
© 2016 WIT Press, www.witpress.com
ISSN: 2046-0546 (paper format), ISSN: 2046-0554 (online), http://www.witpress.com/journals
DOI: 10.2495/CMEM-V4-N4-454-463

	 J.K. Stajnko, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 4, No. 4 (2016) 454–463

NUMERICAL SIMULATION OF CONVECTIVE FLOW 
IN A NON-DARCY POROUS CAVITY FILLED WITH 

NANOFLUID

J. KRAMER STAJNKO1, R. JECL1 & J. RAVNIK2

1Faculty of Civil Engineering, Transportation Engineering and Architecture, University of Maribor, Slovenia.
2Faculty of Mechanical Engineering, University of Maribor, Slovenia.

ABSTRACT
Suspensions of nanoscale particles and fluids have been recently subject of intense research, since it 
was proved that they considerably improve heat transfer capabilities of the fluid which can be crucial 
in several technological processes. Several applications can be found in the field of porous media flow, 
such as oil recovery systems, thermal and geothermal energy, nuclear reactors cooling. Since nanoflu-
ids are a mixture of a solid and fluid phase, in general, the two phase mathematical model would be the 
most appropriate to use. However, due to very small size of nanoparticles (1–100 nm) can be assumed, 
that they behave as a water molecule and a single phase model along with empirical correlations for 
nanofluid properties can be used. In the present study a convective flow through porous cavity fully 
saturated with nanofluid is analyzed in detail using the single phase mathematical model based on the 
Navier-Stokes equations taking into account the non-Darcy parameters. The mathematical model is 
written at a macroscopic level enabling the simulation of the porous media flow. The solutions are 
obtained with the in house numerical code based on the Boundary Element Method, which was already 
proved to have some unique advantages when considering fluid flow problems in different configura-
tions. The effects of the presence of different types of nanoparticles as well as the porous matrix were 
investigated in detail for different values of governing parameters in order to examine the improved 
heat transfer characteristics of added nanoparticles.
Keywords: boundary element method, Darcy-Brinkman-Forchheimer formulation, nanofluids, porous 
medium flow

1  INTRODUCTION
The phenomena of convection in a fluid saturated porous media has been a subject of intense 
research in last several decades due to many applications in contemporary technologies such 
as building insulation systems, geothermal engineering, pollutant transport in underground, 
nuclear energy systems, just to name a few. Effective cooling and heating techniques are 
important in many engineering applications and are very limited using conventional fluids, 
such as water, engine oil or ethylene glycol mixtures. To enhance heat transfer or cooling 
processes it is desirable to combine fluids with a material which proves high thermal conduc-
tivity. The combination of fluid with small particles (nanoparticles) of metal appreciably 
improves the heat transfer characteristics of fluid while other properties remain the same. The 
idea of nanofluids was first introduced by Choi and Estman [1]. Later, many theoretical and 
experimental studies have been published where suitable models for effective thermal con-
ductivity as well as the viscosity of nanofluid were developed. A comprehensive review of 
existing studies was published by Kakac and Pramuanjaroenkij [2] and Haddad et al. [3].

The mathematical models for nanofluids are generally based on the single-phase or two-
phase approach. The single phase approach predicts the thermal equilibrium of the fluid 
phase and solid particles. It is also assumed that the fluid and solid particles have same local 
velocities. This assumption is valid only if the solid particles are small enough (< 1–100 nm) 
and at low concentration of nanoparticles (2.5%–5%). In that case the solid-liquid mixture 
can be considered as a single-phase fluid with modified properties e.g. density, specific heat, 
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thermal conductivity. A single-phase nanofluid model was first developed by Tiwari and Das 
[4] and was recently used in porous media applications e.g. in, [5, 6]. On the other hand, the 
nanofluids are two-phase mixtures in general, and two-phase model is a more accurate choice 
to describe transport processes. This type of model was proposed by Buongiorno [7] and 
predicts the interaction of the fluid and solid particles, Brownian forces, Brownian diffusion, 
sedimentation and dispersion. Recently the model was used on some porous media applica-
tions in [8, 9].

