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Abstract
Satellite remote sensing techniques have been proved to be capable of quantifying chlorophyll-a (Chl-a) 
levels by estimating algal concentrations in water bodies. Harmful algal blooms (HABs) pose a signifi-
cant threat to many water bodies in South Africa. This study aimed at using a remote sensing solution 
to estimate chlorophyll concentrations in water bodies of Vhembe District Municipality using Landsat 8 
OLI. This study seeks to provide quantitative water quality information for the Vhembe region’s water 
bodies from a time series of satellite remotely sensed data and in-situ laboratory data. The 30 meters 
spatial resolution multispectral Landsat 8 OLI for 2016, 2017 and 2018 were used to derive Chl-a esti-
mate at three water bodies, namely, Nandoni, Albasini and Vondo reserviors. The Chl-a concentrations 
obtained from Landsat 8 (OLI) satellite were compared with the laboratory analysis using the Kappa 
coefficient statistical analysis. This study show that Landsat derived chl-a estimates have a high positive 
correlation of 80–90% accurate with field measurements. In all the reservoirs, it was detected that there 
is low content of HABs and thus the water bodies are in good condition since the chl-a concentrations 
were very low. In conclusion, it can be stated that Landsat 8 OLI sensor can be used to map and monitor 
inland water bodies dominated by algal blooms to a certain extent. 
Keywords: chlorophyll-a, harmful algal blooms, L andsat 8-OLI, remote sensing, water quality.

1 I ntroduction
Anthropogenic activities progressively subject the freshwater ecosystems to stress, which 
significantly decreases the water quality, and this reduces chances for aquatic life (Rashid and 
Romshoo, 2013). Most of the freshwater resources are threatened by harmful algal blooms 
(HABs) which increases in severity within developing countries (Vilmi et al., 2015). These 
HABs often tend to alter aquatic habitats, through shading, reducing dissolved oxygen and 
can also pose adverse effects on various life stages of fish and other pelagic marine organ-
isms (Stumpf and Tomlinson, 2007). Remote sensing has been used previously to monitor 
these phenomena (Winarso and Ishizaka, 2017). Previous studies conducted on assessing the 
Spatio-temporal distribution of HABs mostly were primarily done in larger reservoirs and 
marine systems (Carvalho et al., 2010; Kudela et al., 2015); however, with advancement, 
remote sensing can now utilize data sets and statistical regressions techniques to analyze 
reflectance from an inland water body (Diouf, and Seck, 2019; Hikosaka and Noda, 2019; De 
Souza et al., 2020). Within South Africa, HABs cause mass fatalities of fish and other aquatic 
species in aquatic systems (Botes et al., 2003). The Spatio-temporal distribution of HABs on 
inland aquaculture especially in Vhembe District, has not been studied. Furthermore, HABs 
are increasingly attracting the attention of water authorities, environmental agencies and gov-
ernment departments since they pose water quality and treatment problems (Kutser et al., 
2006). This study evaluated the distribution extent of HABs along the water supply reservoirs 
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of the Vhembe region in the Limpopo Province. It estimated the chl-a concentration of the 
respective reservoirs.

Fish kills have occurred for many years, possibly from cyanobacteria toxins that have been 
ingested by fish while feeding on floating diets which are passively assimilated through gills 
during breathing (Dawood et al., 2015). Most algae species are considered helpful in food-
fish production ponds (Zimba et al., 2001) They release oxygen as by-product of photo-
synthesis process and remove toxic compounds from a water column such as ammonia and 
nitrates (Huang et al., 2018). Inland fisheries contribute to economic development, poverty 
alleviation and food security whereas on the other side they degrade the quality of water 
resources (McCafferty et al., 2012). According to Craig et al. (2017), fish feeds contribute 
to degradation of water quality in food-fish production ponds. The evidence suggest that 
eutrophic conditions lead to increasing dominance of HABs which pose threat to aquatic 
ecosystems through producing potentially lethal cyanotoxins (Paerl et al., 2016).

According to Trescott (2012), HABs in surface waters such as lakes and ponds results from 
the impacts of anthropogenic and natural activities. Nutrients loads in surface waters also 
contribute to the increased growth of HABs in our water bodies. It is essential to essentially 
blooms in freshwater systems to provide knowledge, indicators of degraded water quality in 
different areas, and different other alerts on the progression of HABs in our water resources 
(Adeleye et al., 2016). Since water treatment is expensive and costly in most rural areas, 
there is a cost-effective, to monitor the growth of HABs using remote sensing in the water for 
management purposes (Lawton and Robertson, 1999). 

