
© 2017 WIT Press, www.witpress.com
ISSN: 2046-0546 (paper format), ISSN: 2046-0554 (online), http://www.witpress.com/journals
DOI: 10.2495/CMEM-V5-N5-667-677

	 T. Kratky, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 5, No. 5 (2017) 667–677

PUMP SUCTION SHAPE OPTIMIZATION USING 
A PARALLEL STOCHASTIC RADIAL BASIS 

FUNCTION METHOD

T. KRATKY1, L. ZAVADIL1 & M. TABATABAEI2

1Hydraulics Research Centre, Ltd, Lutín, Czech Republic. 
2University of Jyväskylä, Jyväskylä, Finland.

ABSTRACT
This paper deals with a shape optimization of pump suction, with the objective of improving the pump 
performance. A combination of ANSYS CFX software tools and a surrogate-based, so-called multistart 
local metric stochastic RBF (MLMSRBF) method for the global optimization of “expensive black-box 
functions” is employed. The shape of the suction is driven by 18 geometric parameters, and the cost 
functional is based on the CFD results. The practical aspects of assembling and evaluating a parametric 
CFD model, including mesh independence study, are shown. After initial design of experiment evalu-
ation, a response surface model is created and used for generating new sample points for the expensive 
CFD evaluation. Then, the whole process is repeated as long as necessary. A parallel version of the 
method is used, with necessary modifications for dealing with CFD-specific problems, such as failed 
designs and uncertainty of computational times. Both steady-state and transient models are used for the 
optimization, each with a different objective function. The resulting designs are then compared with the 
original geometry, using a complete model of the pump and fully-transient simulation. Both hydraulic 
characteristics and multiphase cavitational simulations are considered for the comparison. At the end, 
the results and challenges of using these methods for CFD-driven shape optimization are discussed.
Keywords: CFD, parallel optimization, shape optimization, stochastic RBF, surrogate-based.

1  INTRODUCTION
Employing CFD simulations for parametric studies and shape optimization is currently a 
standard part of computer-aided hydraulic design. The “usual” approach uses Design-of-
Experiment (DOE), response surface, sensitivity analysis, and possibly gradient-based 
optimization. While this routine usually works sufficiently well, it still requires a relatively 
high number of the expensive CFD computations – easily exceeding one hundred.

Some publications propose advanced surrogate-based methods for the global optimization 
of expensive “black-box” functions. Considering the computational expenses of CFD simu-
lations of pumps, it was decided to test one such method, namely, the Stochastic RBF method, 
described in Regis and Shoemaker [1, 2].

2  ORIGINAL PUMP AND OPTIMIZATION GOALS
The pump is radial with horizontally mounted shaft and spiral casing; shrouded impeller has 
six blades. The specific speed was 𝑛𝑠 = 135. To improve the suction performance, an inducer 
was developed. The hydraulic design of the inducer was based on Gulich [3]. For CFD anal-
ysis, a complete model of the pump hydraulic parts was assembled and computed using 
ANSYS CFX (Fig. 1). It included suction part, rotating inducer and impeller and stator part. 
The inflow and outflow sections were modified to improve the numerical stability of the sim-
ulation.

The meshes were a combination of structured hexahedral and tetra with prism. The CFD 
model was considered as fully-transient, with rotating inducer and impeller and rotor-stator 
interfaces. Two phases (water and water vapour) were considered and k-ω SST model was 
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used for turbulence modelling. Pressure at the inlet and mass flow at the outlet were pre-
scribed for the boundary conditions. Next, a full set of CFD computations, including NPSH3, 
was performed.

As the CFD analysis has shown, the uniformity of velocity field at the inlet part of the 
inducer was not very good. Since the suction part can be computed as stationary and thus 
relatively fast, it was decided to be a good start for implementing and testing a new optimiza-
tion method. Two goals were considered – minimizing the pressure losses of the inducer and 
making the velocity field at the suction outlet as homogenous as possible. To limit computa-
tional expenses, only the optimal flow rate was considered.

3  OPTIMIZATION

3.1  Parametric model

For the purposes of the optimization, only the suction part was considered. The geometry 
was created using ANSYS DesignModeler. Hydraulic design was based on the results of the 
original suction and general tips from Gulich [3]. In total, there were 18 geometric parame-
ters - outer wall diameter, blade length and various radii (Fig. 2). The blades were considered 
to be all the same. The inflow and outflow parts of the suction were modified for better 
numerical stability of the CFD simulation. The mesh was generated as a tetra/prism in 
ANSYS Meshing.

Figure 1:	CFD model and details of the CFD results for the suction. Colours at the interface 
show differences from the average velocity. Red means +10% (and more), blue 
-10%.
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The CFX model was set as a single-phase (water) and steady state, the boundary condi-
tions and turbulence model remained the same as for the original fully-transient model. The 
model was created as ANSYS Workbench project, but CFX definition files creations, compu-
tations and results evaluation were done in batch mode, employing custom Python codes and 
Linux shell scripts. This gave more flexibility than ANSYS Workbench. It was also much 
easier to generate the geometries and meshes for different parameter combinations and check 
errors.