In the present paper, the single-phase nanofluid mathematical model was used to analyze 
natural convection phenomena in porous enclosure. The extended porous media model with 
Dracy-Brinkman-Forchheimer momentum equation was used to simulate porous media flow. 
In order to efficiently solve the governing set of partial differential equations, the Boundary 
Element Method based numerical code was used as proposed in [10, 11]. Therefore the gov-
erning set of equations is transformed into a velocity-vorticity formulation. The numerical 
code was already used for several applications of pure fluid flow [12, 13], as well as porous 
media applications [14, 15]. Several numerical results are presented in order to analyze the 
influence of nanofluid in combination with porous media on heat transfer and fluid flow char-
acteristics.

2  PROBLEM DEFINITION AND GOVERNING EQUATIONS
The natural convection phenomena of nanofluids were simulated on a problem of two-dimen-
sional porous square cavity, where the vertical walls are maintained at different temperatures 
(Fig. 1). The corresponding boundary conditions for the problem are:
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where T is temperature, Th and Tc are constant temperatures on the hot and cold wall respec-
tively. Horizontal walls are assumed to be adiabatic ∂ ∂ =T y/ 0 and non-slip boundary 
condition is prescribed on all walls.

Further assumptions are, that the solid matrix of porous medium is isotropic, homogenous 
and in thermal equilibrium with the fluid phase, which is a suspension of water and nanopar-
ticles. In this study, Cu spherical nanoparticles were considered with thermophysical 
properties given in Table 1. The nanofluid properties are calculated with relationships to pure 
fluid and pure solid properties, and are linked with the solid volume fraction of nanoparticles, 
j = Vs/(Vs + Vf), where Vs and Vf are volume of solid particles and volume of fluid respec-
tively. The nanofluid properties are calculated by the following expressions [3] (index f stands 
for the fluid phase and s for the solid phase):

•  the effective density of nanofluid rnf :

	 ρ ϕ ρ ϕρnf f s= − +( ) ,1 	 (2)
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•• the effective dynamic viscosity mnf , Brinkman model [17]:

	 µ
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•• the heat capacitance (cp)nf:

	 ( ) ( )( ) ( ) ,ρ ϕ ρ ϕ ρc c cp nf p f p s= − +1  	 (4)

•• the thermal expansion coefficient bnf:

	 ( ) ( )( ) ( ) ,ρβ ϕ ρβ ϕ ρβnf f s= − +1 	 (5)

•• the effective thermal conductivity knf, Wasp model [18]:
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Figure 1: Computational domain with boundary conditions.

Table 1: Thermophysical properties of water and Cu solid nanoparticles [16].

Cp [J/kgK] r [kg/m3] k [W/mK] β [× 10−5K−1] α [×10−7m2/s]

Water 4,179 997.1 0.613 21 1.47
Cu 385 8,933 400 1.67 1,163
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To describe the natural convection phenomena in porous media domain the mathematical 
model based on the conservation equations for mass, momentum and energy is used, suit-
able average over the representative elementary volume (REV) [19]. Macroscopic 
equations for nanofluid flow in porous media domain are:

•  Continuity equation:

	
� �
∇⋅ =v 0,	 (7)

•• Momentum equation:
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•• Energy equation:
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with following parameters: 
�
v volume averaged velocity vector, ϕ porosity, t time, p fluid 

pressure, T temperature, 
�
g gravitational acceleration, K permeability, F Forchheimer 

coefficient. In energy equation σ is the specific heat ratio σ φ φ ρ ρ= + −( )( ) / ( )1 c cp p nf , 
where (rcp)p and (rcp)nf are heat capacitances of porous medium and nanofluid, respectively, 
and ke is the effective conductivity of porous medium. In this study the thermal properties of 
solid matrix and the nanofluid are considered to be identical, resulting in σ = 1 and ke = knf as 
this is common practice [6, 20].

