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ABSTRACT
Pipe lines are useful for transporting water for drinking, irrigation and for fire-ing over long distances, 
this pipe lines are called “Transmission line” and are used to carry conveying raw or treated water from 
a well field or remote storage (large lake, reservoir, etc.,) facility to a treatment plant and/or distribution 
storage tank. In water-carrying piping systems, dangerous phenomena may occur. One such phenomenon 
is water hammer.

The water hammer has always been an area of study, which has captivated the minds of research-
ers due to its complex and challenging phenomena. Modeling the phenomenon in real conditions is 
extremely difficult. Due to the dimensions of the piping systems, conducting research at real scales is 
impossible. However, thanks to the development of numerical methods, the study of water hammer and 
its effects can be performed using simulation programs. Unfortunately, the simulation results are not 
always consistent with the actual course of the phenomenon.

One of the parameters that describes the nature of the course of a water hammer is the velocity of 
propagation of the pressure wave, c, which is called celerity. The transient surge pressure, p, may be 
calculated from the pressure celerity c, and the sudden change in fluid flow velocity, ∆ v. In a piping 
system, the value of the pressure wave celerity is not equal to the individual celerity, c, for a single 
pipeline. Therefore for piping systems for ∆p calculations the equivalent celerity shell be used.

This article presents value of the equivalent celerity calculated from equations derived using linear 
analysis of natural vibrations of the system. For implement of the equations, an algorithm in MAT-
LAB has been developed that allows one to easily calculate the equivalent celerity, ce, for N pipelines 
connected in series with varying diameter, length and material composition.
Keywords: equivalent celerity, long distance, numerical methods, water hammer.

1 INTRODUCTION
The effectiveness of the pipe lines for transporting water for drinking, irrigation and for 
fire-fighting is largely determined by its reliability. One of the elements that influences the 
water transport is the water supply. Water for drinking, irrigation and for fire-fighting [7] 
purposes is often transported over long distances, through piping systems of considerable 
geometrical dimensions. Such piping systems can be susceptible to the formation of fast, 
changeable phenomena. One of these phenomena is known as water hammer.

The water hammer has always been an area of study, which has captivated the minds of 
researchers due to its complex and challenging phenomena. It has been known to cause seri-
ous ruptures and losses in pipe systems. For these reasons, there are extensive studies on 
literature related to water hammer, for example [1–3, 6].

The water hammer phenomenon is usually modeled numerically. However, for the purpose 
of numerical simulation, the results still need to be verified in a physical model.
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One of the parameters describing the phenomenon of water hammer is the velocity of 
propagation of the disturbance, c, which is called celerity. This value is closely connected 
with the pipe material. For steel pipes, it is assumed that this value reaches 1,280 m/s, and for 
plastic pipes, c = 390 m/s. The value of celerity c, in turn, determines the maximum pressure 
increase caused by the passing water hammer wave. As already mentioned, for piping sys-
tems with a constant internal diameter, the celerity of the pressure wave is related to the 
material of the pipe walls. However, for piping systems with different diameters, the value of 
celerity c cannot be determined based only on the wall material of the pipes.

Using natural vibration analysis to calculate the equivalent celerity ce, it is possible to esti-
mate the basic parameters of water hammer in a fast and easy way, and among other things, the 
expected maximum pressure increase. This, in turn, can translate into a fast verification of the 
proposed piping system for estimating the water hammer phenomenon as a function of con-
nected pipes of different diameters, different lengths and different material compositions. To 
facilitate the use of the equations, an algorithm implemented in MATLAB has been presented 
that allows specifying the value of the equivalent celerity ce for any number of connected 
pipes.

2 THE ESSENCE OF THE WATER HAMMER PHENOMENON
To simulate the water hammer phenomenon, linear analysis methods can be used, provided 
that the pulsing in the relevant system is a periodic motion. This is confirmed by harmonic 
analysis of the phenomenon, using the classical oscillation equations, and limiting it to the 
case of damped natural vibrations (Wrona in 1969, Potter 1982). Vibrations are periodic 
movements in which all points of the vibrating system repeatedly return to the initial state 
after a fixed time interval. The simplest vibrating motion is the harmonic motion. Any peri-
odic vibration can be formed by the superposition of the basic harmonic vibrations of the 
same period and in a limited case from an infinite number of higher harmonic vibrations of 
appropriately selected amplitudes and phases. Vibrations triggered by the action of a single 
pulse are natural vibrations. An example of this type of vibration is the water hammer formed 
under the influence of a single pulse, such as, for example, the sudden closure of a valve.