3.2  Optimization method

In accordance with general recommendations in Tabatabaei et al. [4], a surrogate-based 
method was selected, namely the parallel version of stochastic RBF described in Regis and 
Shoemaker [2]. This method has a convergence guarantee to the global optimal solution in a 
probabilistic manner. It works as follows:

1.	 Generate initial DOE and compute the samples.
2.	 Use already computed samples and fit the response surface.
3.	 Generate randomly candidate points (ca. 10,000) to cover the response surface uniformly.
4.	 Select N  new points for evaluation, as a compromise between exploiting local minima of 

the response surface and exploring areas further away from the already sampled points.
5.	 Evaluate the selected points.
6.	 Repeat (2) until ending criteria are met.

N  can be selected arbitrarily, the authors recommend either 4 or 8 for optimal perfor-
mance. The response surface approximation is based on radial based function (RBF). The 
details are described in Regis and Shoemaker [1, 2], and the authors suggest this as the best 
option, especially for higher number of parameters.

Freely available Matlab codes were used and modified for usage with CFD simulations. 
The original code expects to obtain results for each black-box function call. But with CFD 
computations on the HPC cluster, there is resourcing problem. Geometry generation can fail 
for some parameter combinations. Computational times required for CFD can also differ a 

Figure 2: Visualization of selected parameters, defining the suction geometric shape.
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lot. They depend on scheduler system, CPU architecture and convergence speed. As the 
results, the objective function values are read in purely random order (or not at all). Of course, 
it is possible to guarantee results for any sample (by careful tuning of the parametric model 
+ possibly “faking” the results of failed/delayed computations). But having an optimization 
code able to deal with these problems, is much more convenient.

Thus, the original method was modified to work with something that could be called 
“pipeline”.

1.	 Generate initial DOE and compute the samples.
2.	 Use already computed samples and fit the response surface.
3.	 Generate randomly candidate points (ca. ten thousand) to cover the response surface 

uniformly.
4.	 Select N  new points for evaluation and add them to the queue.
5.	 Wait until at least one computation finishes. Then wait for a few more minutes and read 

all available results. (Due to the scheduler system nature, the results often come within 
a very short interval.)

6.	 Select k new points, where k = number of samples computed + number of samples failed. 
7.	 Add the newly selected samples to queue.
8.	 Repeat (5) until ending criteria are met.

This way, the failed samples are simply ignored, and the “slower” ones are just used once 
they finish. Because of this, there are no bottlenecks caused by waiting for “stuck” 
computations.

3.3  Design of experiment

From the beginning, the initial response surface needs to be created. Latin hypercube 
sampling, included in the available Stochastic RBF codes, was used for the DOE table 
creation. For the 18 parameters, 36 samples were created and used as an input for the 
batch processing. 31 models were successfully generated and 5 failed because of geome-
try errors. Such a failure rate was considered to be acceptable. Thus, the CFD simulations 
could be performed.

The computations run on a Linux HPC cluster, using ANSYS CFX command line options. 
The number of iterations was not fixed, but “until reasonable convergence”. For this, Linux 
shell scripts and some Python codes were used. After some preliminary testing, the evaluated 
criteria were decided like these:

H
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⋅
Total Pressure Total Pressure

Inlet Outlet
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r

v v v
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Outlet
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Unfortunately, the computation proved to be challenging for the steady-state model. The 
process of water going through the suction is dynamic by its nature, even without the rotating 
inducer and impeller. As the result, the testing has shown too strong mesh dependence. Still, 
because testing optimization method with a steady-state CFD model is much less computa-
tionally demanding, it was decided to perform more thorough testing. For the whole DOE, 
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four different meshes (ranging from ca. 100 thousand to 2 million nodes) were created, 
computed and evaluated. The details are described in Kratky et al. [5].

Based on the results, it was decided that for the H
Suction

 criterion, the relative differences 
between various geometries remain similar enough for different meshes. The velocity uni-
formity v

diff
 proved to be too unreliable (Fig. 3). Thus, despite the original assumptions, the 

objective was changed to minimizing the H
Suction

. Next, the best mesh setting was selected and 
the optimization was performed.

3.4  Optimization results

The results are typical for this method. In most cases, it is able to get an improvement from 
random search (DOE) in a few tens of samples. Considering the multiple sample computa-
tion, this usually means less than ten iterations. Further computations then do not yield any 
considerable progress (Fig. 4).

Next, for the best variants from both the DOE and the optimization, the full model was 
assembled. Then, performance and cavitational characteristics were computed (Fig. 5).