A Brinkman-Forchheimer momentum equation is used with the additional Brinkman vis-
cous term and the Forchheimer inertial term describing the nonlinear influences at higher 
velocities [21].

The equations are transformed into a non-dimensional form using the following dimen-
sionless parameters:
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where 
�
v  is volume averaged velocity vector, v0 is a characteristic velocity given with an 

expression v0 = kf/(rcp)f L, kf is fluid thermal conductivity, (rcp)f is heat capacity for fluid 
phase and L is the characteristic length (e.g. length of one side of square cavity), 

�
r  is. More-

over, T0 is characteristic temperature T0 = (T2 − T1)/2, where ∆T is characteristic temperature 
difference ∆T = T2 − T1, p0 is characteristic pressure p0 = 1bar, while gravitational accelera-
tion is g0 = 9.81 m/s2. Furthermore, the velocity-vorticity formulation is proposed by defining 
the vorticity vector as a curl of the velocity field 

� � �
ω = ∇× v which separates the computa-

tional scheme into a kinematic and kinetic computational parts. The kinematic part is 
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governed with the velocity equation which is obtained from the mass conservation law (7) 
and reads as:

	 ∇ +∇× =
2 0
� � �
v ω .	 11

The kinetic part is governed by the energy and the vorticity transport equation, which is 
derived by taking the curl of the momentum eqn (8). The equations in the non-dimensional 
form are given as:
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where anf is the thermal diffusivity of nanofluid anf = knf /(rcp)nf and af thermal diffusivity of 
pure fluid af = kf/(rcp)f. Since in this study only steady flow fields are considered, the time 
derivatives in the vorticity and energy equations, ∂ ∂

�
ω / t , ∂ ∂T t/ , are omitted.

The non-dimensional parameters in the governing equations are defined as: fluid Rayleigh 
number RaT = gbT ∆TL3rf(rcp)/mfkf, Prandtl number Pr = mfcp/kf, Darcy number Da = K/L2, 
porosity ϕ.

3  NUMERICAL METHOD
The algorithm, which solves the governing set of equations is based on the boundary element 
method, and solves the velocity-vorticity formulation of Navier-Stokes equations by a com-
bination of single-domain and sub-domain BEM. All governing equations are written in an 
integral form which is obtained by using the Green’s second identity for the unknown field 
function and for the fundamental solution of the Laplace equation [12, 13]. The integral form 
of all governing equations is given in [14] and is omitted in this paper.

At the beginning the boundary conditions of Dirichlet or Neumann type must be known. In 
this study, on all solid walls the no-slip boundary conditions and temperature or temperature 
flux are prescribed. The boundary conditions for vorticity are calculated as a part of the algo-
rithm. The outline of the algorithm is as follows:

1.	 Calculation of nanofluid material properties using models (2)–(6).
2.	 Determination of porous media properties.
3.	 Calculation of unknown field functions:

•• Vorticity values on the boundary by single domain BEM from the kinematic  
eqn (11).

•• Velocity values in the domain by sub-domain BEM from the kinematic eqn (11).

•• Temperature values in the domain by sub-domain BEM from the energy eqn (13).

•• Vorticity values in the domain by sub-domain BEM from the vorticy transport eqn 
(12).

