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ABSTRACT
A multi-agent route choice learning model for the microscopic simulation-based dynamic traffic as-
signment (DTA) is used to investigate the effects of traffic information accuracy on drivers’ day-to-day 
route choice decisions. Using the total relative gap convergence metric to quantify the convergence 
speed for some chosen update cycle length intervals, the results show that a slight decrease in accuracy 
has a negative effect on the rate of convergence. From a learning perspective, shorter information up-
date cycles from an advanced traveller information system induce faster convergence when compared 
to longer information update cycles. This implies that drivers learn faster, given the additional compu-
tational and storage costs of travel information that the system is willing to invest in. Moreover, when 
the update cycle length is very long, it produces a worse result compared to a scenario where drivers 
rely only on their own travel experiences based on the routes they have chosen.
Keywords: ATIS, day-to-day route choice, simulation-based DTA

1  INTRODUCTION
Each driver makes a decision based on his knowledge of the available alternative routes and 
their attributes subject to time and cognitive capacity constraints. A driver’s decision depends 
on whether traffic information regarding available alternatives are provided. Without infor-
mation, drivers’ choices will be based on the knowledge they have gained from their past 
choices.

Traffic information is usually provided by an advanced traveller information system (ATIS) 
which operates through information supplied entirely within vehicles and/or traffic manage-
ment centres (TMCs). ATIS is designed to assist drivers in making better route choice deci-
sions by providing information regarding other alternative routes. Information can either be 
(i) descriptive such as information regarding prevailing conditions like current travel times 
which can be provided pre-trip, (ii) prescriptive such as suggestions of the path with the 
shortest travel time to a destination and (iii) feedback such as the historical records of travel 
times on chosen and non-chosen routes.

Experiments concerning the impact of information on drivers’ route choice decisions 
have also been carried out by researchers. For example, repeated choice experiments were 
conducted by Avineri and Prasker [1] where they provided respondents with static pre-trip 
information regarding average expected travel times and feedback information about their 
chosen alternative. They showed that informed respondents preferred reliable routes com-
pared to the non-informed respondents. Similarly, Ben-Elia et al. [2] conducted experiments 
where they provided respondents with dynamic en-route information describing the ranges 
of travel times. Their result was the opposite of the result by Avineri and Prasker as informed 
respondents preferred shorter and riskier routes. Concerning feedback information, Bogers 
et al. [3] showed that respondents who were provided with information regarding all alterna-
tive routes performed better than the respondents who used only experiential information. 
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However, both benefits of the dynamic en-route and feedback information decreased as more 
experience was accumulated. Using all three types of information discussed above, Ben-Elia 
et al. [4] conducted route choice experiments to account for travel time uncertainty and infor-
mation accuracy in an attempt to empirically investigate how information accuracy affects 
drivers’ route choice decisions. Their results suggest that prescriptive information has the 
largest behavioural impact followed by descriptive information and then experiential feed-
back information.

Theoretical frameworks have also been proposed where ‘rational’ drivers are assumed to 
be maximizing their utility by choosing the best perceived route using random utility models 
[5, 6]. These models usually assume that each driver has knowledge of the entire network 
provided by the system. Another approach is to consider drivers to be individual decision-
makers with ‘bounded-rationality’ which ‘learns’ the network performance by repeatedly 
interacting with the other drivers using the network [7]. The assumption is either that (i) 
prescriptive information is provided to ‘informed-users’ [8] or noisy feedback information 
is provided to ‘partially informed users’ (PIUs) by a TMC [9] or that (ii) experiential infor-
mation is gathered by ‘naïve users’ (NUs) [10]. The classification of drivers into informed, 
PIUs and NUs by the authors was based on the interactive experiment performed by Selten 
et al. [11].

