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ABSTRACT
This paper presents Direct Numerical Simulation (DNS) of the falling motion of single and multiple 
deformable drops in a vertical channel. A systematic study of the wall effect on the motion of single 
drop is performed for Eötvös number (0.5≤Eo≤5), Morton number (10−3

≤M≤10-8), and confinement 
ratio CR = 2. Second, the gravity-driven motion of multiple drops and their interactions are studied 
in a periodic vertical channel for CR = 4. These simulations are performed using a multiple marker 
level-set methodology, integrated in a finite-volume framework on a collocated unstructured grid. 
Each droplet is described by a level-set function, which allows capturing multiple interfaces in the 
same control volume, avoiding the numerical merging of the droplets. Numerical algorithms for fluid 
motion and interface capturing have been developed in the context of the finite-volume and level-set 
methodology, surface tension is modeled by means of the continuous surface force approach, and the 
pressure-velocity coupling is solved using a fractional-step projection method. DNS of single drop 
shows that they migrate to the symmetry axis of the channel when the Reynolds number is low, follow-
ing a monotonic approach or damped oscillations according to the dimensionless parameters. If Eötvös 
number increases, stronger oscillations around the symmetry axis are observed. Simulations of multiple 
drops show that the collision of two drops follows the drafting-kissing tumbling (DKT) phenomenon. 
Deformable drops do not collide with the wall, whereas DKT phenomenon in the droplet swarm leads 
to the formation of groups which move through the center of the channel.
Keywords: conservative level-set method, DNS, drops, interface capturing, multiphase flow, multiple 
marker, surface tension, vertical channel

1  INTRODUCTION
Falling droplets play an important role in natural and technological processes, for instance: 
industrial jet burners, unit operations in chemical engineering such as flotation, liquid-liquid 
extraction, and absorption columns used for scrubbing of a polluted gas. Thus, the ability to 
understand and predict this type of flows is mandatory to achieve a reliable design and 
scale-up of the systems mentioned above. Furthermore, besides these practical applications, 
there are complex aspects of scientific interest such as the dynamics and stability of falling 
droplets, the generated flow field structures, and the hydrodynamics interaction of multiple 
droplets, which motivate us to study these phenomena from a fundamental point of view.

The deformation and interaction of falling droplets is a challenging fluid mechanics prob-
lem which leads to a complex and highly non-linear mathematical model, thus, using 
analytical solutions is restricted only to the simplest cases, whereas experiments can be diffi-
cult to implement due to limitations in optical instruments. On the other hand, the advances 
in supercomputers have promoted the use of high-performance computing (HPC) and direct 
numerical simulation (DNS) of interfacial flows as an emerging methodology to perform 
non-invasive and controlled experiments of droplet dynamics, with accurate control of the 
fluid particle size distribution, droplet deformability, coalescence, and flow conditions [1]. In 
the last decades, multiple methods have been introduced to model free surface and interfacial 
flows, for instance: the front tracking (FT) method [2], lattice Boltzmann method [3], 
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level-set (LS) methods [4–9], volume-of-fluid (VOF) methods [10], and coupled VOF/LS 
methods [11–13]. In these methods, the interface is captured using an Eulerian framework 
(VOF, LS, VOF/LS) or using a Lagrangian framework (FT), whereas two-phase flow is 
treated as a single flow with a smooth variation of physical properties across the fluid 
interface.

In this context, a great deal of experimental research on the motion and deformation of 
droplets has been presented by Ref. [14]. Approximate analytical solutions have been reported 
in [15–18] that studied the breakup of a liquid drop accelerated by a constant body force for 
small density ratio using the front-tracking method; Ref. [3] reported simulation of falling 
droplet using the lattice Boltzmann method; and Ref. [19] presented a numerical study of the 
lateral migration of one drop in Poiseuille flow. Recently, in Ref. [20], the wall effects on 
gravity-driven falling droplets in a two-wall vertical duct using the front-tracking method was 
researched. To the best of the authors’ knowledge, there are not yet computational studies of 
the gravity-driven falling motion of single and multiple droplets in a vertical channel with the 
square section. Moreover, since previous numerical research about the motion of single and 
multiple droplets has been performed using the front-tracking method [2], the ability, stabil-
ity, and accuracy of new methodologies such as the multiple marker CLS method introduced 
in Ref. [4] need to be proven. It is the purpose of this work to perform a systematic study of 
the dynamics of single and multiple droplets falling in a vertical channel, with the aid of the 
multiple marker CLS method introduced in Ref. [4]. An advantage of the CLS method [5, 8] 
is that accumulation of mass conservation error inherent to standard level-set formulations is 
avoided. However, one drawback of CLS, LS and VOF/LS methods is the numerical and 
potentially unphysical merging of the fluid interfaces. The multiple marker CLS methodol-
ogy overcomes the last problem, while the mass conservation errors are minimized. Indeed, 
the present research is a further step to explore the complex interaction of multiple droplets 
without numerical merging of droplets, keeping constant the number of fluid particles, and 
taken into account the physics of droplet collisions.