In an attempt to predict certain parameters of the water hammer phenomenon, one can use 
a theory based on the natural vibrations of the system utilizing the equations of fluid 
mechanics.

Often, when using equations governing the variable flow of liquid in the pipeline system, 
the solution reduces to a function of time. Thus, the analysis is limited only to a temporary 
state or the method of triggering this state. According to harmonic analysis of the water ham-
mer phenomenon, a variable flow may sometimes be referred to as periodically pulsing or 
showing its own vibration. With such a description of the phenomenon, the solution of the 
equations allows one to determine the frequency (i.e., one can search for solutions directly 
specifying a steady pulsation cycle). In this case, achieving a uniform rate of the pulsation 
cycle is important.

Frequency-dependent factors, such as friction or wave celerity, have a major impact on 
the dynamic behavior of liquids in pulsating conditions as a result of extraordinary energy 
dissipation or due to fluctuations of wave celerity.

Borrowing methods from the theory of linear vibrations requires reducing the equations 
describing the course of the phenomenon to a linear form (Pipes, 1958). To this end, the dif-
ferential equation of motion and continuity is adopted in simplified form, i.e., it is assumed 
that the average flow parameters are “constant”. Thus, their derivatives are both zero, and the 
friction is reduced to a linear form.
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The basic formula for further investigations were equations [5, 8]:

Motion equation gH VV V g
f V V

Dx x t+ + + =sinα
2

0  (1)

Continuity equation (derived by T.P. Propson) VH H V
a

g
Vx t x+ − + =sinα
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0 (2)

After simplifying and making above equations Q and H dependent, we get respectively [5]:
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where: H – piezometric head [m] of the liquid column, Q – volumetric flow rate [m3/s],  
λ – multiplication factor of the friction element [-], n – power exponent [-], D – pipeline 
diameter [m], A – pipeline cross-section area [m2], c – wave head speed in water hammer 
[m/s], g – acceleration due to gravity [m/s2].

If in equation (3) the loss factor 
λQ

gDA

n

n2
is omitted, equations (3) and (4) take the form of 

the formulas given by Allevi in 1913. However, in the presented discussions the equations (3) 
and (4) were used to analyse system’s free vibrations, which allowed to partially take into 
account the influence of losses on the parameters of the water hammer (the calculated fre-
quency of the equivalent celerity is influenced by the frequency of the ω oscillation of the 
system).

The use of these equations in the linear vibration analysis after the introduction of the 
hyperbolic functions allows the derivation of equations describing the amount of pressure 
and flow as a function of position in the pipeline:

 H x H x Z Q xU C U( ) = −cosh sinhγ γ   (5)

 Q x
H

Z
x QU

C
U( ) =− +sinh coshγ γ   (6)

where: index U – means the beginning of the pipeline, Q and H as in eqns (3) and (4), ZC – 
resistivity determined for the liquid in a specific pipeline. Characteristic impedance ZC can 
also be found in other methods used to analyze the water hammer phenomenon such as: 
Impedance Method or Transfer Matrix Method.

Eqns (5) and (6) are equations of pressure and flow transfer. Using the above equations 
allows computing (after appropriate substitutions and transformations) the equivalent 
celerity thanks to the linking of pipe properties (Ai, ci, Li) with the natural frequency of the 
system. As will be shown, the use of the method of natural vibration provides a simple 
solution to this problem. Further discussion will focus on the serial connection of two and 
three pipes made of different materials and for different ratios of diameters and lengths of 
connected sections.

For the correct solution of the issue, a correct definition of the boundary conditions of 
system operation is important.
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Figure 1 shows an example of a serial connection of two pipes. According to the presented 
scheme, the boundary conditions are as follows:

 HD1 = HU1 and QD1 = QU2, (7)

where index U indicates the beginning of the pipeline and index D indicates the end of the 
pipeline.