From a learning perspective following Peque et al. [9], we are interested in how informa-
tion accuracy affects drivers’ route choice decisions and how this subsequently affects the 
equilibrium solution such as its rate of convergence among others. Specifically, we want to 
investigate how drivers’ route choice decisions are affected by different update cycle lengths 
provided by an ATIS in a simulation-based dynamic traffic assignment (DTA) and compare it 
with a scenario where drivers use only their day-to-day experiences. We analyse these effects 
using the total relative gap which is a convergence metric based on route travel times.

This article is structured as follows. In the next section, we introduce some notation, defini-
tions and preliminary ideas presented in this article, then in Section 3, the adaptive learning 
algorithm and microscopic traffic simulator that will be used for the DTA is introduced. In 
Section 4, results and analysis of some numerical examples are presented. In the last section, 
we present our conclusion.

2  PRELIMINARIES
In this section, we will introduce some notation and preliminary ideas used in this article.

2.1  Drivers as individual decision-makers

Peque et al. [9] introduced the concept of PIUs and NUs where drivers are assumed to make 
route choice decisions independently. These users selfishly choose their routes to minimize 
the travel times from their origins to their destinations by interacting with the other users 
repeatedly as if they are playing a game. Thus, a driver may sometimes be referred to as a 
decision-maker, a user, a traveller or a player.

PIUs are types of drivers that can acquire travel information, such as travel times from an 
ATIS provided by a TMC, to make route choice decisions. The behavioural assumption for 
PIUs is that they solely rely on this information and are aware that this information might 
be noisy. This information is in the form of route travel time feedback information for all 
routes to their destinations from the previous day (e.g. previous iteration or previous stage). 
Additionally, PIUs are assumed to have bounded rationality which implies that drivers want 
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to maximize their payoffs (e.g. choose a route with the minimum travel time to their des-
tination), but their decisions are limited only to the information they can acquire and their 
memory capacity. On the other hand, NUs are types of drivers that can only acquire infor-
mation of a route by actually using it. These types of users use their experiences to build 
assessments about available routes to their destinations and are more constrained compared 
to PIUs. 

More formally, let us refer to a driver as a player, i I∈ , who has a set of actions (routes), 
A a a ai i

k
i

m
i= … …{ }1 , , , , . A player’s realized payoff for choosing an action a Ai i∈  is given by,

			   U a u a ai i i i i i( ) = ( ) + ( ) ,� (1)

where I  is the set of players, u ai i( )  is the payoff for choosing action ai  and  i ia( )  is a 
random term assumed to have an unknown distribution, zero mean and bounded variance. 
A PIU can acquire U ai i( )  for all a Ai i∈  because an ATIS provides them with these infor-
mation. On the other hand, an NU can only acquire U ai i( )  for ai  if they have chosen ai . 
Similar assumptions proposed above have been used before such as the models by Horowitz 
[12]. Horowitz proposed a stochastic model where the route travel times have dependent 
and independent random terms. In the same paper, he also proposed a model where drivers 
can only acquire information about the routes that they have actually used. A closely related 
model is the traditional stochastic user equilibrium (SUE) model [13, 14] which has a similar 
form as eqn (1). However, in the traditional SUE model, all players have the same estimated 
payoff values for each action which implies that all players have the same route choice prob-
abilities. Contrarily, our model assumes that players form individual action value estimates 
for each of their actions. Additionally, the traditional SUE model assumes that the probability 
distribution of the random term is known.

Now, consider a discrete time process of vectors Ut t{ } >0
. At stage t , each player, having 

observed the past realizations U Ut1 1, ,…{ }− , chooses an action k Ai∈ . Each player’s objective 
is then to maximize the expected payoff defined by,
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by selecting an action repeatedly. The probability that a player i  chooses an action k  at time 
t  is represented by the mixed strategy, π t

i
t
i ik a k( )  = = ∈Pr Σ . A (mixed) Nash equilib-

rium is achieved when each player plays a best response to the opponents’ strategies so that,

			   u ui i i i i i i iπ π π π π* * *, , ,− −( ) ≥ ( ) ∀ ∈Σ .� (3)

