
© 2016 WIT Press, www.witpress.com
ISSN: 2046-0546 (paper format), ISSN: 2046-0554 (online), http://www.witpress.com/journals
DOI: 10.2495/CMEM-V4-N4-543-553

	 D.G. Pavlou, Int. J. Comp. Meth. and Exp. Meas., Vol. 4, No. 4 (2016) 543–553

FLOW-INDUCED INSTABILITY OF MULTI-LAYERED 
ANISOTROPIC PIPELINES
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ABSTRACT
A numerical formulation of flow-induced instability modelling of laminated anisotropic pipelines is 
derived. The analysis is based on fluid-structure interaction equations and FEA. Taking into account the 
flow parameters and the material properties, critical flow velocities causing instability are calculated for 
fibre-reinforced polymeric (FRP) pipelines resting on elastic supports. A parametric study of the effect 
of fibre orientation, stiffness of elastic supports and span length between supports is carried out. The 
results are commented and discussed.
Keywords:critical velocity,FEA, flow induced instability, laminated pipelines.

1  INTRODUCTION
In the last decade, there is a rapid increase of the use of fibre-reinforced polymeric materials 
(FRP) in pipeline installations. Their superior behaviour (Fig. 1) in corroded environment 
and fatigue loading as well as their high strength and low density, decrease significantly the 
maintenance cost of pipelines made from FRP materials [1–3]. Apart from the benefits on 
maintenance issues, the high stiffness of the laminated pipe wall yields superior mechanical 
behaviour in flow-induced instability conditions. Since the fluid-flow causes compressive 
axial forces [4–6], high values of the bending stiffness increase the critical values of flow 
velocity and improve the structural integrity of the pipeline. Until today, most of the existing 
theoretical tools for flow-induced instability analysis have been developed for steel pipe-
lines [7]. However, the above methodologies cannot be applied to FRP pipelines due to the 
anisotropy of their material. In the present work, finite element (FE) analysis is carried out for 
critical flow velocity estimation of filament wound, multi-layered FRP pipelines resting on 
elastic supports.

2  MOTION EQUATION OF MULTI-LAYERED FILAMENT WOUND FRP PIPES
Taking into account the interaction of the pipe wall with the fluid (Fig. 2), the motion equation 
of filament wound FRP pipe is given by:

	 S
w x t

x
MU

w x t

x
MU

w x t

x t
M m

w x t
eq

∂

∂

+
∂

∂

+
∂

∂ ∂

+ +
∂

4

4
2

2

2

2 2

2
( , ) ( , ) ( , )

( )
( , ))

∂

=

t2
0 � (1)

where M, m are the mass per unit length for the liquid and the pipe’s material respectively, U 
is the mean velocity of the liquid, w(x,t) is the elastic deflection of the pipe, and Seq is the 
equivalent bending stiffness of the pipe for bending moment calculation, i.e.

	 M x S
d w

dxeq
( ) =

2

2
� (2)



544	 D.G. Pavlou, Int. J. Comp. Meth. and Exp. Meas., Vol. 4, No. 4 (2016)

given by [8, 9]
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In the above equations M(x) is the bending moment, and D is the diameter of the pipe. The 
parameters α11, d11 can be calculated by the inversion of the stiffness matrix [ABD] of the 

Figure 1: Advantages of the use of FRP materials in pipeline installations.

Figure 2: Interaction of the pipe wall with the fluid.
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laminate [8, 9]. Their values depend on the mechanical properties E1, E2, G12, ν12 in the prin-
cipal directions, as well as on the fibre orientation angle ϑ. Trying [10] into the above equation 
the solution

	 w x t u x ei t( , ) Re ( )= [ ]ω � (4)

the following formula can be obtained:
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3  ELEMENT EQUATION OF A PIPE SEGMENT
Following a standard mathematical procedure the differential eqn (5) can be transformed to 
the following matrix differential equation of the first order:

	
d
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Therefore, the solution of the matrix eqn (6) can be written:

	 Y e YL
2 1{ } = { }[ ] .Ω � (9)

where L is the length of the pipe segment 1-2 and
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Taking into account the following relations of solid mechanics

	 ϑ( ) ( )x u x= ′ � (12)

	 m( ) u ( )x S x
eq
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where ϑ( ), ( ), ( )x m x f x  is the slope, bending moment and shear force distribution, the matrix 
eqn (9) can now be written in the following form:
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Let’s assume that the matrix exponential e L[ ]Ω  is expressed by the following matrix
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Performing some rearrangements in eqn (15), the following expression can be obtained:
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where
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Therefore, the following equation for a segment 1–2 can be derived:
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where

	 k F U[ ] = [ ] [ ]
−1

� (21)