1.1  Harmful algal blooms, chlorophyll-A and remote Sensing

Remote sensing has widely been used in monitoring HABs in lakes, oceans and dams. How-
ever, few studies have focused on remote sensing monitoring cyanobacteria in inland aqua-
culture water bodies by extrapolating algae, phycocyanin and chl-a present. Remote sensing 
application for HABs detection requires satellite sensors with high spatial/temporal resolu-
tion and high radiometric sensitivity (Giardino et al., 2014). According to Shen et al. (2012), 
remote sensing of monitoring HABs requires knowledge, skills and a comprehensive under-
standing of remote sensing mechanisms. Caballero et al. (2020) suggest that monitoring of 
HABs using remote sensing as a tool is more complicated, however, satellite remote sensing 
of monitoring inland water bodies impacted with HABs is limited to larger water bodies/
lakes and handheld sensors because there are few satellite sensors with high spatial resolution 
to map inland water bodies since they are small (Kutser, 2009).

Most studies focused on chl-a estimation in turbid water using different algorithms, models 
and laboratory analysis of chl-a concentration (Hansen et al., 2013; Hansen et al., 2015; 
Caballero et al., 2013). Several studies on detection and monitoring chl-a in water bodies 
are based on the empirical models of reflectance, radiance in narrow bands and chl-a (Devi 
et al., 2015). Researchers collected field data on chlorophyll through handheld satellite or 
sensors mounted on space to validate their models. This is a very good approach since satel-
lites remote sensing data is calibrated or validated by field observation and ground truthing. 
Furthermore, the combination of all these methods makes the data more linked and as such, 
the results are reliable and conclusive.

One of the main objectives of aquaculture systems especially in rural area is to provide 
food security and alleviate poverty by provision of employment to people. Numerous stud-
ies reported fish mortality in aquaculture systems from cyanobacterial toxins and oxygen 
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competition (Zimba et al., 2001; Zi et al., 2018). Most fish farming is vulnerable to deteriora-
tion by HABs and this is influenced by different environmental factors (physical, biological 
and chemical) which are driven by anthropogenic activities. It is of paramount importance to 
reduce the impacts of HABs in fish farming hence this study intends to investigate the use of 
satellites and in-situ field data as a tool for monitoring the progression of HABs.

Remote Sensing can be used to determine chlorophyll and cyanobacteria contents in deep 
and shallow waters. The concentration of chl-a in water bodies has been determined using 
the empirical correlation between radiance and reflectance of algae in water bodies, thus 
few studies focused on narrow bands (Duab et al., 2012; Devi et al., 2015). Other studies 
developed models focusing on both empirical and semi-analytical algorithms for conducting 
in-situ spectral analysis (Ali et al., 2014; Mouw et al., 2015). Most of the field data which 
are collected in remote sensing studies are intended to validate models formulated, however 
some of the data is used to correlate the two sets of data (Satellite and in-situ data). It has been 
found that in-situ field measurements provide the water bodies spectrum and chl-a concen-
tration through collection of water samples and analyzing spectral reflectance from Spectro-
radiometer. Several studies have been done in determination of chlorophyll and its derivatives 
with exceptions of pheophytin and phycocyanin in natural water systems by extracting the 
pigment from the plant material or the algal bloom (Gavrilović et al., 2012; Hynstova et al., 
2018). Moreover, lot of methodology in determination of chlorophyll has been identified 
by researchers including the use of satellite remote sensing in extracting the green pigment 
found on algae by estimating chlorophyll content.

In detecting trophic status of chl-a, mathematical algorithms have been used with the appli-
cation of top-atmosphere data from satellite especially MERIS (Gons et al., 2005; Odermatt 
et al., 2010; Zhang et al., 2019; Free et al., 2020). Matthews et al. (2012) used Maximum 
Height Peak (MPH) algorithm to detect cyanobacterial blooms, surface scums and chl-a by 
calculating the height of the dominant peak across the MERIS bands which are red and near 
infrared between 664 and 885nm wavelength. The idea of using both MERIS and in situ 
data was to allow models to cover a wide trophic water dominated by surface scums, where 
oligotrophic, hypertrophic and dry floating algae are differentiated based on the MPH vari-
able magnitude (Matthews et al., 2012). Hence the current study applied Landsat 8-OLI in 
detecting the distribution of HABs at Nandoni, Albasini and Vondo dams. The present study 
aimed at (1) determining the spatial and temporal distribution of chl-a in Nandoni, Vondo and 
Albasini dam, (2) to compare the remote sensing data and in-situ data through applying the 
existing model of remote sensing on inland water bodies. 