An  −  Nash equilibrium of a game is then defined as an action profile that satisfies the 
condition,

u ui i i i i i i iπ π π π π* * *, , , ,− −( ) ≥ ( ) − > ∀ ∈  0 Σ^ .� (4)

In transportation, the payoff is usually assumed to be related to the route travel times. Since 
routes are made up of links, route travel times can be decomposed into link travel times which 
are functions of link flows. More formally, let us define the flow conservation equations. 
For simplicity, we restrict our attention to a single-origin destination (OD) transportation 
network connected by several routes. The action set of each player corresponds to the set 
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of available routes in their OD. Path (route) flows are denoted by an m-dimensional vector 
h h h hk m= … …( )1, , , , . Let L  be a set of links, fl{ }  be the flow on the link l L∈  and δ l k,{ }  
an element of the link–path incidence matrix. A visit to a path, k , at time t  by a player is 
described by the indicator function,  ⋅{}, whose value is 1 if the statement in the parenthesis 
is true and 0 otherwise. Then, the cumulative and relative frequencies of visit up to time t are 
given by,

		  Z a kk t
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and the aggregated path and link flows at time t  are defined as follows:
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In our approach, a link delay function is not necessary. However, if the realized link travel 
time at time t , Cl t, , is necessary, then the payoff for path k  would be given by

			   U C Fk t
i

l L
l k

i
l t l, , ,= − +( )

∈
∑δ ω ,� (7)

where ω i  and Fl  denote the value of time for player i  and the fare imposed on link l L∈ , 
repectively.

2.2  Travel information

Travel information sent by the TMC to the drivers in the network through the ATIS is assumed 
to be collected by traffic detectors in each link at the end of each update cycle in each itera-
tion. The TMC processes current information and sends it to the ATIS as feedback informa-
tion for the driver. The feedback information received by each driver are averaged route travel 
times from his/her origin to his/her destination which depends on his/her departure time and 
the duration of his/her travel in the previous day. This is shown in Fig. 1.

The description and Fig. 1 is only applicable to the PIUs. For the NUs, it is much simpler. 
NUs only use the exact travel time of the route they have used and have no information of the 

Figure 1:  PIUs averaged travel times based on their update cycle length (author’s own con-
struction).
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travel times for their alternative routes. Both the PIUs and NUs then use an adaptive learning 
process, which will be described in Section 3, to estimate their route travel times and update 
their route choice probabilities.

2.3  Convergence metric

Although the stopping criterion that will be used during the traffic simulation is the number 
of iterations, a convergence metric is used to measure the effects of different update cycle 
lengths on the rate of convergence. The metric is called the total relative gap [15] which 
quantifies how close the solution is to equilibrium. Its measure reflects the summation of the 
differences between the average route travel times and minimum route travel times. More 
formally, the total relative gap is given by,
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where tψ  is the ψ th update cycle at stage t, ω  is the OD pair in the in the OD pair set Ω, k  is 
a route in the route set Kω∈Ω, f ktψ ( ) is the flow on route k  at tψ , F t

ω
ψ  is the total flow in OD 

pair ω  at tψ  and c ktψ ( )  is the experienced route travel time on route k  at tψ . The intuition 
behind the total relative gap is that if all used routes have travel times very close to the short-
est route travel time, the total relative gap will be close to zero. In most DTA applications, the 
solution is assumed to have converged to an equilibrium solution when the total relative gap 
is less than a pre-specified tolerance level. Since the total relative gap measures experienced 
route travel times, this is only applicable to the NU case. For each PIU case (e.g. different 
update cycle lengths), an approximate total relative gap is used to quantify this effect on driv-
ers’ route choice decisions. The approximate total relative gap averages the route travel times 
of each driver in the range of update cycles it belongs to while the driver was in the network 
as shown in Fig. 1. Thus, varying accuracy of route travel times will be acquired based on the 
length of the update cycles.

