob-
lem and one based on the definition of a suitable computational model in the form of a 
periodically repeating RVE, which is typically analyzed numerically with the help of the 
finite element method. The first approach is usually promoted when no details about the local 
fields on the scale of individual constituents is needed. This is generally the case, examined 
also in this paper, when only the effective properties, to be    used in an independent macro-
scopic analysis, are required. Henceforth, the two approaches are therefore compared only in 
the light of the applied microstructural details.

3.1 Mori-Tanaka method

The Mori-Tanaka (MT) method belongs to the class of the average field models where the 
Eshelby problem is understood such that a single inclusion is embedded into homogeneous 
unconstrained matrix and loaded in the infinity by the macroscopic fields [14, 15]. To avoid 
potential drawbacks of these analytical models delivering non-symmetric stiffness matrices 
in case of multi-phase material systems [24] we limit our attention in all homogenization 
problems two phase materials only. In the spirit of the Mori-Tanaka method the effective 
properties on a given scale are provided by

 
L L L L Ahom

1 2 2 1 2,= + ( − )c
 (2)

where subscript 1 is typically reserved for the matrix phase and subscript 2 for the inclusion. 
The matrix A2 (6 × 6 in case of elasticity, 3 × 3 in case of moisture diffusion or heat conduc-
tion) represents the concentration or localization factor depending on the material properties 
of both phases and shape and orientation of the inclusion. The matrices L1, L2 store material 
properties of individual phases, i.e. Li is either the 6 × 6 stiffness matrix, 3 × 3 diffusivity 
matrix or 3 × 3 conductivity matrix of a given phase i.

Point out that the MT method is, unlike the Self-consistent method, fully explicit and boils 
down, providing the localization matrix Ai is known, to simple matrix multiplication. Closed 
form solutions for several types of ellipsoidal inclusions (spheres, cylinders, ellipsoids) are 
available, e.g. [15]. In comparison to numerical analysis carried out on a given RVE the MT 
method is therefore computationally much more efficient.

While eqn (2) is generally applicable to the level of cell wall and the level of lumens, a 
different homogenization strategy is needed for the level of annual rings. The most simple 
approach accepts the laminate like structure of annual rings to reduce the last homogeniza-
tion step to simple Voigt and Reuss bounds, see e.g. [15]. Herein, this step was utilized within 
the Mori-Tanaka method only to get the results presented in Fig 8.
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As also presented in [16, 12, 25] the prediction of effective elastic stiffnesses and thermal 
conductivities requires two additional homogenization steps at the cell wall level in compar-
ison to effective diffusivities [13].

3.2 Extended finite element method

When microstructure details beyond the phase volume fractions are available, or the distribu-
tion of local fields is needed, the numerical homogenization is usually selected. In most cases 
the 1st order homogenization theory [26, 27, 28], which assumes constant macroscopic gra-
dients acting over a sufficiently large volume of macroscopically homogeneous material, is 
given the preference over more complex approaches [29]. On a lower scale, such volume is 
typically represented by a periodically repeating RVE being representative to actual micro-
structure as close as possible. To that end, either statistically periodic unit cells [30] or 
reconstructed µCT images [31] are then employed. Hereafter, the latter approach is exploited.

To begin, we split the distribution of local fields over RVE (displacements u, temperature 
q, moisture j) into a homogeneous part, linearly varying over RVE, and a fluctuation part 
reflecting the effect of heterogeneities as3

 u = E · u + u*,  e = E + e*,  s = L(E + e*), (3)

where E is the macroscopically homogeneous strain and u* store the periodic displacement 
fluctuations, e∗ is the corresponding strain, and the local stress s follows from Hooke’s law 
written in terms of phase stiffness matrix L and the local strain. Next, substituting eqn (3) into 
the principal of virtual work (Hill’s lemma) and assuming the strain loading conditions 
(dE = 0) gives

 〈de*T Le*〉 = -〈de*T LE〉, (4)

where 〈 〉 stands for the volume averaging. Equation (4) is to be solved numerically. To avoid 
difficulties with meshing complex microstructures in Fig 6 using standard finite element 
formulation we turn our attention to work of Moës et al. [32] and employ the approach based 
on the Extended Finite Element Method (X-FEM). Because X-FEM enables an application 
of regular meshes, e.g. standard brick elements, which do not have to confirm to physical 
boundaries, the analysis of such complex geometries becomes less problematic.