Where: U – upstream, D – downstream, H – pressure value in the given section, Q – flow 
value in the given section, H0R – static pressure in the tank.

For any point of the pipe, an equation for the transfer of pressure and flow can be written 
as given in eqns (5) and (6).

Using the boundary conditions and the fact that the pipes are serially connected, the 
following equation can be obtained:

 − =
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where ZC – resistivity Z
CsC =
γ

, C – constant, passive capacitive reactance [m], s – perma-

nent, complex frequency (Laplace transform) [-] s = σ +iω, σ – real part, iω – imaginary part, 
γ – propagation constant of disturbance γ 2

= +( )Cs L s Rb , Lb – passive inertial resistance  
[s2/m3], R – resistivity of the pipeline per unit of length. In further consideration, component 
R was omitted. This is not, however, equivalent to completely excluding the influence of 
losses on the water hammer parameters, but merely reducing the impact.

To obtain only the dependencies between geometric parameters of the connected pipes and 
the vibration frequency of the entire system from the equation above, adequate substitutions 
for ZC and γ must be made.

For this purpose, it should be noted that if the vibration pulsation has a regular amplitude 
at each point x of the hydraulic system, the size of the real part of s must be zero.

After several appropriate substituting and transformations final equations can be  
derived:
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Figure 1: Scheme of a serial connection of two pipes.
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Solving the equation above with regard to ω, the equivalent celerity of the pressure wave c 
for the entire pipeline may be determined. Because the entire period of a complete cycle, 2T, 
amounts to hence:

 2
4 2

T
L

c
= =

π

ω

  (10)

 c L=
2
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ω   (11)

where L = L1 + L2, is length of the entire pipeline.
It should be noted that using the dependency (eqn. 9) substantially simplifies and speeds 

up the computation of the equivalent celerity of pressure oscillation changes upon reaching 
the natural vibrations of the system. Eqn (9) is only true for a system consisting of two pipes. 
The analysis of natural vibration oscillations for three pipes connected in series requires the 
derivation of a new dependency:
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Similarly, as was the case with two pipes, the solution of the equation with respect to ω 
allows for the computation of the equivalent celerity ce.

3 NUMERICAL VERIFICATION
For implement of the equations, an algorithm in MATLAB software package (version 2016) 
has been developed that allows one to easily calculate the equivalent celerity, ce (for MAT-
LAB calculation ce = C), for N pipelines connected in series with varying diameter, length 
and material composition. A function was implemented that allows the determination of ω 
and the equivalent celerity of the pressure wave C for any number of pipes, based on pipe 
parameters. This function has the following form:

function [Omega, C] = pipes(c, l, A, start_fzero, script_name)

Function arguments:

•  c – celerity in the given individual pipe (in the form of a line vector, with parameters for 
all pipes);

 • l – length of individual pipe (in the form of a line vector, with parameters for all pipes);

 • A – cross section of the given pipe (in the form of a line vector, with parameters for all pipes);

 • start_fzero – starting point to find a solution by means of the MATLAB function fzero();

•  script_name – name of script, into which the sequence of executed commands might be saved.

The function returns two parameters:

•  Omega – omega value for the system;

•  C – equivalent celerity of the pressure wave for the entire system.

In the first step, the size of vectors c, l and A is verified in order to determine the number of 
pipes (ref. N) composing the system. If the number of elements in individual vectors is not 
equal, the function returns an error.
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The essential transformation is performed using symbolic computation (syms package, 
Symbolic MATLAB Toolbox). First, a starting point in form of two equations is assumed:

 H Q Z lD U C1 1 1 1 1=− sinhγ   (13)

 Q Q lD U1 1 1 1= coshγ  (14)

with symbolic variables HD1 and QD1.
Then, iteratively for steps k=2 … N-1, new symbolic variables and substitutions are made:

 HUk=HDk-1 (15)

 QUk = QDk-1 (16)

 H H l Q Z lDk Uk k k Uk Ck k k= −cosh sinhγ γ   (17)

 Q
H

Z
l Q lDk

Uk

Ck
k k Uk k k= − +sinh coshγ γ  (18)

The last step (N) includes the creation of further symbolic variables and final substitutions:

 HUN=HDN-1 (19)

 QUN = QDN-1 (20)

 Q
H

Z
l Q lDN

UN

CN
N N UN N N= − +sinh coshγ γ  (21)

In this manner, the expression QDN is obtained, containing one variable. Using matlabFunction(), 
the expression is converted into a handle, which is then used in function fzero() with the parame-
ter start_fzero. The function fzero() finds the closest zero of a function relative to the starting point 
start_fzero.