The present paper is organized as follows: The mathematical formulation and numerical 
methods are reviewed in Section 2. Numerical experiments are presented in Section 3. Finally, 
conclusions and future work are remarked in Section 4.

2  MATHEMATICAL MODEL AND NUMERICAL METHODS

2.1  Incompressible two-phase flow

The mathematical model used in this work has been introduced by [4–6], and here is reviewed 
for the sake of completeness. The Navier–Stokes equations for the droplet fluid in Ωd and 
continuous fluid in Ωc are written in the conservative form, into a one set of equations in the 
global domain Ω = Ω d ∪ Ωc, with a singular source term for the surface tension force at the 
interface Γ [4, 5]:

	
∂

∂
( ) +∇ ⋅( ) = −∇ +∇ ⋅ ∇ + ∇( )( ) + −( ) +

t
ρ ρ µ ρ ρ δ

σ
v vv v v g fp

T

0 Γ
. 	 (1)

	 ∇⋅ =v 0.	 (2)

where v is the velocity field, p denotes the pressure field, ρ  is the fluid density, μ is the 
dynamic viscosity, g  is the gravity acceleration, subscripts d and c are used for the dispersed 
and continuous fluids, respectively, and δ

Γ
 is the Dirac delta function concentrated at the 
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interface  Γ. Since the domain is periodic along the y-axis direction, −ρ0g  is included in the 

Navier-Stokes equations [4, 7], with ρ ρ φ ρ φ0

1
1= ( ) + −( )( )Ω

−

∫V dVd d d d  and φd  a global 

level-set function introduced in eqn. (8) [4, 6], in order to prevent the acceleration of the flow 
field in the downward vertical direction by the action of g  [4, 7]. Density and viscosity are 
constant at each fluid-phase with a jump discontinuity at the interface:

	 ρ ρ ρ µ µ µ= + −( ) = + −( )d d c d d d c dH H H H1 1 .	 (3)

where Hd  is defined as the Heaviside step function that is 1 at fluid d and 0 elsewhere. A 
continuous treatment of physical properties is adopted at the discretized level, in order to 
avoid numerical instabilities at the interface, according to the multiple marker CLS method 
introduced in Refs [4, 7].

2.2  Interface capturing and surface tension

Present computations are performed in the context of the multiple marker CLS method intro-
duced in Ref [4]. In this method, the concept of multiple marker [4, 12] is combined with the 
conservative level-set method (CLS) [8] developed by Balcázar et al. [5] for interface captur-
ing on unstructured grids. Moreover, each fluid particle is represented by a CLS function in 
order to avoid their numerical merging [4, 6]. The interface of the ith droplet is represented 
by the 0.5 iso-surface of a regularized indicator function φi [5, 8], where the sub-index 
i n= 1 2, , ..., d , and ndis the total number of droplets in the dispersed phase. Since the veloc-
ity field is incompressible, it is possible to write the ith interface transport equation in 
conservative form, as follows:

	
∂

∂

+∇ ⋅ =
φ

φ
i

it
v 0 .	 (4)

With the aim to keep a sharp and constant interface profile, a re-initialization equation is 
solved [8]:

	
∂

∂

+∇ −( ) = ∇ ⋅ ∇
φ

φ φ ε φ
i

i i i
τ

⋅ 1 ni .	 (5)

This equation is advanced in pseudo-time τ , up to achieve the steady state. The compressive 
term, φ φi i1−( )ni , with ni evaluated at τ = 0, forces the CLS function φi to be compressed 
onto the interface along the normal vector ni. The diffusion term ∇ ∇•ε φi  ensures the CLS 
profile remains of characteristic thicknessε = 0 5 0 9. .h  with h defined as the grid size [5, 7].

