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In clinical applications and studies neural nerve impulse recordings are extensively used. 

The spike detection method is critical for determining when a spike is activated. The 

minimal ratio of signal to noise for multi-electrode cuff recordings is generally less than 

10. For applications involving implantable neural recording, this work provides a brand-

new, incredibly hardware-efficient (low complexity, low computation), adaptive spike

detection algorithm. A mean reduction filter is used in this to first remove any low-

frequency elements from the data without adding more phase distortion. A new operator

called an Amplitude Slope Operator (ASO) is also added as a hardware-effective substitute

for NEO for increasing the SNR of the data. The adjustable threshold is computed on a

periodic basis by subtracting any detected spikes from the running mean while

simultaneously running a subthreshold detection to remove some of the undetected spikes

from the background activity. The method was first created in MATLAB employing

floating-point math, and it has since been converted to work with fixed-point math. The

Least mean squares (LMS) adaptive filter is proposed and implemented in this research

using MATLAB and the Xilinx Spartans 3E-100 (xc3s100e) hardware and software tools.

The proposed filter improves noise rejection while also reducing power consumption and

hardware footprint. Furthermore, the results show that its LMS adaptive filter works

effectively in online neural recording, with significant improvements in the signal-to-noise

ratio (SNR). As a result, this enhancement may result in greater spike detection accuracy.

In records with SNR = 5, it can achieve a sensitive of >80% with such a false-positive rate

of 6 Hz, and it improves performance than an optimum threshold detector employing a

band - pass filter in records with SNR > 3. In comparison to the traditional technique of

digital filter algorithm, the current filter design delivers a significant decrease of 10% in

power usage and 25% in hardware requirements. As a result, this research might point to

a critical advance in brain recording to be used as a control input for prostheses devices.
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1. INTRODUCTION

Humans have long been interested in the possibilities of 

regulating prostheses using non natural or bio-natural 

impulses, which has prompted researchers as manufacturers to 

do more study in this sector, such as intelligent prosthesis and 

function electromyography (EMG) [1-3]. Spike recordings 

using multi-electrode cuffs (MECs) are primarily determined 

by the sharpness of a electro-neuro-gram (ENG) data [4-8]. 

The MECs technique might increase noise rejection for 

recorded action potential. A less invasive electrode cuff nerve 

fibre connection approach for recording APs could extract 

spike data with amplitudes ranging from 1 to 5 Volt peak to 

peak, a signal to background noise ratio band of 1.2 - 3.8 dB 

[9], and a signal frequency range of 1 Hz to 3 kHz [10]. The 

essential feature of velocity selective recordings (VSR) 

approach is based on MEC interface method and nerve 

impulse dispersion via nerve fibber, the tripolar-electrode-cuff 

attached around the specific nerve fibber bundles generates 

identical signals at the ends of the op - amps, the delay line (T, 

2T, 3T, NT) arrange to match to electrodes pitching distance 

and their travel velocity. The neuronal action potentials 

obtained are dependent on AP speed and their arbitrary time 

delays match (N...3...2,) this approach is known as matching 

velocity [4]. This technique is used for spike magnitude and 

noise tolerance capabilities are sensitive to aspects such as 

amplifier layout (unipolar, tripolar, or monopolar), filter 

characteristic, and amplifier strength. 

Several research offer a classic DSP (digital signal 

processor) for digital filter construction to conduct 

mathematical operations on signal fully digital magnitudes as 

well as their major utilisation in producing computer and 

costume microcontroller [11]. The primary advantages of the 

DSP approach are processing speed, hardware cost, and the 

flexibility to execute a specific application using a DSP chip 

or ASIC (application specific integrated circuits). However, 

DSP algorithms continue to have limited utility in online 

recording and are costly. Another technology used is FPGA 

(Field Programmable Gate Arrays), which combines the 

properties of both ASIC and DSP. Moreover, the FPGA's 

capabilities, such as reprogramming and reconfiguring, make 

the system easier to adapt and deploy. As a result, the 

adaptable filter is configured using an FPGA board. 

New studies [12-15] aims to reduce filter order by 

decreasing the range of a delay line. However, changing the 

sequence of the filters does not totally use for memory and 

power savings in implementing on Xilinx and ASIC systems. 
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Furthermore, reducing filter order may result in lengthy length 

coefficient values, resulting in an unnecessary increase in 

hardware size and a significant fall in noise reduction 

capabilities. 

The current study proposes a further decrease in device 

power and size consumption by utilising the parallelism 

feature of the Xilinx, without increasing the complexity of the 

hardware design. Because of advancements in the capability 

of digital signal processors, adaptive filters are now commonly 

utilised in devices such as healthcare monitoring equipment. 