4.	 Convegence check; all steps are repeated until the required accuracy is achieved.
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4  RESULTS AND DISCUSSION
The proposed numerical code was first validated by a comparison with the results published 
by Nguyen et al. [6], for a case of porous cavity saturated with the Cu-nanofluid. The results 
are presented in terms of average heat transfer given with the Nusselt number defined as an 

integral of the temperature flux through a wall: Nu k k T ndnf f= ∇ ⋅∫/
� �

Γ
Γ

. The present and 

reference results are given in Table 2 for Prandtl number Pr = 6.2, solid volume fraction 
(j = 0.0,0.025, 0.05) and other governing parameters (porous Rayleigh number Rap, Darcy 
number Da, and porosity ϕ). Good agreement between the result can be obtained. Further-
more, computations for several different governing parameters have been carried out in order 
to analyze the influence of different governing parameters on the fluid flow and heat transfer 
in porous cavity. Figure 2 represents isotherms for Cu-water nanofluid at porosity φ = 0.4 and 

Table 2: Validation of the numerical code by a comparison of average Nu for a natural con-
vection in porous media saturated with a nanofluid (Pr = 6.2) for different governing 
parameters.

j = 0.05

ϕ = 0.4 ϕ = 0.6 ϕ = 0.9

Da Rap [6] Present [6] Present [6] Present

10−2 1,000 3.433 3.400 3.850 3.826 4.162 4.145
10−4 1,000 9.117 9.132 9.590 9.743 9.901 10.154
10−6 1,000 11.778 12.991 11.899 13.128 11.976 13.195

ϕ = 0.4

j = 0.0 j = 0.025 j = 0.05

10−2 10 1.007 1.008 1.081 1.083 1.160 1.162
10−2 1,000 3.302 3.282 3.370 3.345 3.433 3.400
10−6 1,000 11.867 13.238 11.847 13.131 11.778 12.991

Figure 2: �Temperature contour plots for ϕ = 0.4, Rap = 1,000 and various Da; solid lines 
j = 0.0, dotted lines j = 0.025, dashed lines j = 0.05.
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Rap = 1,000 under different values of Da and j. Solid lines correspond to y = 0.0, dotted lines 
to j = 0.025 and dashed lines to j = 0.05. Thin boundary layers can be observed near the hot 
and cold walls, while the isotherms in the core region become almost horizontal and parallel 
to adiabatic and impermeable walls. The temperature field reveals that the decrease of Da 
enhances heat transfer through cavity; the Da number is influencing the magnitude of the 

Figure 3: Streamlines for ϕ = 0.4, j = 0.05, Rap = 1,000 and various Da.

Figure 4: �Average Nu for Cu-water nanofluid depending on solid volume fraction j for 
different values of Rap and Da: (a) Da = 10−2, (b) Da = 10−4, (c) Da = 10−6 and (d) 
Rap = 1,000; (ϕ = 0.4).
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Darcy term in the momentum eqn (12). With the increase of Da the flow regime is transited 
into the Darcy flow regime, which is close to the Darcy’s law.

The addition of the nanoparticles into the base fluid seem to result in an attenuation of the 
convective motion inside the porous cavity. However, the overall heat transfer remains the 
same, since the main convective cell with upwards flows along the hot wall and downward 
flows along the cold wall is conserved.

The streamlines for ϕ = 0.4 and j = 0.05 are shown in Fig. 3. The flow field consists of 
single circulation flow in the clockwise direction as a result of the applied horizontal temper-
ature difference. With a decrease of Da, the circulation becomes extended along the 
horizontal axis and the boundary layers become more significant.

The dependence of the solid volume fraction on the average heat transfer at different Rap 
and Da numbers is shown in Fig. 4. When conduction is a dominant heat transfer mechanism, 
Da = 10−2, the heat transfer enhancement due to the increase of the solid volume fraction is 
more evident (Fig. 4a). The addition of nanoparticles into the base fluid enhances the thermal 
conductivity which results in higher values of Nusselt number. Moreover, the average Nu 
increases with increase of Rap. With decrease of Da < 10−4, the Nu values no longer increase 
with j (Fig. 4b and c). In that case, convection becomes the dominant heat transfer mecha-
nism and is suppressed by the addition of nanoparticles into the base fluid and further 
enhancement of heat transfer rate is limited. When Rap = 1,000, it is obvious, that increase of 
j leads to higher Nu when Da is high, while at low values of Da average Nu decreases along 
with the j (Fig. 4d).