The stepping stone of this method is to enrich the standard finite element approximation 
space by a specific enrichment function y which allows us to locate material interfaces and 
thus render the corresponding strains along these interfaces discontinuous. Following [32] 
and limiting attention to the elasticity the augmented approximation of the displacement 
field reads

 
u u a= N Ni i j

i I
j

j I∈ ∈
∑ ∑+ *

*

,y
 (5)

where Ni are the standard shape functions, I represents the total number of finite element 
nodes in the analyzed domain, I∗ ⊂ I gives the number of nodes for which the support is split 
by the interface and aj are the additional degrees of freedom. To properly capture the interface 

3 Attention is limited to elasticity. The problem of heat and moisture transport is approached analogically by replac-
ing the displacement field by the corresponding scalar quantities and the 6 × 6 stiffness matrix by the 3 × 3 moisture 
diffusivity or thermal conductivity matrices, see e.g. [15].
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location within an element Sukumar et al. [33] applied a level set representation of surfaces 
through a level set function

 
f fLS LS( ) ( ) ,*x x=

∈
∑ Ni
i J

i
 (6)

where Ni
∗ are the shape functions building a local partition of unity, in most cases Ni

∗ = Ni. 
Then, J stands for the number of nodes of the element containing the point x. The nodal values 
fi

LS represent the signed distance of the element node to i the interface with either a positive or 
a negative value depending on the material to which it belongs. This function then locates inter-
faces implicitly as a union of points for which it attains a zero value (zero-level). Given the level 
set function, Moës et al. [32] introduced a specific form of the enrichment function in the form

 
y f= −

∈∈
∑∑ | | ,* *f i i i i
i Ji J

N NLS LS

 (7)

where fi
LS denotes the level set value in the node i. Note that the actual value of y along the 

interface is irrelevant as long as it captures the weak discontinuity in gradient fields properly. 
Owing to a space limitation we do not wish to elaborate this topic any further and instead 
refer the interest reader to [32, 15, 31] for additional reading.

For illustration we plot the 3D X-FEM representation the porous phase for both the early-
wood (Fig. 7(a)) and latewood (Fig. 7(a)) corresponding to the volume fractions stored in the 
3rd row in Table 1. It is evident that the present level of resolution is highly insufficient as the 
actual shape of lumens seen in Figs. 1(b,c) is not properly captured. We further observe that 
in this case the porous phase is highly connected not only in the longitudinal direction, but 
also in the transverse directions. This will have a strong effect on the prediction of effective 
diffusivities in particular to be shown next in Section 4. To get a reliable image about 3D 
microstructure would thus call for much refined resolution deliverable for small samples 
using for example the computational nano-tomography [34].

4 NUMERICAL EXAMPLES AND RESULTS
Since the principal objective of this work is to capture the influence of porosity as good as 
possible, we start from the effective properties at the cell wall level listed in Table 2.

Their derivation based on the Mori-Tanaka method is available, e.g. in [8, 9, 7, 25].4 In the 
next homogenization step the values from Table 2 represent the homogenized matrix 

4 The resulting elastic stiffnesses are found for dry wood, whereas the thermal conductivities and moisture 
 diffusivities consider a specific moisture content u = 10% and temperature q = 20°C. The latter predictions therefore 
account for the presents of water and other wood exctractives.

Figure 7: X-FEM representation of porosity: (a) Earlywood, (b) Latewood.
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properties of a porous material, the earlywood and latewood respectively. In most MT calcu-
lations the lumens are represented by an ellipsoid with semi-axes taken from [35].5 The 
discrepancies in terms of phase volume fractions evident in Fig. 4(a) and Table 1 resulted in 
relatively large differences in the MT predictions at the level of wood as seen in Fig. 8.6

To address the issue of the volume fraction of pores further, we summarize in Tables 3–4 
the predictions found at the level of earlywood and latewood from both the MT method and 
X-FEM. As for the Mori-Tanaka results, the analyses differ by the adopted volume fractions 
of pores and the shape of inclusions representing pores. The volume of pores is taken from 
2D image analysis (IA), expressions based on dry wood density (Density), and computational 
micro-tomography (µ-CT), respectively, recall Table 1. The MTE (µ-CT) and MTC (µ-CT)7 
analyses were added to examine the influence of actual microstructure by comparing the MT 
predictions and estimates delivered by X-FEM, the last two rows in Tables 3–4.

It can be noticed that the adopted geometry of the elliptical cross-section, recall Fig. 1(b,c), 
of both ellipsoidal and cylindrical inclusions yielded, particularly in case of latewood, a rel-
atively high anisotropy in MT predictions.8 However, this has not been confirmed by X-FEM 
calculations mostly attributed to a rather crude approximation of the actual 3D morphology 
of spruce wood used in this study, recall Fig. 7. While this has not proved to be so significant 
in the prediction of effective elastic moduli and thermal conductivities, see Tables 3 and 3, the 
opposite is true for moisture diffusivities evident from Table 5. Comparing the results 

5 Recall Fig. 1 to see aT = 14.85µm, aR = 18.15µm, aL = 1328.50µm for earlywood and aT = 11.05µm, aR = 1.55µm, 
aL = 1325.00µm for latewood, respectively.
6 The results correspond to two additional homogenization steps at the level of lumens and annual rings. Point out 
that at the level of lumens we adopted eqn (2). In case of elasticity the 6 × 6 matrix L2 = 0 was considered, whereas 
in case of properties the 3 × 3 matrix L2 was assumed diagonal with the diffusivity and thermal conductivity of the 
moist air equal to Dair = 2.6 × 10−5m2s−1 and lair = 0.026 Wm−1K−1, respectively. The same properties were adopted 
also in the X-FEM analysis together with the cell wall properties derived from the MT method, see Table 2.
7 In Tables 3 and 4 MTE and MTC stand for the application of ellipsoids and elliptic cylinders as representatives of 
the inclusion shape, respectively.
8 Point out that the ratio of semi-axis taken from [35] is about 1 : 7, which is much larger than the one derived 
from dry wood density amounting approximately to 1 : 2, see [16] for details.