The key aims of this research are to provide the best LSM 

adaptive filter method for brain spike signal recording 

performed on FPGA. MATLAB program 2010, Modelsim (De 

6.5e) software, Xilinx (Integrated Software Environment) 

(ISE) Suite (14.2), and FPGA Spartan (3E-100 xc3s100e) 

board and laptop were used to create the filter. The MATLAB 

fixed-point toolbox is used to calculate the LMS digital filter 

weights, which are then reused to synthesise the system on 

FPGA alongside the other units for the entire detection process.  

The primary advantage of this strategy is that it reduces live 

time neural recording while conserving device and power 

resources. Furthermore, the present adaptive filter has also 

been confirmed and run on an FPGA board with such a non 

biological signal generator, which was previously done in our 

work [16]. 

 

 

 
 

Figure 1. The whole system structure 

 

 

2. MRESOURCES AND METHODOLOGY 

 

2.1 System structure 

 

Figure 1 depicts the entire system units for the LMS 

adaptive filter. Unit one is made up of a ten-channel synthetic 

bipolar pulse generator (implemented and characterised in 

more detail in [16]) that is employed to supply data input for 

the SPU for the ANN approach unit, that was previously 

implemented in the previous study [17]. Unit two turned the 

ten bipolar streams into nine tripolar channels, which were 

then supplied into the ANN processing block [18-20] for a 

structure with (N+1) electrodes, there will be (N) bipolar 

channels and (N-1) tripolar ones. Unit three is the proposed 

LMS adaptive filter used in this work to increase 

discriminating recording and noise reduction. 

 

2.2 Adaptive filter technique 

 

The adaptive filter used in a wide range of applications due 

to the creation of sophisticated adaptive algorithms and the use 

of powerful digital signal processors. Over the past two 

decades, adaptive techniques have been successfully used in a 

vast array of various applications. Numerous configurations 

could be used in a number of various industries, including 

radar, sonar, audio and video signal processing, and noise 

reduction, among others. 

The design method and adaptation algorithm are the 

primary determinants of how effective adaptive filters are. The 

adaptive filters can have analog designs, digital designs, or 

mixed designs, each of which has benefits and disadvantages. 

For instance, analog filters are quick to respond and use little 

power, but they have offset issues that interfere with the 

functioning of the adaptation algorithm [20]. The digital filters 

provide a more precise response and are offset-free. 

Additionally, the adaptive filters may combine various filter 

types, such as linear or nonlinear, finite impulse response (FIR) 

or infinite impulse response (IIR) filters, single-data or multi-

input data filters, and linear or nonlinear. 

There are several ways available for adaptive filter 

construction and tuning. Because of these properties and 

capabilities for working in a real-time environment, a high 

SNR, low silicon and power usage for this implementation 

approach is nominated in this study. Furthermore, the present 

filter design provides great performance and is suitable for 

neural recording applications. 

The filter parameters are adjusted on the basis of reducing 

the mean squared error (MSE) that exists between the intended 

signal and the filter output. The two most popular adaptation 

algorithms are Recursive Least Square (RLS) and Least Mean 

Square (LMS). RLS provides a faster convergence rate than 

LMS, but LMS retains its edge in terms of computation 

complexity. The LMS algorithm is most frequently used in the 

design and execution of integrated adaptive filters due to its 

computational simplicity. 

 

 
 

Figure 2. The filter structure of the LMS adaptive procedure 
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The (LMS) adaptive filter structure shown in Figure 2 is 

chosen because it outperforms alternative type of digital filter. 

Moreover, the major benefit of this filter implementation, it 

necessitates minimal arithmetic complications than some other 

techniques (such like RLS), and there is no complicated 

implementation needed in practice. FIR filters having a linear 

phase, therefore the signal always is steady, which is a huge 

benefit over IIR filters because FIR filters contain just zeros 

and are still (BIBO) stable. Signal processing requires a high 

level of stability. 
 

2.3 LMS procedure 
 

The LSM proposed technique has a sequential delay line 

identical to the FIR filter configuration as shown in Figure 3; 

therefore, the model parameters of the LMS adaptive filter 

must be updated based on the error value of each individual 

sample, and the adaptive filter weights are tuned as indicated 

below: 

 

Wi,k+1=win+2µɛk+1, for i=0, 1, …, I (1) 

 

The LMS method is independent of the input data x(n) and 

therefore does not necessitate any specific connection. As a 

result, it might be used to tune a linear integrator as well as a 

FIR filter. In this case, the modified phrase looks like this:  

 

Wi,k +1=wik+2µɛk (2) 

 

The LMS process acts somewhere at each sample, (k), to 

create a little update in the single coefficient. If the trend of the 

change is utilised at sample time k, it may lessen the error. The 

magnitude of the variance in each coefficient is determined by, 

the amount of the linked x, and the errors at sample (k). The 

coefficients that have the most impact upon the output stream, 

(y(k), are modified the most. When the mistake becomes zero, 

the updating of the coefficient values should be halted. If 

indeed the associated magnitude of (x) is zero, such that 

updating the weight creates negligible variance, then no 

change happens. 