Geometrical properties of the interface such as normal vector ni, and curvature κ i, are 
obtained from the CLS function, as follows:

	 n ni i=
∇
∇

= −∇⋅
f
f

ki

i

i, .	 (6)

Surface tension force f
σ
δ
Γ
 is calculated using the continuous surface force model (CSF) 

introduced by Brackbill et al. [21]. This model has been extended to the multiple marker CLS 
approach in Refs [4, 6], as follows:
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Following the work of Balcázar et al. [4, 6], fluid properties in eqn. (3) are regularized using 
a global CLS function Hd d= φ , to avoid numerical instabilities at the interface:

	 φ φ φ φd nd
= …{ }max 1 2, , , . 	 (8)

2.3  Numerical methods

The numerical discretization has been introduced in our previous works [4–6], and here it is 
reviewed for the sake of completeness. The Navier–Stokes equations, eqns (1 and 2), and 
interface capturing equations, eqns (4 and 5), are solved using a finite-volume discretization of 
Ω on a collocated unstructured grid [5, 6], where both vector and scalar variables (p, v, μ, ρ) 
are stored in the cell centroids. Following Refs [5, 6], the convective term of both momentum 
equation (eqn. (1)) and interface transport equation (eqn. (4)) is explicitly calculated approx-
imating the fluxes at cell faces with a Total Variation Diminishing (TVD) Superbee flux 
limiter scheme [4, 5], in order to suppress numerical oscillations at the discontinuities and to 
minimize the numerical diffusion. TVD schemes (Superbee, Van-Leer) designed for unstruc-
tured grids in Refs [5, 6] have proved to be robust and accurate to solve two-phase flows with 
high-density ratio (O(1000)) and high-viscosity ratio (O(6000)), as well as flows with high 
Reynolds numbers involved in the motion of wobbling bubbles with topology changes [7, 
11]. Diffusive terms are centrally differenced unless otherwise stated, gradients are computed 
at cell centroids using the least-squares method [5], whereas a distance-weighted linear inter-
polation is used to find the cell face values of physical properties, gradients and interface 
normals [5]. A central difference scheme is used to discretize both compressive and diffusive 
terms of the re-initialization equation, eqn. (5) [5]. A standard fractional step projection 
method originally introduced by [23], is used for the resolution of the pressure-velocity 
coupling:
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where A vv= −∇ ⋅( )h ρ  and D v v= ∇ ⋅ ∇ + ∇( )( )h

T
µ  are explicitly evaluated, ∇( )v

T
 is cal-

culated by the least-squares method [5]. The combination of the incompressibility constraint 
∇ ⋅ =

+

h
nv 1 0 with the corrector step in eqn. (9), leads to the Poisson equation for the pressure 

field, which is solved using a preconditioned conjugate gradient method:
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A TVD Runge-Kutta method [22] is used for time integration of both advections eqn. (4) and 
re-initialization eqn. (5). Solving re-initialization eqn. (5) to steady-state leads to a smooth 
transition of φi at the interface, proportional to the diffusion coefficient, ε = 0 5 0 9. .h , with h 
defined as the grid size [5]. From the numerical experiments, it is concluded that one iteration 
per physical time step is enough to solve the re-initialization eqn. (5) for steady state, and to 
maintain a constant thickness of the CLS functions [4, 5].

The aforementioned numerical algorithms are implemented in the framework of an 
in-house parallel C++/MPI code called TermoFluids. The code is run on the supercomputer 
MareNostrum III using a range of 128–256 CPU-cores for 3D simulations of both single and 
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two droplets, up to 512 CPU-cores for 3D simulations of multiple falling droplets. The reader 
is referred to Refs [4–7, 11] for validations, verifications and further technical details on the 
finite-volume discretization of the Navier–Stokes equations, energy equation and CLS equations 
on 3D unstructured grids.

3  NUMERICAL EXPERIMENTS AND DISCUSSION
Nondimensionalization of the relevant physical quantities in the gravity-driven motion of 
bubbles and droplets can be summarized as [5, 7, 14]:

	 Mo =
g c

c

µ ρ

ρ σ

4

3

∆
, Eo =

gd 2
∆ρ

σ

, η
ρ

ρ
ρ
=

d

c

, η
µ

µ
µ
=

d

c

.	 (11)

where Mo is the Morton number, Eo is the Eötvös number, Re is the Reynolds number, η
ρ
 

is the density ratio, η
µ
 is the viscosity ratio, sub index c is used to denote the continuous fluid 

and d the droplet fluid, ∆ρ ρ ρ= −d c  and UT  is the terminal velocity of the droplet. The 
confinement ratio is defined as CR L d= / , where d is the initial droplet diameter and L is the 
characteristic length of the domain, which in square channels corresponds to the square side. 
The results are presented in terms of the dimensionless time t tg d* / /

=
−1 2 1 2 and Reynolds 

number Re t( ) = ( )⋅ρ µc x c ct de v /  where vc t( ) is the droplet velocity.