2 M aterial and Methods

2.1  Study area

Three reserviors, namely, Nandoni, Albasini and Vondo in Vhembe District Municipality 
(VDM) were considered for in-situ sampling of chl-a analysis using both Laboratory and 
Remotely sensed methods (Fig. 1). Two reserviors (Nandoni and Vondo) are located under 
Thulamela Local Municipality and Albasini Dam is located under Makhado Local Munici-
pality. All these reserviors are the water suppliers of almost all communities in VDM and 
they provide habitat to most fish, invertebrates and other aquatic species. Nandoni reservior 
(Lat: −22.983324° and Long: 30.579191°) is the most reliable water supply reservoir and is 
situated at Ha-Budeli which is 30 km from Thohoyandou town. The reservoir supplies water 
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to different communities such as Thohoyandou, Sibasa, University of Venda and nearby com-
munities. The reservoir has the total capacity of 164 million cubic meters and a catchment 
area of 1380 km3 with the total surface area of 1570 hectares.  

Vondo reservior (Lat: −22.946375° and Long: 30.336539°) is situated at the mountainous 
area under Vondo Tribal authority. The reservoir is a source of water to communities such 
as Thathe Vondo village, Gondeni, Maranzhe and Phiphidi and has the total capacity of 30 
million cubic meters with 219 hectares of surface area. Whereas Albasini reservior (Lat: 
−23.107238° and Long: 30.117978°) is a source of water for communities such as Makhado 
town, Mpheni Village, Elim and Waterval. This reservoir has a total capacity of 25,200,000 
cubic meters and a surface area of 350 hectares.

Sampling sites were selected to span the entire surface of each reservoir. Sampling station 
quantity was determined for them to provide enough representation of the entire water body 
including both deep and shallow areas (Randolph et al., 2008). The samples were collected 
along the water column at a range of 0.5–1.0 m in the morning at each site of the dam and 
stored on ice for analysis in the laboratory. Nineteen (19) samples were collected from Nan-
doni dam and eight (8) Samples were collected from Vondo dam whereas (nine) 9 samples 
were collected from Albasini dam using a boat. The number of collected samples in each dam 
depended on the size of the particular reservoir.

2.2  Chlorophyll-A analysis in water samples

Water samples were defrosted, homogenized in an electric homogenizer and filtered through 
a Whatman GF/F 0.7 μm glass fiber filter papers, and the volume of the filtered samples was 
recorded. A 90% ethanol solution was used to extract the chl-a and concentration in mg/
m3 were measures using the spectrophotometric method and converted to μg/L. Absorbance 
was measured at 665 and 750 nm using a spectrophotometer (Orion aquamate 700, VIS 

Figure 1: �Map of the study area where Measurements of Chlorophyll-a in the dams for com-
parison with Satellite data were done.
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spectrometer). Water samples that were collected during summer and winter were analyzed 
in the laboratory for chl-a concentration. Chl-a calculation was performed by subtracting 
absorbance 665a-750a = corrected 665a, absorbance 665b-750b = corrected 665b absorb-
ance. In the present study, the Spectro-photometrical method was employed as described by 
Dalu et al. (2013) for analysis of chl-a in water samples. The equation 1 below was used to 
calculate the concentration of chl-a in water samples:

		                      Chl a
a b Ve

Ve l
− =

−( )×
×

29 62 665 665.
	                            (1)

Where: V
e
 = Volume of ethanol extract (ml)

          Vs = Volume of water sample filtered (litres)
         l = Path length of cuvette (cm)

2.3 R emote sensing data acquisition and pre-processing

Three medium spatial resolution (30 m) multispectral Landsat 8 Operational Land Imager 
(OLI) images freely acquired over Nandoni, Vondo and Albasini for the year 2016, 2017 and 
2018 were used to derive chl-a estimates from the selected points in the reservoirs. In this 
study, all images with cloud cover greater that 75% were excluded to retrieve chl-a concen-
tration accurately (Ndungu et al., 2013). The satellite images were acquired on the following 
dates (Table 1): 

All Landsat images were downloaded from USGS and were in Digital number format (DN 
values). To derive chl-a from those images, the images were calibrated from DN values to 
Top-of-atmosphere spectral reflectance units (Wm-2 sr-1 µm-1) using the algorithm provided 
by the USGS for converting reflective band to top-of-atmosphere reflectance. The algorithm 
(2) is as follows:

	 	 	 	    ρλ = MρQcal + Aρ	                                           (2)

Where: 	M ρ = Reflectance_Mult_Band 
           Aρ = Reflectance_Add_Band
            Qcal = Quantized and calibrated standard product pixel values (DN)

All the variables presented on the above equation could be retrieved from the metadata file 
which was downloaded with the original images. Band math was also used to convert radi-
ance to reflectance using ENVI 4.4 Software. The visible spectral bands of the Landsat OLI 
(Band 2 and 3) were used in order to retrieve chl-a over the Nandoni, Albasini and Vondo 
reservoirs (Dube, 2012; Dube et al., 2014).