After determining the zero of a function, the additional parameter C returned by the 
function as well as the determined value of Omega is calculated.

The flowchart of the resolving algorithm is shown in Fig. 2.
Example of calling the function:
c=[390 390 390 390];
L=[30 30 30 30];
A=[ 0.063*0.063*pi 0.050*0.050*pi 0.032*0.032*pi 0.020*0.020*pi];
[omega, C]=pipes(c,L,A,1,pipes4.m’).

4 MAXIMUM PRESSURE INCREASE ESTIMATION IN WATER HAMMER
However not only equivalent celerity is important for designers, engineers or users of the pipe 
network, but first of all possible maximum pressure increase caused by water hammer. The 
pressure increase can be easily calculated by using equivalent celerity.

Joukowski equation can be use for pressure increase calculation [5]:

 ∆P = ρ ce ∆V (22)

Dimensions: F=Force, L=Length, M=Mass, T=Time
ce = equivalent celerity [L/T].
∆P = Maximum pipe pressure increase in water hammer phenomenon [F/L2].
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∆V = Change in velocity in water hammer [L/T].
ρ = Fluid density [M/L3].

To confirm validity of numerical calculations of equivalent celerity, compliance of calcu-
lated pressure increases series of measurements was done. In the article few schemes was 
shown (Table 1).

The measurements was conducted for straight pipes of various lengths, diameters, and 
material configurations. Each time, the pipes were fixed to the base in a way that prevented 
any displacement.

The measurements was conducted in accordance with the following assumptions:

1. Measurements and analysis has been concerned a simple water hammer
2. The experience was performed at 281°K
3. The pressure characteristics were measured in four measuring sections on the pipeline: 

at the downstream near the ball valve, at the change of the cross-sections area of the con-
nected in series pipes; as a control point, pressure was also measured in the middle of the 
pipeline just behind the tank

4. Pressure was measured by using a system consisting of a strain gauge set, extensometers 
amplifier (ZEP-101) and a computer with AD/DA.

5. Pressure values were measured with a time step of 5μs
6. Pressure gauges have linear operating characteristics with a correlation coefficient of 

more than 0.999

Figure 2: Algorithm flowchart.
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7. Measurement range of gauges 1.2 MPa and 2 MPa
8. Steady motion parameters before the water hammer appear were also measured
9. The initial pressure was chosen to prevent the occurrence of cavitations during a water 

hammer
10. Each measurement had calculated measurement error

As a result of the experiments, the characteristics of the pressure change caused by water 
hammer wave propagation were obtained and recorded. Only two example characteristics for 
two configuration of the same pipes are shown below (Figs. 3 & 4).

On the presented charts, the following symbols were adopted:

∆ p - first pressure increase caused by water hammer;
pż - pressure increase calculated based on Joukowski formula;
∆ pmax - maximum pressure increase observed during water hammer phenomenon.

Table 1: Schema examples (S – steel pipes; P – PVC)

Schemas Seria L1 [m] L2 [m] D1 [mm] D2 [mm]
D

L
1

1

L
D

2
2

S1S2 26.45 21.20 42.0 35.0
P1P2 24.00 24.00 40.8 32.6
P1P4 24.25 25.00 40.8 20.4

L

D

L

2

2

D
1

1 S2S1 26.45 21.20 35.0 42.0
P2P1 24.00 24.00 40.8 32.6
P4P1 24.25 25.00 40.8 20.4

D

L
1

1

L

D

L
4

2

2

D
4

P1P2P3
All pipes have the same 

length L = 12.00 m

D1 
[mm]

D2  
[mm]

D4 
[mm]

L

2
D

2
LL

D D

4 1

4 1

P3P2P1 42 35 21

Figure 3: Pressure characteristics for three measuring sections for a steel pipe S1S2.
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For the investigated schemes, the equivalent celerity ce was calculated using the MATLAB 
algorithm and then the pressure increase was calculated according to the eqn. (22). Calcu-
lated pressure values were compared with values obtained with the real characteristics. In 
addition, the maximum recorded pressure increase was read from the real characteristics. The 
results are summarized in Table 2.