4  PIPELINE RESTING ON ELASTIC SUPPORTS
Let’s assume a pipeline resting on equispaced elastic supports (Fig. 3). The elastic supports 
can be linear axial springs with elastic constant ka and linear torsional springs with elastic 
constants kt. Since the length and the material properties of all pipe segments are equal, the 
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eqn (20) represents the element equation of each pipe element. Let’s express the eqn (20) for 
two successive nodes i,j in the following form:
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Expansion of the above equation in global coordinates for any individual element i-j and 
superposition of the expanded element equations of all pipeline segments yield:
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or in an abbreviated form:
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The above equation can also be written as
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Figure 3: Nodes of a periodically multi-supported pipeline resting on elastic supports.
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Equation (25) is a 2Nx2N algebraic system with respect to the following 4N unknowns
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In order the algebraic system provided by eqn (25) to be solvable, it should be completed 
by 2N more equations. Let’s consider the multi-supported pipeline demonstrated in the Fig. 3. 
The boundary conditions for this example are
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The above boundary conditions can be written in the following matrix form:
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The combination of eqns (25)and (28) yields the following 4Nx4N algebraic system:
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The condition for non-trivial solution of the eqn (31) is:
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The above equation can be solved numerically, providing the values of ω versus the values 
of U. Critical are the values of U yielding the transition of Im{ω} from a positive value (sta-
bility) to a negative one (instability).

5  IMPLEMENTATION IN A REPRESENTATIVE EXAMPLE
An S-Glass/Epoxy pipeline is resting on three linear equispaced springs with values 
ka = 50 Kn/m and kt = 114 KNm/rad, respectively (Fig. 4). The interior diameter of the pipe-
line is D = 0.10 m and the laminated wall is composed of N = 50 layers with thickness 
0.15 mm. The material properties in the principal directions of each layer are E1=39 GPa, 
E2 = 8.6 GPa, G12 = 3.8 GPa, ν12 = 0.2, and the masses per unit length m and M have values 

Figure 4: S-Glass/epoxy filament wound pipeline resting on a linear spring.
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m = 4.94 Kg/m and M = 7.85 Kg/m. With the aid of the procedure described in the Fig. 5 the 
effect on the value of the critical flow velocity of the span between supports, fibre orientation 
and value of springs’ elastic constant is going to be estimated. Taking into account the mate-
rial data, the [abd] matrix [8, 9] can be initially obtained for ϑ = ±30, 45, 60 deg. Then, the 
parameter Seq can be calculated by the eqn (3).The vectors {d} and {F} contain the following 
nodal displacements and forces corresponding to the example of Fig. 4:

	 d u u u{ } = { }1 1 2 2 3 3
ϑ ϑ ϑ � (33)

Figure 5: Procedure for derivation of critical flow velocity.
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Figure 6:	�Critical flow velocity versus span length for a pipeline supported on axial or both 
axial and torsional springs: (a) Fibre orientation angle ϑ = ±π/6, (b) Fibre orientation 
angle ϑ = ±π/4, (c) Fibre orientation angle ϑ = ±π/3.
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The boundary conditions are incorporated in the matrices [A] and [B]:
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The matrix [G] can be obtained by the implementation of eqn (23) to the considered exam-
ple. Therefore, its members contain functions of the variables U and ω. Using the matrices 
[A], [B], [G], the eqn (32) can be derived yielding a correlation of U versus ω. For three 
values of fibre orientation angle ϑ = ±π/6, π/4, π/3 rad, the eqn (32) is solved numerically 
for a pipeline containing: (a) only axial springs, and (b) axial and torsional springs. For both 
cases, the solution is performed for three values of span length L = 10, 15, 20 m. Starting 
from a small initial value U = 1.0 m/s for the flow velocity which is changed incrementally 
with step 1.0 m/s, the eigen-frequency ω is calculated using the standard commercial pro-
gram Mathematica®. The critical flow velocity values corresponding to the transition of 
Im{ω} from a positive value (stability) to a negative one (instability) are demonstrated in the 
Fig. 6a–c. It should be noted that the numerical results indicated many changes of Im{ω} 
from positive to negative values. Therefore, the pipeline has more than one critical flow 
velocities. In the Fig.5a–c, only the first critical flow velocity is adopted.

6  CONCLUSIONS
According to the above results the following main conclusions can be obtained:

(a)	 Short span length yields an increase of the critical flow speed, thus improving the 
dynamic stability of the pipeline.

(b)	 For the smallest fibre orientation angle ϑ = ±π/6, the critical flow velocity increases 
smoothly for small values of span length. For higher values of the fibre orientation angle 
ϑ = ±π/4, ±π/3 the increase of the critical flow velocity for small span length is rapid. 
This behaviour can be justified by the fact that small values of fibre orientation angle 
increase significantly the bending stiffness of the pipeline, and therefore dominate its 
dynamic stability.

(c)	 The superposition of both axial and torsional springs shifts upwards the curve of the 
critical fluid velocity vs span length. Since small fibre orientation angles dominate the 
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bending stiffness, the effect of axial and torsional springs is small for ϑ = ±π/6 and con-
siderable for ϑ = ±π/4 and ±π/3. For the last fibre orientation values, the value of critical 
flow velocity tends to be saturated for long span length.

(d)	 For large values of span length there is a divergence between the curves of Axial and 
Axial-Torsional springs for ϑ = ±π/6,while for ϑ = ±π/3 there is a convergence. There-
fore, for flexible pipelines (ϑ = ±π/6)the dynamic stability is dominated by the span 
length, while for stiff pipelines (ϑ = ±π/3) the dynamic stability is dominated by the 
fibre orientation angle.
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