Table1: �L andsat acquisition information sourced from USGS ONLINE Archive (http://
earthexplorer.usgs.gov/.).

Satellites images Date of acquisitions Landsat scene ID

Path= 169 
Row= 76

2016 26 August  2016 LC81690762016223LGN01

2017 26 August 2017 LC81690762017241LGN00

2018 26 August 2018 LC81690762018228LGN01
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In estimating chl-a concentrations from reflectance values, spectral bands at 445 and 
556nm are very important because that is where chl-a absorption is at peak while the lowest 
chl-a absorption is normally found at 520 and 550 nm (Dube, 2012; Dube et al., 2014). Based 
on this knowledge, this study employed the most popular chl-a estimation expression (Yadav 
et al., 2019; Buditama et al., 2017) to derive estimates over Nandoni, Albasini and Vondo 
dam from atmospherically corrected Landsat OLI images. The following function (3) was 
used to computes chl-a concentration:

			       Log Chl-a = (2.41*B4/B3) + 0.187         	                            (3)

2.4 D ata validation

The chl-a in-situ data that were measured in the field on the 07 September 2017 was used to 
validate the Landsat 8 OLI which was acquired on the 26 of August 2017. The data was vali-
dated by comparing the concentrations of chl-a of two different dates in all reservoirs. The 
concentrations of chl-a for both field measurements and remotely sensed data were exported 
from ESRI ArcGIS 10x attribute table to Microsoft excel spreadsheet.

Kappa coefficient statistic method was used for validating the field measurements and the 
pixel values retrieved from Landsat 8. Kappa measured inter-raster agreement for the two 
data sets collected and K value was computed using Microsoft excel. Equation 4 below was 
used to determine the significance of two variables which had a strong relationship. After 
deploying the above index, an output was created on ENVI software 4.4 with a Logarithm 
spectral reflectance value, therefore an anti-log was calculated.

		                                       K =
−
−

Po Pc

Pc1
		                            (4)

Where, Po = Field measurements
Pc = Remotely sensed values (Derived from anti-log expression)
K= Agreement Coefficient Value

3 RE SULTS AND DISCUSSION

3.1 R emote sensing and in-situ measurements 

Figure 2 shows the maps of chlorophyll-a concentration estimated by the model where red 
and green band ratios were used. On this study, we had shown the potential of estimating 
chlorophyll-a concentration in dams with the positive pixel values. The pixels were not repre-
sented in the maps, but the classes represented on the images were derived from the empirical 
model used by Buditama et al. (2017).

From the image classes shown on Fig. 2, 2016 Images in all reservoirs showed very low 
concentration of chl-a, however Landsat 8 OLI was able to map algal blooms in the respec-
tive reservoirs. In the reservoirs, distribution of chl-a varies spatially and temporally. It can 
simply be observed that during summer 2016, the concentration of chl-a was very low as 
compared to summer 2018 at Nandoni reservoir. However, the algal abundance was remotely 
sensed at the edges of the dam. From the observation of the images in Fig. 2, spatial distri-
bution of low algal content was observed in the middle of the Nandoni reservoir in the year 
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2018 while in 2016 there were no algal blooms detected. Vondo reservoir revealed no algal 
bloom content from 2016 to 2018. This shows that Vondo reservoir has not been impacted by 
cyanobacterial blooms for the period of 3 years. The concentration of chl-a in Vondo reser-
voir ranged from 0.0 to 0.3 mg m−3. 

In Nandoni and Albasini reservoirs, the chl-a had higher values on the area near the dam 
wall and reservoir edges while getting lower in the middle of the reservoir. This statement 
is based on sample data P9, P11, P17 and P19 which are nearest samples to the edges and 
in the middle of the reservoir. The dominance of chl-a is mainly caused by the few nutrients 
which are washed from agriculture, mining and other industries and deposited on the edges 
of the reservoirs. This results in a rapid growth of algae where there is high accumulation 
of nutrients (at the edges of the dams). The temporal variations of chl-a concentrations are 
mainly caused by rainfall which tempers with runoff as the main supplier of algal blooms 
(Buditama et al., 2017). 

From Fig. 2, it was also observed that besides detection of algal blooms in water, during 
classification, vegetation adjacent to the reservoir was detected as algae since plants contains 
the chlorophyll pigment, however, the present study only accounts for chl-a detected within 
the water body as attested by the field measurements.

Overall, from the results obtained from the remotely sensed and the In-situ measurements, 
it can be concluded that the three reservoirs have not been affected by high concentration of 
chlorophyll between the year 2016 and 2018. Since all the data discussed in this study was 
acquired during summer periods with low rainfall, this maybe the reason for low chlorophyll 
concentration in the dams because of low rainfall which normally carry nutrients to the water 
bodies which facilitate algal growth.

