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Vector-borne disease control is an important issue faced by mankind. Many existing 

systems perform the detection and prevention of mosquito breeding sites using UAV-

based methods. However, they don’t provide real-time monitoring and detection of the 

same on daily basis. This study proposes a cloud-based deep-learning system to control 

the disease spread at a high scale. The implemented system does continuous monitoring 

using the existing public cameras for the potential mosquito breeding hotspots, further, the 

corresponding location coordinates will be forwarded to the local authorities. A history of 

the location coordinates maintained at the remote server will help monitor hotspots. We 

evaluated the current approach results and discovered that by layer pruning, the accuracy 

is improved by 14% and further reduces execution time by 10 sec. For accuracy and 

execution time calculation, the pruned model was tested on the validation dataset, and then 

the comparison was done with the original deep learning model. This indicates that the 

system can accurately detect the number of potential mosquito breeding sites. These results 

are expected to support decision-making on rapid resource allocation for vector control 

actions on a regular basis by achieving the sustainability goal of UNSDG (3). 
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1. INTRODUCTION

Around 50 to 100 million dengue infections occur 

worldwide yearly, per the World Health Organization [WHO]. 

In 2020, more than 2.3 million cases of dengue were reported 

in the Americas alone, most of them in Brazil [1]. The 

mosquito Aedes aegypti is the transmitter of arboviral diseases 

such as dengue, zika, chikungunya, and urban yellow fever [2]. 

It is estimated that there are 200,000 yellow fever clinical 

cases, causing 30,000 deaths per year in the world [3]. 

Infection during pregnancy such as congenital malformation 

and microcephaly happens due to the Zika virus; children in 

these conditions rarely develop normally [4]. These diseases 

also have a strong economic impact. A survey conducted in 17 

Central and Latin American countries estimates that the cost 

of dengue epidemics exceeds US$ 3 billion annually [5]. 

These facts make the arboviruses transmitted by Aedes aegypti 

one of the leading global health problems. Thus, for effective 

control of vector-borne diseases, it is essential to perform 

targeted environmental and ecosystem management. However, 

providing large-scale detailed environmental information to 

control vector-borne diseases remains a challenge. There are 

two reasons behind this, the first is local government 

authorities perform spraying twice or thrice a year. Due to this, 

it is not possible to control the vector spread as per the 

occurrence. Even though various initiatives have been taken to 

involve citizens in collecting and reporting hotspot data [6], 

we still lack the monitoring of the hotspot. The pivotal piece 

of such information is the extent of potential mosquito 

breeding sites that consist of stagnant water. But currently, no 

system is available for stagnant water notification. Hence, a 

system for stagnant water notification and monitoring was 

created to detect all types of stagnant water surfaces in 

containers and puddles. This paper proposes a system that will 

use security cameras in public areas. Whilst video detection 

will be done throughout the day. Then upon finding the 

stagnant water presence geotagged images will be sent to give 

notifications to local authorities and then monitoring of the 

same can be done. The existing system such as [7] uses UAV-

based detection systems to perform the identification of 

mosquito breeding hotspots. Similarly, in [8] the author has 

implemented a GPS and UAV-based system for detecting 

containers, and [9, 10] uses aerial and street-view images for 

container detection. None of the above systems focus on 

notifying the authorities and further monitoring the hotspots. 

In addition to the existing paper survey, we conducted a survey 

using a Google form questionnaire to understand the need of 

the hour. This survey was conducted over a group of 306 

people residing in Maharashtra (India). Out of 306, 63.7% of 

responses showed that they informed local authorities about 

the mosquito breeding site while 56.1% of people accepted 

negligence in the timing during the pesticide spraying. Figure 

1 shows, in some areas of Maharashtra, precautionary 

measures are still not applied effectively. Hence, we designed 

a system based on a deep learning algorithm yolov3 and cloud 

infrastructure. This system not only gives hotspot notifications 

in the form of longitude and latitude but also keeps monitoring 

the area. For monitoring, a history of the coordinates will be 

maintained, and an assessment of the eradication mechanism 

will be done. Table 1 shows the comparison with the existing 

systems and clearly indicates the need for automatic intimation 

and monitoring in order to create a complete system for 

potential hotspot detection.  
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Table 1. Comparison with existing system 