5  CONCLUSION
Natural convection phenomena of nanofluids in a porous media domain have been solved 
numerically using the BEM base numerical algorithm. A single phase mathematical model 
was used to describe the flow and heat transfer of nanofluids in porous media, while the 
Brinkman-Forchheimer momentum equation is used to describe the conservation of momen-
tum. The influence of added Cu-nanoparticles into the base fluid on possible heat transfer 
enhancement was investigated, specially the volume fraction of nanoparticles, as well as 
different porous media properties.

In general, the addition of nanoparticles into the base fluid results in higher heat conductiv-
ity but it suppresses the natural convection phenomena. In case of non-Darcy regime, the heat 
transfer enhancement due to added nanoparticles is obvious which results in higher values of 
Nusselt number. However, in case of lower values of Da, when the model is approaching to 
the Darcy regime, the overall heat transfer is decreasing with the addition of nanoparticles.

REFERENCES
  [1]	 Choi, S.U.S. & Eastman, J.A., Enhancing thermal conductivity of fluids with nanopar-

ticles. ASME International Mechanical Engineering Congress Exposition, San Fran-
cisco, CA, 1995.

  [2]	 Kakac, S. & Pramuanjaroenkij, A., Review of convective heat transfer enhancement with 
nanofluids. International Journal of Heat and Mass Transfer, 52, pp. 3187–3196, 2009.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.02.006

  [3]	 Haddad, Z., Oztop, H.F., Abu-Nada, E. & Mataoui, A., A review on natural convec-
tive heat transfer of nanofluids. Renewable and Sustainable Energy Reviews, 16(7),  
pp. 5363–5378, 2012.
http://dx.doi.org/10.1016/j.rser.2012.04.003

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.02.006

http://dx.doi.org/10.1016/j.rser.2012.04.003



462	 J.K. Stajnko, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 4, No. 4 (2016)

  [4]	 Tiwari, R.K. & Das, M.K., Heat transfer augmentation in a two-sided lid driven dif-
ferentially heated square cavity utilizing nanofluids. International Journal of Heat and 
Mass Transfer, 50(9–10), pp. 2002–2018, 2007.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.09.034

  [5]	 Sheremet, M.A., Grosan, T. & Pop, O., Free convection in a square cavity filled with a 
porous medium saturated by nanofluid using Tiwari and Das’ nanofluid model. Trans-
port in Porous Media, 106, pp. 595–610, 2015.
http://dx.doi.org/10.1007/s11242-014-0415-3

  [6]	 Nguyen, M.T., Aly, A.M. & Lee, S.W., Natural convection in a non-darcy porous cavity 
filled with Cu-water nanofluid using the characteristic-based split procedure in finite-
element method. Numerical Heat Transfer, A: Applications, 67, pp. 224–247, 2015.
http://dx.doi.org/10.1080/10407782.2014.923225

  [7]	 Buongiorno, J., Convective transport in nanofluids. Journal of Heat Transfer, 128, pp. 
240–250, 2006.
http://dx.doi.org/10.1115/1.2150834

  [8]	 Sheremet, M.A. & Pop, I., Conjugate natural convection in a square porous cavity filled 
by a nanofluid using Buongiorno’s mathematical model. International Journal of Heat 
and Mass Transfer, 79, pp. 137–145, 2014.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.07.092

  [9]	 Gro§an, T., Revnic, C., Pop, I. & Ingham, D.B., Free convection heat transfer in a 
square cavity filled with a porous medium saturated by a nanofluid. International Jour-
nal of Heat and Mass Transfer, 87, pp. 36–41, 2015.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.03.078