From the remotely sensed and Laboratory analysis, we have observed a strong correla-
tion of pixel values derived from chl-a estimates and chl-a values analyzed in the laboratory 
(Tables 2 to 4). The correlation is positive because the increase in one value of chlorophyll 
estimates from Landsat is an increase in the Lab data while decrease of Landsat pixel value is 
also a decrease in Chlorophyll lab results. This study demonstrated the potential of Landsat 8 

Figure 2: � Showing chlorophyll-a distribution map in the Nandoni, Albasini and Vondo dams 
in Vhembe district, Limpopo province.
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Table 2: �M ean Concentrations of chlorophyll-a for Laboratory analysis, remotely sensed data 
and KAPPA Index Value in Nandoni dam for three years (2016, 2017 and 2018.).

Sample number 
(Nandoni Dam)

Field measurements. 
Chlorophyll-a concen-
tration (mg m−3)

Remotely sensed 
(Anti-Log ex-
tracted values)

KAPPA Index 
value

P1 0.8 0.2 0.75 (75%)

P2 0.8 0.2 0.75 (75%)

P3 0.9 0.5 0.80 (80%)

P4 0.7 0.1 0.67 (67%)

P5 0.8 0.5 0.60 (60%)

P6 0.3 0.2 0.13 (13%)

P7 0.8 0.3 0.71 (71%)

P8 0.9 0.1 0.89 (89%)

P9 0.8 0.3 0.71 (71%)

P10 0.7 0.1 0.67 (67%)

P11 0.8 0.2 0.75 (75%)

P12 0.7 0.1 0.67 (67%)

P13 0.7 0.1 0.67 (67%)

P14 0.6 0.5 0.20 (20%)

P15 0.9 0.5 0.80 (80%)

P16 0.8 0.2 0.75 (75%)

P17 0.9 0.5 0.80 (80%)

P18 0.7 0.1 0.67 (67%)

P19 0.8 0.6 0.50 (50%)

Table 3: �M ean Concentrations of chlorophyll-a for Laboratory analysis, remotely sensed data 
and KAPPA Index Value in Vondo dam for three years (2016, 2017 and 2018.).

Sample number 
(Vondo Dam)

Field measurements. 
Chlorophyll-a concen-
tration (mg m−3)

Remotely sensed 
(Anti-Log ex-
tracted values)

KAPPA Index 
value

V1 0.9 0.1 0.89 (89%)

V2 0.9 0 0.90 (90%)

V3 0.8 0 0.80 (80%)

V4 0.8 0.2 0.75 (75%)

V5 0.7 0.1 0.67 (67%)

V6 0.8 0 0.80 (80%)

V7 0.9 0.5 0.80 (80%)

V8 0.9 0.4 0.83 (83%)

V9 0.7 0.2 0.63 (63%)
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OLI images on mapping areas with high and low concentration of chl-a. The spatio-temporal 
variation in the concentration of Chl-a within the dams likely reflects the yearly and phys-
icochemical factors influences. Chlorophyll estimates of all dams derived from Landsat OLI 
images were very low for most part of the dams which is attributed to decreased water level 
in the Nandoni, Vondo and Albasini dam (Dalu et al., 2015).

4  CONCLUSION
Based on the derived and measured total chl-a concentrations across all the reservoir i.e. Nan-
doni, Vondo and Albasini, it can be concluded that the dams possess low concentrations. The 
algorithm employed in the images to derive chl-a worked successfully on the Landsat OLI 
images. It can be concluded that Landsat OLI is suitable for real time monitoring of HABs 
in water bodies and can accurately map areas where cyanobacterial blooms are abundant. 
This was also attested by the Kappa coefficient analysis which determined the level of agree-
ments between two or more data sets. 80–90% of K values were observed across all the sites 
which showed high level of agreement of correlation of field chl-a concentration and satellite 
remotely sensed variables.

Acknowledgements
This research was funded by National Research Foundation of South Africa “NRF Innovation 
Master’s scholarship”, project UID 106618 and University of Venda Post graduate research 
funds: Grant number SES/07/ERM/01. We wish to acknowledge Dr Sam Kaheru for provid-
ing a working space for conducting experiments in the School of Education, Physical Science 
Laboratory, University of Venda. 

REFERENCES

	 [1]	A deleye, A.S., Conway, J.R., Garner, K., Huang, Y., Su, Y. & Keller, A.A., Engineered 
nanomaterials for water treatment and remediation: costs, benefits, and applicability. 
Chemical Engineering Journal, 286, pp. 640-662, 2016.

Table 4: �M ean Concentrations of chlorophyll-a for Laboratory analysis, remotely sensed data 
and KAPPA Index Value in Albasini dam for three years (2016, 2017 and 2018.).