3.1  Verification and validation

The computational methods used in this work have been extensively validated against exper-
iments and numerical results from the literature [4–7, 11], for instance: 2D dam-break [5], 2D 
and 3D rising bubbles [5, 7, 11], droplet deformation in a shear flow [11], and static bubble 
[11]. Particularly, the ability of the multiple marker CLS method to capture the hydrodynam-
ics in the thin film formed during the collision of fluid particles without coalescence has been 
proven to be accurate for the droplet collision against a fluid-fluid interface [4], binary droplet 
collision with bouncing outcome [4], and thermocapillary-driven motion of fluid particles 
[6]. Therefore, this research can be considered as a further step in the understanding of the 
physics of falling droplets in a vertical channel, with the aid of the multiple marker CLS 
method introduced by [4].

The falling motion of a droplet is simulated in a circular channel with CR=8, height 
H d= 12  (y-axis) and diameter D d= 8  (x-z plane). The droplet initially located at 
x y z d, , , ,( ) = ( )0 10 0 . A non-uniform hexahedral mesh of 4 4. M control volumes is used, 

with uniform grid size h d= / 30 concentrated around the y-axis, which is aligned with the 
gravity g. The dimensionless parameters are Eo = 6 4. , Mo = ×

−1 03 10 5. , η
ρ
= 1 19.  and 

η
µ
= 0 33.  which correspond to those used in the experiment of Ref. [24]. Figure 1 shows a 

comparison of Re calculated by the CLS method [4, 5] employed in this research, against the 
results obtained using a coupled volume-of-fluid/level-set method (VOFLS) introduced in 
our previous work [11], and experimental Reynolds number reported by [24]. These results 
confirm the accuracy of the approach used in this research.

3.2  Single droplets falling in a vertical channel.

Now, the effect of the wall on the falling motion of the droplet is researched. The computa-
tional domain is a square channel with height H d= 12  (y-axis) and square side D d= 2  (x-z 
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plane), thus the confinement ratio is CR=2. A cartesian mesh of 80 80 480× ×  grid elements 
is used in present simulations, which corresponds to the grid size h d= / 40. The selected 
dimensionless parameters are Eo = { }0 5 2 5 5 0. , . , . , Mo = { }

− − − −10 10 10 105 6 7 8, , , , η
ρ
= 1 2. , 

η
µ
= 1 0. . At the beginning, both drop and continuous fluids are quiescent, whereas the drop-

let centroid is located slightly deviated from the symmetry y-axis of the channel, in the 
position x y z d d, , . , ,( ) = −( )0 125 11 0 . The imposed boundary conditions are no-slip on the 
lateral walls and periodic along the vertical direction aligned with the gravity (y-axis). 
According to previous mesh refinement studies reported in Refs [5, 7], a grid resolution 
h=d/30 is enough for the accurate simulation of buoyancy-driven rising bubbles at low and 
intermediate Reynolds numbers, O(100), whereas the grid size h=d/35 was used in Ref [4] to 
capture the thin layer formed during the collision of a droplet with a fluid interface in the 
context of the multiple marker CLS method used in this work. Thus, the grid resolution 
h=d/40 is used unless otherwise stated.

Figure 2 shows that the droplet migrates to the symmetry axis of the channel for Eo = 0 5.  
and 10 107 5− −

≤ ≤Mo ; furthermore, when the droplet achieves the symmetry axis, the lateral 
velocity *U  vanished, whereas for Mo ≤

−10 8 the droplet centroid oscillates around the y-axis. 
For Eo = 2 5.  and 10 105 6− −

≤ ≤Mo , the droplet migrates to the symmetry axis of the chan-
nel. However, damped oscillations arise before the lateral velocity *U  disappears. These 
oscillations are more evident as Mo increases for 10 8−

≤ Mo ≤
−10 7. Finally for Eo = 5 drop-

let deformation effects appear, and the trajectories in Fig. 1 shows that the droplets achieve 
an equilibrium position at the symmetry axis of the channel after few oscillations, 
10 105 6− −

≤ ≤Mo , whereas the droplet never reaches an equilibrium position for Mo ≥
−10 7. 