3.5  Parametric model with the inducer

As the next step, a different way of evaluating the velocity uniformity was chosen. The 
inducer was added to the model (Fig. 6), and it was considered as a transient case. Inflow 
and outflow parts were again modified due to numerical stability. The boundary conditions 
and turbulence model remained the same as in the previous case. Changing the computa-
tional model to transient increased computational demands considerably, but as a result, it 
allowed obtaining data for a meridional velocity profile at the inlet part of the inducer 
blades. Using ANSYS CFD-Post built-in functions, the Hub-to-Shroud line was defined 

Figure 3:	�Results of DOE. To show the mesh influence on designs relative performance, the 
numbers are normalized to 0 1,  interval for each mesh setting.
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and meridional velocity v
m

 was exported in multiple points. The objective function was 
then defined as:
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 is the average meridional velocity on the selected Hub-to-Shroud line. 

Number of points N  was selected as 32.
With an objective function defined like this, the optimization should yield a suction geom-

etry ensuring as a uniform fluid entrance to the inducer as possible. Supposedly, this should 
lead to better pressure distribution along the blades and slower creation of the cavitational 
areas.

Figure 4:	Objective function progress during optimization. The bold lines connect the best 
values reached.

Figure 5:	Hydraulic and cavitational performance of the optimized designs. The results are 
related to the original suction design.
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The mesh dependence was again tested with the four different suction mesh settings 
(Fig. 7), this time only with one selected design. The inducer mesh remained the same for all 
the variants.

The transient analysis is more accurate, as expected. Once again, the geometries for all the 
samples from DOE were generated and computed on an HPC cluster. Then, started from 
these results, the Stochastic RBF optimization was performed (Fig. 8).

Figure 6: Parametric CFD model with the inducer and a detail of the Hub-to-Shroud line.

Figure 7: Meridional velocity profiles on the selected Hub-to-Shroud line.
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3.6  Results of the optimization with the inducer

Quite unexpectedly, this objective function yielded inferior results to the pressure drop ver-
sion (Fig. 9 and 10). Further analysis of the results has shown that the suction shape has very 
little to no effect on the velocity profile in the middle and trailing parts of the inducer blades. 
Due to this, the shape optimization with respect to the meridional velocity uniformity has no 
effect once the cavitational areas start to develop. Lowering suction pressure drop in the suc-
tion, on the other hand, gives more NPSH reserve.

3.7  Mesh dependence tests

To judge the accuracy of the numerical simulations, the geometry from the first optimization 
(with respect to the H

Suction
) was tested on different meshes. The full set of both hydraulic and 

cavitation simulations was performed (Fig. 11). Three new variants were prepared – one with 

Figure 8:	Objective function progress during optimization. The bold lines connect the best 
values reached.

Figure 9:	Suction designs and the results of CFD analyses. The colours show differences in 
velocity profile at the suction outlet.
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coarse mesh, one with similar node count as the original one, but with different topology, and 
one refined. The node count ranged from 1.3 to 7 million, compared to the 1.9 million for the 
original mesh.

The results vary slightly for different meshes. Usually, this is caused by different mesh 
sizing on the inlet and outlet part.

Overall, the results of the numerical simulations suggest the model with suction optimized 
for H

Suction
 shows both the best efficiency and cavitational properties. Unfortunately, for 

hydraulic parameters the differences are too small to rule out the mesh-related errors. For the 
NPSH3 characteristics, on the other hand, the changes are more substantial. Also, for this 
particular pump, the head drop is very steep, as can be seen in Fig. 12. This leaves the smaller 
range of possible errors and has a positive effect on NPSH3 computation accuracy.

Figure 10:	Hydraulic and cavitational performance of the optimized designs. The results are 
related to the original suction design.

Figure 11:	Hydraulic and cavitational performance mesh dependence. The results are related 
to the original mesh.
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4  CONCLUSION
The selected method proved to be very efficient for CFD-driven shape optimization. Even for 
18 parameters, the method can both improve the objective function relatively fast and deal 
with failed samples.

In this particular case, the steady-state model yielded some results, considering the 
computational expenses. Especially the cavitational performance was improved decently. For 
the transient case, on the other hand, optimizing the suction together with the inducer would 
be probably a better option. Overall, getting more decisive improvements would require opti-
mizing different hydraulic parts of the pump. While the influence of the suction shape on the 
pump performance can be observed, it is comparable in magnitude to CFD numerical errors 
and thus problematic to optimize due to CFD accuracy.

Also, a multiobjective optimization needs to be utilized for the future cases. While the 
Stochastic RBF method is not designed for finding Pareto optimum, it can still be handled 
using scalarization approach described in Miettinen et al. [6].
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Figure 12:	Head-drop curve mesh dependence. The dotted line shows the head boost required 
by the impeller to work properly. Once the static pressure generated by the inducer 
drops below this value, the cavitational breakdown of the pump occurs.
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