Sample number 
(Albasini Dam)

Field measurements. 
Chlorophyll-a concen-
tration (mg m−3) 

Remotely sensed 
(Anti-Log ex-
tracted values)

KAPPA-Index 
value

A1 0.9 0.5 0.80 (80%)

A2 0.8 0.1 0.78 (78%)

A3 0.8 0.2 0.75 (75%)

A4 0.9 0.5 0.80 (80%)

A5 0.7 0.1 0.67 (67%)

A6 0.6 0.4 0.33 (33%)

A7 0.9 0.1 0.89 (89%)

A8 0.9 0.4 0.83 (83%)

A9 0.9 0.2 0.88 (88%)



	 Linton F. Munyai et al., Int. J. Environ. Impacts, Vol. 5, No. 4 (2022)� 371

	 [2]	A li, K., Witter, D. and Ortiz, J., Application of empirical and semi-analytical algorithms 
to MERIS data for estimating chlorophyll a in Case 2 waters of Lake Erie. Environmen-
tal Earth Sciences, 71(9), pp. 4209-4220, 2014.

	 [3]	 Botes, L., Smit, A.J. and Cook, P.A., The potential threat of algal blooms to the abalone 
(Haliotis midae) mariculture industry situated around the South African coast. Harmful 
Algae, 2(4), pp. 247-259, 2003.

	 [4]	 Buditama, G., Damayanti, A. and Pin, T.G., December. Identifying Distribution of 
Chlorophyll-a Concentration Using Landsat 8 OLI on Marine Waters Area of Cire-
bon. In IOP Conference Series: Earth and Environmental Science (Vol. 98, No. 1, p. 
012040), 2017. IOP Publishing.

	 [5]	 Caballero, I., Fernández, R., Escalante, O.M., Mamán, L. and Navarro, G., New ca-
pabilities of Sentinel-2A/B satellites combined with in situ data for monitoring small 
harmful algal blooms in complex coastal waters. Scientific Reports, 10(1), pp. 1-14, 
2020.

	 [6]	 Carvalho, G.A., Minnett, P.J., Fleming, L.E., Banzon, V.F. and Baringer, W., Satellite 
remote sensing of harmful algal blooms: A new multi-algorithm method for detecting 
the Florida Red Tide (Karenia brevis). Harmful algae, 9(5), pp. 440-448, 2010.

	 [7]	 Craig, S., Helfrich, L.A., Kuhn, D. and Schwarz, M.H., Understanding fish nutrition, 
feeds, and feeding. 2017.

	 [8]	D alu, T., Clegg, B. and Nhiwatiwa, T., Temporal variation of the plankton communities 
in a small tropical reservoir (Malilangwe, Zimbabwe). Transactions of the Royal Soci-
ety of South Africa, 68(2), pp. 85-96, 2013.

	 [9]	D alu, T., Dube, T., Froneman, P.W., Sachikonye, M.T., Clegg, B.W. and Nhiwatiwa, T., 
An assessment of chlorophyll-a concentration spatio-temporal variation using Landsat 
satellite data, in a small tropical reservoir. Geocarto International, 30(10), pp. 1130-
1143, 2015.

	[10]	D awood, M.A., Koshio, S., Ishikawa, M. and Yokoyama, S., Effects of partial substitu-
tion of fish meal by soybean meal with or without heat-killed Lactobacillus plantarum 
(LP20) on growth performance, digestibility, and immune response of amberjack, Se-
riola dumerili juveniles. BioMed research international, 2015, 2015.

	[11]	D e Souza, R., Grasso, R., Peña-Fleitas, M.T., Gallardo, M., Thompson, R.B. and Pa-
dilla, F.M., Effect of Cultivar on Chlorophyll Meter and Canopy Reflectance Measure-
ments in Cucumber. Sensors, 20(2), pp. 509, 2020.

[12]	D evi, L. & Ohno, M., Effects of BACE1 haploinsufficiency on APP processing and Aβ 
concentrations in male and female 5XFAD Alzheimer mice at different disease stages. 
Neuroscience, 307, pp. 128-137, 2015.

[13]	D iouf, D. and Seck, D., Modeling the Chlorophyll-a from Sea Surface Reflectance in 
West Africa by Deep Learning Methods: A Comparison of Multiple Algorithms. arXiv 
preprint arXiv:1912.03216, 2019.

[14]	D uan, H., Ma, R., Xu, J., Zhang, Y. and Zhang, B., Comparison of different semi-
empirical algorithms to estimate chlorophyll-a concentration in inland lake water. Envi-
ronmental monitoring and assessment, 170(1), pp. 231-244, 2010.

[15]	D ube, T., Primary productivity of intertidal mudflats in the Wadden Sea: a remote sens-
ing method. [Msc Thesis] University of Twente Faculty of Geo-Information and Earth 
Observation (ITC), 2012.