3  THE LEARNING ALGORITHM

3.1  The basic elements of the algorithm

In order to solve eqn (2), each player adaptively learns in two steps. The first step is the payoff 
estimation called the payoff learning where he/she updates his/her route travel time estimates 
based on his/her experience or based on the online information provided by the TMC through 
the ATIS. At each stage, a player creates an assessment of the payoff performance of their 
actions, which necessitates the use of the stochastic approximation theory to conduct the 
assessment. 

The payoff dynamics for NUs are generally defined by the following updating equations:

		  Q Q a k U Q k Ak t
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For the PIUs, it reduces to a simpler form
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where λt t{ } >0
 is a deterministic system satisfying the conditions
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diminishes and the effects of the random terms eventually vanish as t →∞ . In general, 
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, |→ =   with probability 1 if each player uses an  − greedy action selection 
strategy [16]. A player’s estimated expected payoff for selecting the action a Ai i∈  is defined 
as 
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Then, the average regret of a player defined as R a U r a Qt
i i
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i i
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eventually vanishes as t →∞.
The second step is the updating of route choice probabilities based on the route travel time 

estimates given by eqns (9a–9c) and (10) in the first step. It is the so-called strategy learning 
and is redundant for a stationary process, though it is inevitable for a non-stationary process. 
The combined payoff learning and strategy learning utilized in this article is called an actor-
critic process which belongs to a general class of adaptive processes called the generalized 
weakened fictitious play (GWFP) [17]. Since there is no assumption on the distribution of 
the random term, there is no explicit relation between a player’s payoff and mixed strategy. 
Hence, a model-free [18] or an  -greedy approach [19] is effective in this case. An -greedy 
approach is where the action with the highest estimated payoff is selected with probability 
1−( )t  while the other actions are selected with probability t  where 1 0> >t . An impor-

tant feature in these approaches is for each action to be selected infinitely often to main-
tain accurate payoff estimates. Chapman et al. [19] applied an  -greedy action selection to 
Q-learning fictitious play which belongs to the class of GWFP. We slightly use a different 
approach by defining players’ action probabilities as

		  π α π α βt
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Since µt
i → 0  as t →∞ , the choice probability of selecting the best action of each player is 

expected to asymptotically approach 1. This implies that all actions always have a positive 
probability of being chosen and thus will be selected infinitely often to maintain accurate 
payoff estimates.

3.2  The multi-agent Q-learning algorithm

We now integrate the entire process mentioned in Section 3.1 into a single process.

1.	 Initialization: At time t = 0 , each player randomly selects the action, at
i . 

2.	 Perform the traffic simulation: Each player receives the payoff Ut
i  based on:
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	 i.	 For NUs: Their actual experienced travel time.
	 ii.	 For PIUs: The information given by the ATIS.
3.	 Payoff learning: Payoff estimation is performed according to eqn (9b for PIUs and 9a for 

NUs).
4.	 Strategy learning: Strategy updating is performed according to eqn (11a–11b).
5.	 Action selection: Each player selects an action based on πt

i .
6.	 Stopping criterion: Repeat steps 2–5 until a stopping criterion is met.

3.3  The dynamic traffic assignment

The DTA is conducted using the simulation of urban mobility (SUMO) microscopic traffic 
simulator and the adaptive learning, including route choice, is performed using eqns (9a–9c) 
and (11a–11b) as shown in Fig. 2. 

SUMO uses a continuous version of the cellular automaton model [20] which was first 
proposed for single lanes by Ref. [21]. A cellular automaton model, commonly known as the 
Nasch model, is an extremely simplified program for the simulation of complex transporta-
tion systems where the road is subdivided into discrete cells of similar sizes. Each cell is 
empty or occupied by one vehicle, with discrete speed v  varying from zero to vmax , where 
vmax  is the maximum (or desired) speed of the vehicle. A cell only exchanges transported 
units with its neighbouring cells directly within one time step. In a Nasch model, the motion 
of each vehicle, i , is described by the following rules:

1.	 Acceleration: if v vi
max
i< , then v vi i= +1

2.	 Deceleration: if vi >  gapv
i
, then vi =  gapv

i
, where gapv

i
 is the vehicle gap

3.	 Randomization: if vi > 0, then v vi i= −1  with braking probability pb
i

4.	 Movement: x x vi= + , where x  is the length of each cell

The braking probability represents the rate of speed reduction of a vehicle even when there is 
no vehicle in front of it. Krauß [20] extended this by using a notion of safe velocity to restrict 
vehicles from sudden stops which occurs in the Nasch model. Although Krauß’s model is 
more general and realistic, it involves floating point arithmetic and division which makes it 
slower than the Nasch model.