A chaotic behaviour is observed for Eo = 0 5.  and Mo =
−10 8. Figure 3 shows the time evolu-

tion of Re, which demonstrates that droplets achieve a non-oscillatory terminal velocity, 
except for Eo M, . , , , , ,( ) = ( ) ( ) ( ){ }

− − −2 5 10 5 10 5 108 7 8  which present oscillatory terminal 
velocities. Figure 4 depicts the vorticity e vx ⋅ ∇×( ) on the plane y-z produced by the interac-
tion of the droplets with the wall, where a turbulent flow can be distinguished for 
Eo M, ,( ) = ( )

−5 10 8 .

3.3  Two droplets falling in a vertical channel

The interaction of two droplets is investigated in this section. The spatial domain is a square 
channel with height H d= 12  (y-axis) and square side H d= 4  (x-z plane). Thus, the 

Figure 1: Eo = 6 4. , Mo = ×
−1 03 10 5. , η

ρ
= 1 19. , η

µ
= 0 33. . Re computed by CLS method [5] 

used in this work (continuous black line), VOFLS [11] (- - -), experiment of [24] 
(red line). Sphericity (ζ π φ= ∇∫∫∫d V

2 / |||| d ). Vorticity e vx ⋅ ∇×( ) on the plane y-z.
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confinement ratio is CR=4. A cartesian mesh of 160 160 480× ×  grid elements is used in the 
present research, which leads to the grid size h d= / 40. The selected dimensionless param-
eters are Eo Mo, . , , . , , . ,( ) = ( ) ( ) ( ){ }

− − −0 5 10 0 5 10 2 5 106 7 7 , η
ρ
= 1 2. , η

µ
= 1 0. . At the 

beginning, both droplets are aligned along the y-axis, whereas the droplet centroids are 
located in the positions x1 11 0= ( )0 , ,d  and x2 0 9 5 0= ( ), . ,d . The Reynolds number, cen-
troid-centroid distance (s d= −x x2 1 / ), and configuration angle θ( ) between the plane 
orthogonal to the y-axis and the vector ∆x x x= −2 1  are used to follow the motion of the 

Figure 2: The lateral migration velocity U t tx
* max= ( ) ⋅ ( ){ }e v e vc c⋅ / x  of the droplet versus 

the lateral position X x d* /= .

Figure 3: Re(t) for a single droplet at 0 5 5 10 108 5. ,≤ ≤ ≤ ≤
− −Eo Mo , CR=2.
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droplets. Figure 5 illustrates the different stages of the interaction of two droplets, which is 
similar to the so-called drafting-kissing-tumbling (DKT) mechanism reported by [10, 24]. In 
the drafting stage ( t* .= 6 3), the wake generated by the leading droplet accelerates the falling 
motion of the trailing droplet, until the trailing droplet touch the leading droplet  
( t* . , ,= { }12 5 18 8 ) during the kissing stage. Then, the droplets rotate and separate each other 
( t* {= 25.1,31.3,37.6}) in the tumbling stage. Finally, the droplets interact with the wall, but 
they do not collide with it, where a bouncing effect is observed ( t* {= 43.9,50.1}). Figure 6 
depicts the time evolution of Re, centroid-centroid distance (s) and configuration angle (θ). 
After the DKT interaction, a stable motion is achieved by the two droplets for 
Eo Mo, . , .( ) = ( )

−0 5 10 6  Moreover, the falling motion of the droplets continues with a side–
by-side configuration. As the Mo increases, for Eo Mo, . ,( ) = ( )

−0 5 10 7 , the Reynolds number 
increase and an oscillatory behaviour is observed previous the droplets achieves a steady state 
similar to the previous case. For Eo Mo, . ,( ) = ( )

−0 5 10 7 , surface tension decreases and the 
deformation of the droplets introduce more complexity to the interaction, and eventually, an 
oscillatory motion is observed after the DKT stage. These results are consistent with 
front-tracking simulations reported in Ref [20].

Figure 5: Vorticity e vx ⋅ ∇×( ) on the plane y-z and the interaction of two droplets for 
Eo Mo= =

−2 5 10 7. , , and t* . , . , . , . , . , . , . , .= { }6 3 12 5 18 8 25 1 31 3 37 6 43 9 50 1 .