The convergence parameter (μ), as indicated in (3), governs 

algorithm performance and depicts the approach speed and 

appropriate filter weights. If μ the value is sufficiently large, 

the strategy will fail to converge. A extremely small value of, 

in contrast hand, causes the approach to converge slowly and 

prevents it from following variable states. If (μ) the value is 

significant but not too big to prevent convergence, the 

technique quickly obtains a steady-state. The sequins, on the 

other hand, overshoot the optimum coefficient vector.  In 

certain circumstances, (μ) is initially big for quick 

convergence and later lowered to reduce overshoot. 

However, with proven predictions for stability and 

uniqueness, the approach converges condition as follows [21, 

22]: 

 

0 < 𝜇 < [
1

(𝜎2)
] (3) 

 

where, 

 

𝜎2 = ∑ 𝜎𝑖
2

𝐼

𝑖=0

 (4) 

 

δσi equal RMS magnitude of input stream. 

In successive FIR filter, every input has an equal RMS 

magnitude since all the signals are equal, but they are delayed 

among each other. So, the total power in this circumstance 

equal to: 

 

𝜎2 = [(𝐿 + 1) ∗ (𝜎0
2)] (5) 

 

The a normalized LMS approach: 

 

𝑤𝑖,𝑘+1 = 𝑤𝑖𝑘 + [(
2𝜇𝜎

𝜎2
) 𝜀𝑘 ∗ 𝑥] − 1 (6) 

 

The convergence (μ) expression is: 0 < 𝜇 < [
1

𝜎2]. 

 

2.4 Design of an LMS adaptive filter 

 

The LSM model design comprises of output computation 

magnitudes, error, filter learning rate, and cost function. The 

suggested process consists of four steps. The adaptive 

approach, as shown in Figure 2, is built on incorrect feedback 

toward the LMS digital filter weights. 
 

a) Level one:  

Calculate the output magnitudes (y(n)) using (7). 
 

𝑦(𝑛) = ∑ 𝑥(𝑛 − 𝑘) ∗ 𝑤(𝑘) = 𝑥𝑛
𝑡 ∗ 𝑤𝑛

𝐼−1

𝑘

 (7) 

 

where, 

The model output of LMS adaptive filter = (y(n)), and the 

Loop Length=I. 

The input delay line of the filter sample=x(n-k), and the 

filter weight=wn(k). 
 

b) Level two: 

The error [e(n)] generating from (8).  
 

𝑒(𝑛) = [𝑑(𝑛) − 𝑦(𝑛)] (8) 

 

where, Error data=e(n), Desired data=d(n). 
 

c) Level three: 

The computation of (β) by locating the variance (𝜎2) in (9) 

with the lowest computation cost; 
 

𝜎2(𝑛) = [0.95 ∗ 𝜎2(𝑛 − 1)] + (
𝑒2(𝑛)

𝑛
) 

𝑖𝑓 𝑛 = 0; [𝜎2(𝑛)] = 1  

(9) 

 

where, (β) and ( 𝜎2(𝑛))  represent the cost function and 

variance of the filter model respectively. 

 

d) Level four: 

The computation of weights (wn+1(k)) is presented in (10). 

The LMS model of the adaptive filter weight is adjusted based 

on the next equation in (10) (wn (k)) and (wn+1 (k)) represents 

the current and next coefficient values, respectively, the 

learning rate is represented as (μ) and the input is x(n-k). 
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𝑤𝑛+1(𝑘) = 𝑤𝑛(𝑘) + [𝜇 ∗ 𝑠𝑖𝑔𝑛[𝑒(𝑛)] ∗ 𝑥(𝑛 − 𝑘)]; 
𝑖𝑓 (|𝑒(𝑛)|) > 𝜎2 

= 𝑤𝑛(𝑘) + 𝜇 ∗ [(
2

𝜎2
) − [

|𝑒(𝑛)|

𝜎2
]] ∗ 𝑒(𝑛)

∗ 𝑥(𝑛 − 𝑘); 
𝑖𝑓 (|𝑒(𝑛)|) ≤ 𝜎2 

(10) 

 

 
 

Figure 1. Adaptive filtering proposal for LMS 

 

Figure 4 depicts the layout of the LSM adaptive filter design 

as well as the output and input signals. The input (x(n)) is a 

noisy real-time neural signal, and the output signal is (y(n)). 