372	 Linton F. Munyai et al., Int. J. Environ. Impacts, Vol. 5, No. 4 (2022)

[16]	D ube, T., Gumindoga, W. & Chawira, M., Detection of land cover changes around Lake 
Mutirikwi, Zimbabwe, based on traditional remote sensing image classification tech-
niques. African Journal of Aquatic Science, 39(1), pp. 89-95, 2014.

[17]	F ree, G., Bresciani, M., Pinardi, M., Ghirardi, N., Luciani, G., Caroni, R. and Giardino, 
C., A regional evaluation of the influence of climate change on long term trends in 
chlorophyll-a in large Italian lakes from satellite data. Earth System Dynamics Discus-
sions, pp. 1-19, 2020.

[18]	G avrilović, B., Popović, S., Ćirić, M., Subakov–Simić, G., Krizmanić, J. and Vidović, 
M., Qualitative and quantitative composition of the algal community in the water col-
umn of the Grlište reservoir (Eastern Serbia). Botanica Serbica, 40(2), pp. 129-135, 
2016.

[19]	G iardino, P.P., Karnnike, K., Masina, I,. Raidal, M & Strumia, A. The universal Higgs 
fit. Journal of High Energy Physics. Springer Berlin Heidelberg, 2014.

[20]	G ons, H.J., Rijkeboer, M. and Ruddick, K.G., Effect of a waveband shift on chloro-
phyll retrieval from MERIS imagery of inland and coastal waters. Journal of Plankton 
research, 27(1), pp. 125-127, 2005.

[21]	H ansen, C., Swain, N., Munson, K., Adjei, Z., Williams, G. P. & Miller, W., Develop-
ment of sub-seasonal remote sensing chlorophyll-a detection Models. American Jour-
nal of Plant Sciences, 2013, 2013.

[22]	H ansen, C.H., Williams, G.P. & Adjei, Z., Long-Term Application of Remote Sensing 
Chlorophyll Detection Models: Jordanelle Reservoir Case Study. Natural Resources, 6, 
pp. 123-129, 2015.

[23]	H ikosaka, K. and Noda, H.M., Modeling leaf CO2 assimilation and Photosystem II 
photochemistry from chlorophyll fluorescence and the photochemical reflectance in-
dex. Plant, cell & environment, 42(2), pp. 730-739, 2019.

[24]	H uang, J., Zhang, Y., Huang, Q. and Gao, J., When and where to reduce nutrient for 
controlling harmful algal blooms in large eutrophic lake Chaohu, China?. Ecological 
Indicators, 89, pp. 808-817, 2018.

[25]	H ynstova, V., Sterbova, D., Klejdus, B., Hedbavny, J., Huska, D. and Adam, V., Separa-
tion, identification and quantification of carotenoids and chlorophylls in dietary sup-
plements containing Chlorella vulgaris and Spirulina platensis using high performance 
thin layer chromatography. Journal of pharmaceutical and biomedical analysis, 148, 
pp. 108-118, 2018.

[26]	 Kudela, R.M., Palacios, S.L., Austerberry, D.C., Accorsi, E.K., Guild, L.S. and Torres-
Perez, J., 2015. Application of hyperspectral remote sensing to cyanobacterial blooms 
in inland waters. Remote Sensing of Environment, 167, pp. 196-205.

[27]	 Kutser, T., Metsamaa, L., Strömbeck, N. and Vahtmäe, E., Monitoring cyanobacterial 
blooms by satellite remote sensing. Estuarine, Coastal and Shelf Science, 67(1-2), pp. 
303-312, 2006.

[28]	 Kutser, T., Passive optical remote sensing of cyanobacteria and other intense phyto-
plankton blooms in coastal and inland waters. International Journal of Remote Sensing, 
30(17), pp. 4401-4425, 2009.

[29]	L awton, L.A. & Robertson, P.K.J., Physico-chemical treatment methods for the re-
moval of microcystins (cyanobacterial hepatotoxins) from potable waters. School of 
Applied Sciences, The Robert Gordon University, St Andrew Street, Aberdeen, UK. 
Chemical Society Reviews, 28, pp. 217–224, 1999.



	 Linton F. Munyai et al., Int. J. Environ. Impacts, Vol. 5, No. 4 (2022)� 373

[30]	M atthews, M.W., Bernard, S. and Robertson, L., An algorithm for detecting trophic sta-
tus (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation 
in inland and coastal waters. Remote Sensing of Environment, 124, pp. 637-652, 2012.

[31]	M cCafferty, J.R., Ellender, B.R., Weyl, O.L.F. and Britz, P.J., The use of water resourc-
es for inland fisheries in South Africa. Water SA, 38(2), pp. 327-344, 2012.