Figure 4: Vorticity e vx ⋅ ∇×( ) on the plane y-z produced by the wall-droplet interaction.
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3.4  Multiple droplets falling in a vertical channel

The interaction of multiple droplets is investigated in this section. The computational domain 
and the grid configuration are same as in the previous section, with grid size h d= / 40.  
Figure 7 depicts the interaction of four droplets initially aligned on the y-axis, with cen-
troid-centroid separation 1.5d. The dimensionless parameters are Eo Mo, . ,( ) = ( )

−2 5 10 5 , 
η

ρ
= 1 2. , η

µ
= 1 0. . Complex interactions are observed for this case, but basically, these are 

also based on the DKT mechanism, in which the wake of the leading droplets attracts the 
second droplet ( .*t = 31 3). Then, the combined wake attracts the third droplet until the three 
droplets are in contact ( .*t = 31 3 ). However, the wake of these three droplets does not attract 
the fourth droplet, which moves slower that the set of droplets. The configuration of three 
droplets in contact and vertical alignment is unstable, and this arrangement breaks ( t* .= 37 6
). Finally, the four droplets separate each other ( t* .= 62 6) and continue their motion without 
colliding with the wall. Figure 8 shows that the four droplets achieve a steady-state vertical 
velocity (see Re), whereas the distance between the wall and the droplets (see X * and Y *) 

Figure 6: Interaction of two droplets. Time evolution of Re, centroid-centroid distance (
s d= −x x2 1 / ), and configuration angle θ( ).

Figure 7: Vorticity e vx ⋅ ∇×( )  on the plane y-z. Interaction of four droplets for 
Eo Mo= =

−2 5 10 5. , . (a) t* . , . , .= { }25 1 31 3 37 6 . (b) t* . , . , . , .= { }25 1 31 3 37 6 62 6 .
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tend to be constant as the time advances. Finally, Figs. 9 and 10 depict the interaction of 18 
droplets initially placed in two horizontal layers of nine droplets following a random pattern, 
for Eo Mo, . , .( ) = ( )

−2 5 10 5

In the beginning, the two droplet layers separate each other; however, one of the droplets 
separates from the group. Then, the wake interactions break the configuration of two layers, 
and the droplets begin to interact with each other following the DKT mechanism when the 

Figure 9: Vorticity e vx ⋅ ∇×( ) on the plane y-z. Interaction of four droplets for 
Eo Mo= =

−2 5 10 5. , . (a) t* . , . , .= { }37 6 75 2 112 8 . (b) t* . , . , .= { }37 6 75 2 112 8 .

Figure 10: Interaction of four droplets, Eo Mo= =
−2 5 10 5. , . Time evolution of Re, X x d* /=  

and Z z d* /= . Red line is used for the average Re.

Figure 8: Interaction of four droplets, Eo Mo= =
−2 5 10 5. , . Time evolution of Re, X x d* /=  

and Z z d* /= . Red line is used for the average Re.
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droplets approach in the vertical direction, whereas a bouncing effect is observed between the 
wall and the droplets aligned horizontally. For this flow condition, the droplets do not touch 
the wall.

4  CONCLUSIONS
In this work, Direct Numerical Simulations of falling droplets in a vertical channel have been 
performed, using the multiple marker CLS method introduced in Refs [4, 6]. These numerical 
experiments show the capacity of the method for the simulation of single and multiple drop-
lets, including their interactions and collisions, avoiding the numerical coalescence of the 
droplets. Some physical insights can be obtained from these simulations for the flow condi-
tions analysed in this work. The interaction of a single drop with the wall leads to a stable 
motion for low Eo and high Mo. As the Eo increases or Mo decreases, the interaction of the 
droplet with the wall lead to an unstable motion, due to the effects of deformability and high 
Reynolds numbers. The interaction of two droplets initially aligned in vertical positions fol-
lows the DKT mechanism. Furthermore, the same mechanism was observed in the case of 
four droplets vertically aligned. For these flow regimes, the droplets do not touch the wall, but 
a bouncing interaction was observed. These interactions are also observed in the falling 
motion of multiple droplets, in which the DKT mechanism is followed for droplets in vertical 
alignment, and bouncing effect arises for droplets in horizontal alignment. Future work 
includes the incorporation of complex transport phenomena, such as the effect of surfactants, 
gas-liquid phase change, heat and mass transfer.
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