As can be seen, a satisfactory correspondence between the values of ∆p calculated from the 
eqn (22) by using the equivalent celerity and the pressure increase obtained from the real 
pressure characteristic (Figs. 3 & 4). Noteworthy is the case, for which the diameters are set 
in ascending order. The calculated value ∆p is equal to the measured value but this is not the 
maximum recorded pressure increase (Fig. 4).

The use of the algorithm for the real water supply system in the capital city Warsaw Poland 
is presented below (Fig. 5). Calculations were made for one case.

Calculations for real pipeline, Warsaw, Poland.

Table 2: Summary of calculated and measured parameters

Series ce [m/s] tZ [s] Vo [m/s] ∆p [bar] ∆pobl [bar] ∆pmax [bar]

S1S2 1320 0.020 0.520 6.80 6.86 6.80
P1P2 435 0.034 1.160 5.06 5.04 5.06
P1P4 523 0.031 1.390 7.25 7.27 7.25
S2S1 1155 0.021 0.203 2.27 2.34 3.94
P2P1 350 0.033 0.950 3.30 3.32 4.35
P4P1 225 0.035 0.810 1.80 1.83 5.60
P1P2P3 458 0.028 0.917 4.20 4.19 4.20
P3P2P1 288 0.033 1.200 3.50 3.47 6.50

where: ce – equivalent celerity; tz – closing time of the ball valve; Vo – average velocity for 
steady flow; ∆p – pressure obtained from the real characteristics; ∆pobl – Pressure calculated 
for the equivalent celerity from the eqn (22); ∆pmax – maximum pressure obtained from the 
real characteristics.

Figure 4: Pressure characteristics for three measuring sections for a steel pipe S2S1.
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The case (Detail A, Fig. 6) shows a pipe system with two different materials (PVC, Steel) 
and two different diameters, whose calculation are shown in the Table 3.

5 SUMMARY
This paper shows an algorithm in MATLAB allows for an easy calculation of the equiva-
lent celerity of the water hammer wave for any configuration of the series of connected 

Figure 5: Warsaw water distribution network.

Figure 6: Detail A.

Table 3: Input pipe parameters A.

Pipe symbols D0 [mm] Theoretic c [m/s] L [m]

P1 600 390 243.06
S1 500 1280 480.96

Results for configuration S1P1: ω = 2.1667, C = 998.670 m/s, Q = 620 m3/h, ∆ p = 8.763 bar.
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pipes: diameter, length, material. The natural vibration analysis equations was used in MAT-
LAB algorithm for a quick estimation of the equivalent celerity for a piping system made of 
different materials. The equations for manual calculation presented in this article include two 
and three pipe systems connected in series. For the calculations of any number of serially 
connected pipes of varying diameter, length, and material composition, a MATLAB algo-
rithm has been presented. To calculate the equivalent celerity in any mixed system of serially 
connected pipes, it is enough to know the individual celerity for a given material, diameter, 
length and alignment sequence of the connected pipes. The accuracy of the obtained compu-
tations falls within common accuracy limits of engineering computation. Using the analysis 
of natural vibrations, one can create in an analogous manner an algorithm for a series of 
connected pipes with disbursements along the way. Using the algorithm will speed up the 
design process and facilitate the supervision of safety control water supply systems, such as 
those for fire prevention purposes (and far more).

Calculations of maximum pressure increase for decreasing diameter configurations give 
satisfactory compliance of numerical values and measured from real pressure 
characteristics.

For other diameter configurations, compatibility is also satisfactory, but this is not the 
maximum increase recorded during model measurements [4]. Further research should be 
made to find an algorithm that calculates the maximum pressure increase.
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