 
Mosquito Breeding Hotspot Detection System 

Author Name Object Water Type Images 

Real-

Time 

Detection 

Notification and 

Monitoring 

Jared Schenkel [7] 

Plastic bottle, Glass bottle, 

plastic lid, Bucket, Cup, Bag 

Can 

Nil 
UAV images with 

GPS coordinates 
No No 

Daniel Trevisan 

Bravo [8] 
Water Tank Nil UAV images No No 

 

Passos [9] 

Bottle, Pool, Bucket, Tire, 

Puddle, Water tank 
Nil Aerial images Yes No 

Peter Haddawy 

[10] 

Potted plant, Tire, Jar, Bin, 

Ceramic Bowl 
Nil Street View No No 

Implemented 

System 
All containers and Surface water 

Black, Green, 

Muddy, Blue, 

Shiny 

Street View Yes Yes 

 

 
 

Figure 1. Mosquito breeding site survey 

 

 
 

Figure 2. Mosquito breeding site notification and monitoring system 

 

 

2. METHODOLOGY 

 

Figure 2 shows the mosquito breeding site notification and 

monitoring system. The longitude and latitude of the detected 

part will be sent to the remote storage. Remote storage 

maintains the history of the hotspots. Further, this data can be 

verified to assess the impact of the spraying performed by the 

local authorities. Public cameras can be of two types a)Analog 

and b) Digital Hd cameras. The minimum resolution would be 

1080 pixels. The flow of the activities for the implemented 

system would be as below. 
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Workflow 

Step 1: Dataset preprocessing was done for the stagnant water 

dataset.  

Step 2: Training and validating the deep learning model were 

done. 

Step 3: The trained model was deployed on the cloud.  

Step 4: Public Camera Video streaming was sent to the cloud. 

Step 5: A Deep learning algorithm was executed for detecting 

stagnant water. 

Step 6: If water was found, then location coordinates will be 

sent to the remote server else the next video was considered 

for frame detection. 

Step 7: The history of hotspots was stored on the remote server.  

 

2.1 Cloud infrastructure 

  

We trained our model on Google Colab and then it was 

deployed on the cloud whilst detection was done for the 

received video recording from the public cameras. 

To provide continuous monitoring the MLOps service of 

Microsoft Azure Cloud was used [11, 12]. Further, the 

corresponding location coordinates were stored at the remote 

server for vector control action to be done by the local 

authorities. 

 

2.2 Deep learning algorithm 

 

Deep learning is a subset of machine learning methods 

based on artificial neural networks. Here we used a deep 

learning algorithm known as YoloV3, to provide accurate real-

time detection. 

As shown in Figure 2, the algorithm includes two steps: 1) 

Data Preprocessing and 2) Training and Validation.  

 

2.2.1 Data Preprocessing 

To validate the model, the stagnant water image and video 

datasets were published on the Mendeley repository [13, 14]. 

This dataset contains 1976 labeled images of stagnant water. 

These images are street view images taken from top and side 

view for different water surfaces such as green, muddy, black, 

and shiny. The images were resized to 256 x 256 pixels and 

then labeling was done. These images were collected from two 

cities in India at different times of the day. In the detection step, 

part of the image will be classified into water or wet surface 

class. Hence images were labeled in Yolo format with a ‘0’ 

value for the water class. While ‘1’ is taken for the wet surface 

class. A few images were rotated by 90 degrees to increase the 

data samples. 

 

2.2.2 Training and Validation  

We trained Yolo family algorithms on Google Colab using 

transfer learning. For training and validation, the distribution 

of the dataset was done as per Table 2. For the dataset of 3812 

images, the sources used, and the number of images captured 

are shown in the table. After experimenting with anchor box 

size [15], we chose Yolov3 out of other existing algorithms. 