When the filter model coefficients are returned back to the 

filter, the error value (e(n)), variance, and coefficients values 

tuning are obtained. The error e(n) is determined from of the 

difference between both the intended signal (d(n)) and the 

output signal (y(n)), which is deducted from of the desired 

signal data (d(n)) which would be provided to the adder after 

the noise is ejected. Following the modification of the 

coefficients, the filter signal is repeated numerous times to 

recover the desired signal. 

 

 
 

Figure 2. Design for LMS Adaptive filters 

 

 

3. LMS ADAPTIVE FILTER CONFIGURATION 

 

Figure 5 [23] depicts the whole implantation process, 

including all phases employed in this study, beginning with the 

use of both Simulink and MATLAB to simulate and analyse 

the sugested filter design for noise decrease and spike 

detection. The Verilog HDL (hardware description language) 

(HDL) coding is then created after the overall system elements 

have been verified. The (Modelsim De 6.5e) Software and the 

Synthesis (Integrated Software Environment) (ISE) Suite 14.2 

software are used to simulate, validate, and synthesise the 

LMS model of the adaptive filter on the Embedded system. 

Simulation in MATLAB software was used to assess and 

test the simulation, as illustrated in Figure 6. The AP signal 

was combined with a white Gaussian background noise source 

and filtered using the low-pass FIR. Figure 6 shows the LMS 

filtering method fed by the Gaussian voltage level and the 

required signal coupled towards the output data of the LP FIR. 

The output signal of the LSM adaptive filter removed from a 

noisy AP signal. The Time Scope is introduced to the system 

to monitor signal changes and errors during simulation. In 

addition, the Vector Scope is linked to the filter weights port 

to display the filter coefficients value. 

 

 
 

Figure 3. Design flowchart procedure 

 

 
 

Figure 4. Simulink-based LMS adaptive filter model 

 

In Figure 7, time scope window indicates that the error is 

decreasing and that the output signal is nearly identical to the 

original neuron pulse input signal. 

In Figure 8, vector scope window depicts the actions of 

LSM model of the adaptive filter coefficients in Simulation 

result following simulation running time. Figure 8 depicts the 

filter weights being updated and reaching their steady-state 

magnitude. 

134



  
  

Figure 5. System behaviour in terms of signals Figure 6. Coefficients for LSM adaptive filters 

 

Table 1. Device usage analysis 

 

Design Techniques 
Number of Logic Utilisation 

Slices Slice Flip Flops 4 input LUTs bonded IOBs Mult18X 18SIOs GCLKs 

Conventional IIR construction 
Used 301 122 528 23 12 1 

Utilization 3% 0% 3% 9% 42% 4% 

Conventional FIR construction 
Used 369 158 630 35 12 1 

Utilization 4% 0% 3% 14% 42% 4% 

LMS adaptive filter construction 
Used 220 100 400 18 8 1 

Utilization 2 % 0% 2% 7% 28% 4% 

 Available 8677 17344 17344 250 28 24 

 

Table 2. The power consumption and gate number 

 
Power consumption and device usage Typical FIR architecture Typical IIR architecture Typical LMS adaptive filter architecture 

No. of logic gates required 1479,620 1,263,513 1057,172 

Consumed current 30 mA 27 mA 22 mA 

Consumed power (measured) 30.7 mW 26.5 mW 23.6 mW 

Consumed power (estimated) 30.55 mW 26.36 mW 23.33 mW 

 

 
 

Figure 7. LMS adaptive filter synthesis process 

 

The Verilog HDL is used to synthesise the suggested filter 

design using a Xilinx (Spartan 3E-100 xc3s100e) and laptop, 

as shown in Figure 9. As an ideal length size, the filter input 

data is digitalized into 16 bits. More optimization is used to 

reduce electronics size and power usage even further by 

reducing the amount of multiplications, subtractions and 

necessary for implementation. The filter is optimised using a 

parallel processing arrangement in this method. 

The greater data sampling frequency is achieved with six 

clock pulses when the system's clock speed is increased. The 

hardware design utilisation, which comprises the number of 

slices, Flip Flops, 4 input LUTs, bonded IOBs, 

Mult18X18SIOs, and GCLKs, accounts for approximately 

25% of the total hardware FPGA size. As a result of adopting 

a high frequency, the design efficiency is greatly improved. 

Furthermore, this enhancement improves (VSR) and detection 

performance in the continuous recording situation. 