Figure 2:  Simulation-based DTA with SUMO (author’s own construction).



	 Genaro Peque et al., Int. J. Transp. Dev. Integr., Vol. 2, No. 4 (2018)� 349

4  NUMERICAL SIMULATION
In this section, the settings and results from the numerical simulations will be shown and 
discussed.

4.1  Numerical simulation settings

The numerical simulation was carried out using a modified Sioux Falls network shown in Fig. 3.
The modified Sioux Falls network is made up of 14 nodes, 42 links and 48 OD pairs. There 

are 34,000 travellers distributed uniformly at random on all OD pairs with fixed departure 
times. The PIU cases were carried out for 100 iterations, each using update cycle lengths 
300, 500, and 5,000 simulation seconds where the 300 update cycle length is used as the 
baseline for comparison. Similarly, 100 iterations were used for the NU case. Moreover, a 
value of η =1 and ρ =1 was used for both the PIU and NU cases.

4.2  Numerical simulation results

In the simulation, we measured the mean link and route travel times. Figure 4 shows the link 
and route information for OD pair 15 which is composed of the OD nodes 2 and 13, respec-
tively. It shows that although the route travel times differ in the first 20 iterations, it suddenly 
dropped to a level where it became stable. It can be noticed that the route count is actually 
steadily increasing which implies that it was the effect of the other ODs rather than the effect 
of drivers changing routes abruptly within OD 15. Additionally, it also shows that the vehi-
cles did choose the route with the lowest travel time which is route 47.

From the perspective of the drivers, Fig. 5 shows that the mean route probability is asymp-
totically converging to 1. Additionally, the effect of the other ODs on the average payoff, Ū, 
of the drivers can be observed. It shows that even when most drivers in OD 15 have correctly 
chosen route 47 which has the lowest travel time, the route changes by the other drivers in the 
other ODs affected the travel times of some links in this route.

Figure 6 shows how the update cycle length affects the convergence of the drivers’ route 
choices. The 300 update cycle length shows a faster rate of convergence than the rest of the 
PIU cases including the NU case. Moreover, a slight increase in the update cycle length (i.e. 

Figure 3: A modified Sioux Falls network (author’s own construction).
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Figure 4: Link and route information for OD 15 of a PIU case with 300 update cycle length 
(author’s own construction). 

Figure 5: Vehicle information for OD 15 of a PIU case with 300 update cycle length (author’s 
own construction).

from 300 to 500 simulation seconds) negatively affected the rate of convergence of the DTA. 
Interestingly, the PIU case with a 5,000 update cycle performed worse than the NU case. This 
implies that drivers are better off using their own experiences to make route choices when the 
traffic information provided to them is highly inaccurate. However, as experience is gained 
by both the PIUs and the NUs, the differences between them decreases.
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5  CONCLUSION
Using a microscopic traffic simulator and an adaptive learning algorithm, we have shown the 
effects of traffic information on drivers’ day-to-day route choice decisions. Simulation results 
show that the rate of convergence of the DTA is affected by the information that is given to 
drivers in the network. Additionally, it shows that a slight decrease in the accuracy of traffic 
information has a negative effect on the rate of convergence. Furthermore, simulation results 
show that it is better for drivers in the network to rely on their experiences rather than follow a 
highly inaccurate traffic information. However, our results also show that as more experience 
is gained by both the PIUs and NUs, the benefits of traffic information decreases since in all 
cases the total relative gap is decreasing as the number of iterations increased.
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