[10]	 Ramsak, M., Skerget, L., Hribersek, M. & Zunic, Z., A multidomain boundary element 
method for unsteady laminar flow using stream function vorticity equations. Engineer-
ing Analysis with Bound Elements, 29, pp. 1–14, 2005.
http://dx.doi.org/10.1016/j.enganabound.2004.09.002

[11]	 Ravnik, J., Skerget, L. & Hribersek, M., Analysis of three-dimensional natural convec-
tion of nanofluids by BEM. Engineering Analysis with Boundary Elements, 34, pp. 
1018–1030, 2010.
http://dx.doi.org/10.1016/j.enganabound.2010.06.019

[12]	 Ravnik, J., Skerget, L. & Zunic, Z., Velocity-vorticity formulation for 3D natural con-
vection in an inclined enclosure by BEM. International Journal of Heat and Mass 
Transfer, 51, pp. 4517–4527, 2008.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.01.018

[13]	 Ravnik, J., Skerget, L. & Zunic, Z., Combined single domain and subdomain BEM 
for 3D laminar viscous flow. Engineering Analysis with Boundary Elements, 33, pp. 
420–424, 2009.
http://dx.doi.org/10.1016/j.enganabound.2008.06.006

[14]	 Kramer, J., Ravnik, J., Jecl, R. & Skerget, L., Simulation of 3D flow in porous media 
by boundary element method. Engineering Analysis with Boundary Elements, 35, pp. 
1256–1264, 2011.
http://dx.doi.org/10.1016/j.enganabound.2011.06.002

[15]	 Kramer, J., Ravnik, J., Jecl, R. & Skerget, L., Three-dimensional double-diffusive 
natural convection with opposing buoyancy effects in porous enclosure by boundary 
element method. International Journal of Computational Methods and Experimental 
Measurements, 1, pp. 103–115, 2013.
http://dx.doi.org/10.2495/CMEM-V1-N2-103-115

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.09.034

http://dx.doi.org/10.1007/s11242-014-0415-3

http://dx.doi.org/10.1080/10407782.2014.923225

http://dx.doi.org/10.1115/1.2150834

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.07.092

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.03.078

http://dx.doi.org/10.1016/j.enganabound.2004.09.002

http://dx.doi.org/10.1016/j.enganabound.2010.06.019

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.01.018

http://dx.doi.org/10.1016/j.enganabound.2008.06.006

http://dx.doi.org/10.1016/j.enganabound.2011.06.002

http://dx.doi.org/10.2495/CMEM-V1-N2-103-115



	 J.K. Stajnko, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 4, No. 4 (2016)� 463

[16]	 Oztop, H.F. & Abu-Nada, E., Numerical study of natural convection in partially heated 
rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid 
Flow, 29, pp. 1326–1336, 2008.
http://dx.doi.org/10.1016/j.ijheatfluidflow.2008.04.009

[17]	 Brinkman, H.C., The viscosity of concentrated suspensions and solutions. The Journal 
of Chemical Physics, 20, pp. 571–581, 1952.
http://dx.doi.org/10.1063/1.1700493

[18]	 Wasp, F.J., Solid-Liquid Slurry Pipeline Transportation, Trans. Tech. Berlin, 1977.
[19]	 Bear, J., Dynamics of Fluids in Porous Media, Dover Publications, Inc., New York, 

1972.
[20]	 Bourantas, G.C., Skouras, E.D., Loukopoulos, V.C. & Burganos, V.N., Heat transfer 

and natural convection of nanofluids in porous media. European Journal of Mechanics 
B/Fluid, 43, pp. 45–56, 2014.

[21]	 Nield, D.A. & Bejan, A., Convection in Porous Media, 4th edn., Springer, 2013.
http://dx.doi.org/10.1007/978-1-4614-5541-7

http://dx.doi.org/10.1016/j.ijheatfluidflow.2008.04.009

http://dx.doi.org/10.1063/1.1700493

http://dx.doi.org/10.1007/978-1-4614-5541-7