 

 

4. RESULTS AND DISCUSSION 

 

Table 1 compares the current LMS adaptive filter to another 

digital filter design, demonstrating that the design occupies 

around 25% of the hardware space for the xc3s100e Xilinx 

processor. Furthermore, the device utilisation summary shows 

that the present design only uses 100 (Flip Flops) slices and 8 

(multiplexers) wheel, which is present the most significant 

improvement can we obtained in this design, whereas the 

standard IIR and FIR techniques require (122) Flip Flops slices 

and 12 demux and 158 (Flip Flops) slices and 12 multiplexers, 

respectively. As a result, the suggested filter architecture 

offers a significant reduction in hardware size when compared 

to the classic digital filters techniques (direct IIR and FIR). 

The suggested filter mechanism demonstrates a significant 

reduction in power consumption of roughly 10% and 25% 

when compared to the IIR and FIR structures, as shown in 

Table 2. Consequently, this enhancement renders the system 

more compatible with devices in medical applications, 

particularly brain recording applications, where power 

consumption is critical for design manufacture. Furthermore, 

the noise elimination performance of all streams data 

recordings enhanced by 23% when compared to other types of 

filters. 
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Table 3. Error in suggested LMS adaptive filter and 

Traditional technique 

 

Filter Parameter 
Type of 

Technique 

Matched Velocity (m/s) 

10 30 50 70 90 

Matched Velocity 

Band 

Traditional 

Technique 
1.75 16 23 46 45 

Our Technique 2.7 8.9 8.3 23.9 41.6 

Centre 

Velocity(m/s) 

Traditional 

Technique 
8.87 35 54.5 105 

107.

5 

Our Technique 
10.2

8 

32.1

5 

51.8

5 

70.7

5 
93 

|Error (m/s)| 

Traditional 

Technique 
1.13 5 4.5 35 17.5 

Our Technique 0.28 2.15 1.85 0.75 3 

 

As demonstrated in Table 3, the noise reduction improves 

the precise detection of spikes recordings. This filter's 

categorization and discrimination are theoretically improved, 

which implies greater detection, a better accurate ratio, and a 

lesser missing rate than previous approaches. As a result, this 

is a conceivable addition to the system that may result in more 

precise of AP recording, and advanced application for 

operating prosthetics. 

This study proposes an optimal LMS adaptive filter 

architecture for advanced spike identification utilising VSR in 

clinical ENG signal recording. The current filter works 

successfully in a real-time spike recording setting, with 

improved accuracy performance in a medical application. To 

evaluate and construct the filter model in both MATLAB and 

Simulink, a normalise filter approach is employed. The filter 

configuration is employed a Verilog HDL synthesis on an 

Embedded system (xc3s100e Xilinx chip). Furthermore, a 

high-speed sampling data rating is achieved by increasing the 

system's clock cycle frequency. The arithmetic required for 

filter setup is minimised, as is the silicon and power necessary 

to run the system in continuous neural recording without 

sacrificing accuracy. Approximate 25% in hardware size 

saving and 10% in power-consuming achieve using ultimate 

optimum design compare with IIR and FIR filter design. 

Moreover, the SNR is improved significantly by about 23% 

for the system.  

 

 

5. CONCLUSIONS 

 

An innovative spike detection algorithm and hardware 

implementation designed for online recording multi-channels 

systems have been presented in this study. The algorithm's key 

characteristics are as follows: It has a mean-subtraction filter 

built in that can reduce phase misalignment while eliminating 

noise. A cutting-edge pre-processor that has the least stated 

computational complexity of any pre-processor for improving 

SNR. a brand-new, reliable thresholding scheme that can 

lessen the impact of surges. This research presents an efficient 

LMS adaptive filter design for enhanced spike recognition in 

healthcare ENG signal recording using VSR. In a medical 

application, the present filter works satisfactorily in a online 

spike recording situation, with increased accuracy 

performance. A normalise filter strategy is used to analyse and 

generate the filter model both in MATLAB and Simulink. On 

an embedded system, the filter design is implemented using 

Verilog HDL synthesis (Xilinx chip (xc3s100e)). 

Furthermore, boosting the system's clock frequency rate 

results in a high-speed sampling data rate. The mathematics 

required for filter configuration is reduced, as is the silicon and 

power required to run the device in continous neural recording 

mode without compromising accuracy. 

The number of single units that can be detected using this 

approach by spike sorting algorithms is constrained. A ten 

neurons maximum can be accurately identified at most. This 

restriction has significant effects on synapses that are sparse.  

The identification of sparse neurons requires additional 

algorithmic development. 
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