To increase object detection performance, data fusion was 

done by adding google images with real-time images [16]. 

Meng et al. [17] thought that “information fusion is the study 

of efficient methods for automatically or semi-automatically 

transforming information from different sources and points in 

time into a representation that provides effective support for 

human or automated decision making.” The corresponding 

experimentation results are given in Table 3. 

Table 2. Dataset distribution 

 

Training Set 
Validation 

Set 

Google 

Chrome 

Android 

phone 

Rotated by 90 

degrees 

Google 

Chrome 

1200 1976 100 536 

 

Table 3. Model accuracy 

 
Algorithm Layers mAP (%) Detection Time 

Yolov3 106 75.67 62 seconds 

Yolov4-tiny 36 46.24 32 seconds 

Yolov5 224 87.23 46 seconds 

Improved Yolov3 94 90.06 52 seconds 

 

The following training parameters were employed: number 

of batches=64; number of subdivisions=32; maximum number 

of iterations=45,000; and the learning rate=0.001. After 16 

hours, the training was interrupted with a validation loss value 

of 0.04, at iteration 41,200. 

 

Yolov3 Detection Process 

 

Yolov3 mainly utilizes residual layers and a certain number 

of convolutional layers to complete the detection process and 

uses the entire image features to predict each bounding box. 

This algorithm performs real-time detection at a fast speed. At 

the same time, it predicts all classes of all bounding boxes for 

the complete training, which maintains maximum average 

accuracy and strong real-time performance [16]. 

It divides the input image into N×N grids and assigns one 

anchor bounding box for each ground truth object. Equations 1-

4 show four coordinates (tx, ty, tw, th) predicted by the network 

for each bounding box, and then a function was used to predict 

three corresponding parameters in the form of coordinates like 

the center point coordinates (cx, cy) of the bounding box, the 

width- bw, and the height- bh [17]. Where σ (•) is the sigmoid 

activation function, which was used to limit the center like the 

center point coordinates (bx, by) of the bounding box, the width 

bw, and the height bh. The confidence in the detected object was 

calculated by the formula given below, 

 

bx=σ (tx) + cx (1) 

 

by=σ (ty) + cy (2) 

 

bw=pw etw (3) 

 

bh=ph eth (4) 

 

Pruning 

 

As Yolov3 has 106 layers, model compression was needed 

to reduce the model parameters and make it easy to deploy. 

The methods of model compression are categorized into 

quantization [18-20], pruning [21, 22], low-rank 

decomposition [23, 24], and knowledge distillation [25, 26]. 

Out of mentioned techniques, we used layer pruning, wherein 

layers were removed according to the loss and Bfvalue. 

Yolov3 has good detection accuracy, but to reduce time 

complexity and memory constraints, we performed pruning 

which contributes to the carbon footprint reduction as well 

[27]. 
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Evaluation Metrics 

 

As the problems of missed detection and false detection 

happened in the monitoring process of water detection, hence 

for experimentation mAP, Precision, and Recall were used as 

evaluation parameters. The precision was the ratio of the 

number of correctly detected water/wet areas to the total 

number of detected water/wet areas. The Recall was the ratio 

of the number of correctly detected water/wet areas to the total 

number of water/wet in the data set. The calculation method is 

shown in Eqns. (7) and (8).  

 

Precision =
TP

TP + FP
 (5) 

 

Recall =
TP

TP + FN
 (6) 

 

𝑚𝐴𝑃 =
1

nc
∑APi

nc

i=0

 (7) 

 

APi =
1

nd
∑ Pijnd
j=0       (8) 

 

In these formulas, True Positive (TP) indicates the number 

of correctly detected water/wet surfaces, True Negative (TN) 

indicates the number of correctly detected backgrounds, False 

Positive (FP) indicates the number of incorrect detections, and 

False Negative (FN) indicates the number of missed detections, 

respectively. As shown in equations 9 and 10, mAP is the 

average of AP (average precision), and AP is the average of 

all categories, i.e., classes used for labeling. The mean average 

precision was calculated by taking an average of precision for 

several recall values. 