Table 2: Effective material properties at the cell wall level.

Moduli [GPa]

EL                    ER = ET

Conductivities [Wm−1K−1]

lL                          lR = lT

Diffusivities [10−12m2s−1] 

DL                     DR = DT

25.58                  8.77 0.63                          0.35 5.65                      2.26

Table 3: Elastic moduli [GPa].

Method Earlywood

EL           ER         ET

Latewood

EL            ER          ET

MTE (IA)
MTE (Density)

14.83     3.10       2.60 
5.62       0.88       0.69

20.97      2.12        6.87 
13.55      0.64        4.14

MTE (µ-CT) 
MTC (µ-CT)
X-FEM

6.39       1.02       0.81 
6.39       1.02       0.81 
3.78       0.52       0.21

20.46      1.92        6.67 
20.46      1.92        6.67 
18.89      5.61        5.12



176 M. Šejnoha, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 7, No. 2 (2019)

Figure 8: Mori-Tanaka estimates of the effective properties of wood: (a) 
elastic moduli, (b) thermal conductivities, (c) moisture diffusivities.
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obtained by the MT method suggests high dependency of predictions of effective properties 
on the actual shape of inclusions representing pores:

•  Even a relatively large difference in volume fractions of pores for earlywood and latewood 
may eventually result in comparable values of effective properties depending on the shape 
of the inclusion cross-section, Figs. 1(b,c). For some combinations of phase porosity the 
effective properties of latewood may even exceed those for the earlywood, see the 2nd row 
in Table 5.

•  An important role plays also the selected type of inclusion no so evident for the case of 
elasticity and thermal conductivity. Despite the fact that the major axis of the ellipsoid is 
relatively large compare to its minor axes, recall the footnote No. 5, the assumption of this 
axis being infinite, as in case of elliptic cylinder, renders of the order of magnitude larger 
values of longitudinal diffusivities, compare the 3rd and 4th row in Table 5. Interestingly, 
these values are similar to the X-FEM results. This may prefer the use of cylindrical inclu-
sions to ellipsoids as the former ones may better account for the presence of pits, intercon-
nection of lumens.

5 SUMMARY AND CONCLUSIONS
Several computational approaches to the prediction of effective properties of wood were 
examined in the light of both mechanical and non-mechanical load sources. The results pro-
vided by the application of the Mori-Tanaka method only and the results derived by combining 
the Mori-Tanaka method at the level of cell wall and the XFEM calculations performed on a 
suitable RVE on mesoscale were compared. The following, rather qualitative conclusions, 
can be drawn:

Method Earlywood

lL        lR        lT

Latewood

lL        lR         lT

MTE (IA)
MTE (Density)

0.38   0.17   0.16
0.15   0.07   0.06

0.52   0.18   0.29
0.35   0.08   0.19

MTE (µ-CT) 
MTC (µ-CT) 
X-FEM 

0.18   0.08   0.07 
0.18   0.08   0.07 
0.15   0.06   0.05 

0.51   0.17   0.28 
0.51   0.17   0.28 
0.49   0.25   0.24 

Table 4: Thermal conductivities [Wm−1K−1].

Table 5: Moisture diffusivities [10−12m2s−1]

Method Earlywood

DL                       DR                DT

Latewood

DL                   DR              DT

MTE (IA)
MTE (Density)

0.3×104                 6                  5
1.5×104               18               17

1.1×104            3                 6
4.5×104            5               19

MTE (µ-CT)
MTC (µ-CT)
X-FEM

1.2×104               17                15 
1950×104            17               15 
1869×104       1604×104   1304×104 

1.3×104            3                 7
519×104           3                 7
378×104       65×104       86×104 
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•  Prediction of effective properties is highly influenced by the assumed porosity, the volume 
fraction of lumens. This is not an easy task. A quick estimate is available based on the 
dry wood density [16] with some improvements proposed in [5]. More reliable approach 
was expected from the application of computational micro-tomography. Unfortunately, 
the present measurements proved insufficient and call for improvements.

 • In case of the Mori-Tanaka method the properly chosen type and shape of the inclusion 
representing lumens plays a crucial role particularly when searching for effective mois-
ture diffusivities. Such a statement has recently been supported by the results presented 
in [5, 36].

 • To allow also for reliable quantitative conclusions requires a better formulation of RVE 
for numerical analysis and experimentally measured values of effective properties. Both 
issues are being currently addressed and the results will be presented elsewhere. Some 
initiatives can be found in [11, 5, 36].

•  Attention also deserves prediction of the microfibril angle from nanoindentation 
 measurements recently discussed in [36] with attention to the estimation of experimental 
error with the help of Bayesian inference. Such an error can be significant and may have a 
considerable effect on the final prediction of the searched effective properties.
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