[32]	M ouw, C.B., Greb, S., Aurin, D., DiGiacomo, P.M., Lee, Z., Twardowski, M., Binding, 
C., Hu, C., Ma, R., Moore, T. and Moses, W., Aquatic color radiometry remote sensing 
of coastal and inland waters: Challenges and recommendations for future satellite mis-
sions. Remote sensing of environment, 160, pp. 15-30, 2015.

[33]	N dungu, J., Monger, B.C., Augustijn, D.C., Hulscher, S.J., Kitaka, N. & Mathooko, J. 
M., Evaluation of spatio-temporal variations in chlorophyll-a in Lake Naivasha, Kenya: 
remote-sensing approach. International journal of remote sensing, 34(22), pp. 8142-
8155, 2013.

[34]	O dermatt, D., Giardino, C. and Heege, T., Chlorophyll retrieval with MERIS Case-
2-Regional in perialpine lakes. Remote Sensing of Environment, 114(3), pp. 607-617, 
2010.

[35]	P aerl, H.W., Gardner, W.S., Havens, K.E., Joyner, A.R., McCarthy, M.J., Newell, S.E., 
Qin, B. and Scott, J.T., Mitigating cyanobacterial harmful algal blooms in aquatic eco-
systems impacted by climate change and anthropogenic nutrients. Harmful Algae, 54, 
pp. 213-222, 2016.

[36]	R andolph, K., Wilson, J., Tedesco, L., Li, L., Pascual, D.L. and Soyeux, E., Hyperspec-
tral remote sensing of cyanobacteria in turbid productive water using optically active 
pigments, chlorophyll-a and phycocyanin. Remote Sensing of Environment, 112(11), 
pp. 4009-4019, 2008.

[37]	R ashid, I. and Romshoo, S.A., Impact of anthropogenic activities on water quality 
of Lidder River in Kashmir Himalayas. Environmental monitoring and assessment, 
185(6), pp. 4705-4719, 2013.

[38]	 Shen, L., Xu, H. & Guo, X. Satellite remote sensing of harmful algal blooms (HABs) 
and a potential synthesized framework. Sensors, 12(6), pp. 7778-7803, 2012.

[39]	 Stumpf, R.P. and Tomlinson, M.C., Remote sensing of harmful algal blooms. In Remote 
sensing of coastal aquatic environments, Springer: Dordrecht, pp. 277-296, 2007. 

[40]	T rescott, A., Remote Sensing Models of Algal Blooms and Cyanobacteria in Lake 
Champlain. Environmental & Water Resources Engineering Masters Projects. Univer-
sity of Massachusetts Amherst. Paper 48., 2012.

[41]	V ilmi, A., Karjalainen, S.M., Landeiro, V.L. and Heino, J., Freshwater diatoms as en-
vironmental indicators: evaluating the effects of eutrophication using species morphol-
ogy and biological indices. Environmental monitoring and assessment, 187(5), pp. 243, 
2015.

[42]	W inarso, G. and Ishizaka, J., Validation of cochlodinium polykrikoides red tide de-
tection using seawifs-derived chlorophyll-a data with nfrdi red tide map in south east 
korean waters. International Journal of Remote Sensing and Earth Sciences (IJReSES), 
14(1), pp. 19-26, 2017.

[43]	Y adav, S., Yamashiki, Y., Susaki, J., Yamashita, Y. and Ishikawa, K., Chlorophyll es-
timation of lake water and coastal water using landsat-8 and sentinel-2a satellite. In-
ternational Archives of the Photogrammetry, Remote Sensing & Spatial Information 
Sciences, 2019.



374	 Linton F. Munyai et al., Int. J. Environ. Impacts, Vol. 5, No. 4 (2022)

[44]	 Zi, J., Pan, X., MacIsaac, H.J., Yang, J., Xu, R., Chen, S. & Chang, X. Cyanobacteria 
blooms induce embryonic heart failure in an endangered fish species. Aquatic Toxicol-
ogy, 194, pp. 78-85, 2018.

[45]	 Zimba, P.V., Khoo, L., Gaunt, P.S., Brittain, S. and Carmichael, W.W., Confirmation of 
catfish, Ictalurus punctatus (Rafinesque), mortality from Microcystis toxins. Journal of 
Fish Diseases, 24(1), pp. 41-47, 2001.

[46]	 Zhang, F., Li, J., Shen, Q., Zhang, B., Tian, L., Ye, H., Wang, S. and Lu, Z., A soft-
classification-based chlorophyll-a estimation method using MERIS data in the highly 
turbid and eutrophic Taihu Lake. International Journal of Applied Earth Observation 
and Geoinformation, 74, pp. 138-149, 2019.