 

Sustainability 

 

Sustainability contributes towards fulfilling the needs of 

present generations without compromising the needs of 

coming generations, and at the same time maintaining a 

balance between the environment and economy for social 

well-being. This system indirectly contributes to the United 

Nations Sustainability Goal i.e UNSDG (3) “Good Health and 

well-being” which aims to avoid premature deaths by 

preventing disease spread. 

 

 

3. RESULTS AND DISCUSSION  

 

3.1 Prediction of hotspot 

 

For testing, the platform used was a desktop computer with 

an Intel i5 1035G1 (1.19 GHz) dual-core CPU, a GeForce 

MX250, 2GB GPU (384 CUDA cores), and 8 GB of memory, 

running on a Windows 10, 64-bit system. The software tools 

used included CUDA 10.2, CUDNN 5.0, OpenCV3.0, and 

Microsoft Visual Studio 2019. For yolov5, Google colab was 

used for testing and training. To verify the effectiveness of the 

detection, the test data set of google images was used. Further, 

we analyzed the experimental data and compared the results. 

During the training of yolov3, the generated Bfvalue was 

observed to remove the convolution layers of the network. 

Therefore, a total of 12 layers were removed to reduce the 

model size from 234 MB to 164 MB. Eventually, we could 

reduce the detection time by 10 seconds, with an increase in 

the mAP value by 14%. Details of these are given in Table 3. 

For the captured image shown in Figure 2, the 

corresponding result of water detections with accuracy is 

shown in Figure 3. 

The stagnant water detection for a captured image is 

performed using two classes: wet surface and water. The extra 

class i.e., wet surface was taken to avoid misclassification in 

water detection and to increase the accuracy. The accuracy 

received for each class is given in Table 4. We observed that 

Improved Yolov3 is more accurate in distinguishing water 

from wet surfaces as compared to other algorithms. Hence 

Improved version of Yolov3 was deployed on the cloud for 

potential mosquito breeding site detection. 

  

 
 

Figure 3. Detection result 

 

Table 4. Improved Yolov3 class-wise accuracy 

 
Sr. No Class  Accuracy 

1 Water 95% 

2 Wet Surface 86% 

 

The sample database table with the location coordinates is 

shown in Table 5. 

 

Table 5. Location coordinates 

 
Sr. 

No 
Lattitude Longitude Img_name Result 

1 18.932500 74.2626845 pic_18.932 water 

2 18.931594 74.2628658 pic_18.931 
Wet 

surface 

3 7.9806446 49.818794 pic_7.9806 water 

 

The performance evaluation of the developed approach was 

based on 536 images destined for the test. As in the case of 

object detection, the AP was computed for each image class. 

Then, the mAP was calculated from AP values. To classify 

536 images, Improved Yolov3 took 52 seconds. From 5,896 

ground truth bounding boxes, 5310 were correctly classified 

(TP values) providing an mAP-50 of 0.9006 and a recall rate 

of 0.8723. In addition, 586 cases of false negatives (FN) and 

false positives (FP) were computed as shown in Figure 4, 

wherein false objects are detected as water. This has happened 

due to improper sunlight and fewer sample images of a 

particular type. The results presented in Table 5 demonstrated 

good performance (95%) for Yolov3 scenarios. Its worst 

performance occurred in the detection of water with reflection 

and shiny water, probably due to the low occurrence of this 

type of scenario in the training images.  

38



 

 

 
 

Figure 4. False detections 

 

 

4. CONCLUSION 

 

The cloud-based mosquito breeding detection model can 

automatically extract useful information and give intimation 

to the local authorities. Which will help control the vector 

spread with the existing public cameras. Detection 

experiments on stagnant water images show the effectiveness 

of the pruned YoloV3 deep-learning model. Furthermore, we 

also provide Hotspot location coordinates to perform spraying 

for vector control and monitoring. Thus, the system provides 

a sustainable and cost-effective way to implement vector 

eradication at a high scale. In the future, mosquito detection 

and classification can be added to the system for further 

analysis and prediction of diseases. 
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