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Human action recognition refers to the task of recognizing and categorizing human actions 

in video or image sequences. This is a complex problem in computer vision and has a wide 

range of applications, including video surveillance, human-computer interaction, and sports 

analysis. In this work, A novel approach to action recognition using Segmental Action 

Networks is presented. The proposed approach utilizes 2D and 3D convolutional neural 

networks to extract spatiotemporal features from video frames, which are used to train a 

Segmental Action Network. To improve the model's accuracy, Different voting and feature 

extraction techniques, such as Space-Time Interest Points, (STIP) and Optical flow have 

been applied. The proposed model has been tested on the HMDB51 dataset and has 

achieved better results than existing models. The results demonstrate the effectiveness and 

robustness of our proposed approach for action recognition. Furthermore, our model is 

computationally efficient and can be deployed on edge devices with low computational and 

memory capacity, making it a promising approach for real-world applications. 
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1. INTRODUCTION

Human action recognition is a task in computer vision that 

aims to recognize and classify human actions in videos or 

images. It is used in applications such as video surveillance, 

human-computer interaction [1], and video indexing. The task 

is challenging due to the complexity of human movement and 

the lack of labeled data. Different methods have been proposed 

to address the task, including discriminative learning and deep 

learning approaches. Recent advances in deep learning have 

enabled significant progress in this field. 

Deep neural networks have been used to great effect in 

human action recognition due to their ability to extract 

meaningful features from raw data and to learn complex 

patterns. This enables them to learn patterns, such as motions 

in a video, that would otherwise be difficult to capture using 

traditional methods. As a result, deep neural networks are 

capable of accurately recognizing motions in videos, which 

can be a valuable tool in applications such as sports analytics 

and medical diagnosis. 

The majority of research in the action recognition field has 

largely focused on designing deeper and more complex deep 

neural network architectures for improved accuracy [2, 3]. 

However, the increasing complexity of deep neural networks 

has become one of the biggest obstacles to the widespread 

deployment of deep neural networks on edge devices such as 

mobile and other consumer devices, where computational [4], 

memory, and power capacity is significantly lower than that in 

high performance computing systems. 

Convolutional Networks (ConvNets) [5] have recently 

proven to be quite effective at classifying human actions in 

images. ConvNets have also been used to handle video-based 

action recognition problems [6-8]. Deep ConvNets have a lot 

of modeling capability and can learn discriminative 

representations from raw visual input using large-scale 

supervised datasets. 

This paper proposes a novel approach to extract 

spatiotemporal features and implements a Segmental Action 

Network, a This novel architecture utilizing an I3D model to 

train on the extracted features. Section 2 covers related works 

in human action recognition, Section 3 provides detail on the 

deep model used, Section 4 discusses experimental results, and 

Section 5 concludes the paper and identifies further work. 

2. RELATED WORK

Many approaches have been developed in recent years, but 

the majority of them have computational limitations, there has 

been a lot of research based on deep learning to recognize 

human actions in videos, since videos are 3D spatio-temporal 

signals, the main idea behind the majority of these studies [9, 

10] is to extend Convolutional Neural Networks (CNNs) to

include the temporal information contained in videos.

Karpathy et al. [11]. proposed several fusion techniques that

slightly modify the CNN architectures to operate on stacked

video frame inputs. As their results were similar to the results

obtained by using individual RGB frames, these techniques

were shown to not correctly model the temporal information.

In order to operate in the spatio-temporal domain, Ji et al. [12].

proposed a 3D CNN model that performs 3D convolutions on

stacked video frames to learn spatio-temporal information

between consecutive frames. In addition to the fact that 3D

CNNs perform similarly to 2D CNNs, they are

computationally expensive to train because they contain many

more parameters and do not model long range temporal

information.

In the same context, Simonyan and Zisserman [13] 

proposed a two-stream CNN architecture that learns spatial 

appearance information from RGB frames and motion 

Revue d'Intelligence Artificielle 
Vol. 37, No. 1, February, 2023, pp. 185-190 

Journal homepage: http://iieta.org/journals/ria 

185

https://orcid.org/0000-0001-8531-521X
https://orcid.org/0000-0002-9339-6934
https://orcid.org/0009-0007-3869-5652
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.370123&domain=pdf


 

information between frames using optical flow [14]. To 

improve this architecture that considers only a single frame as 

input, Wang et al. [15, 16] proposed architectures that 

aggregate the convolutional features at different temporal and 

spatial positions. However, the streams in these two-stream 

CNN architectures are independent and there is no shared 

information between them. These architectures capture only 

the motion information in short time windows and do not 

guarantee to keep the most representative features with 

pooling techniques. 

 

 

3. FEATURES SELECTION 

 

3.1 Optical flow 
 

Optical flow [14] is the apparent 2D image motion of pixels 

(Figure 1). The main initial assumption of optical flow is 

'brightness constancy assumption', where intensity of pixels in 

small variations in 'x', 'y' and 't' directions are the same as the 

original pixel. The brightness constancy equation is given by 

Eq. (1): The brightness constancy equation. 

 

𝑰 𝒙, 𝒚, 𝒕 = 𝑰(𝒙 + 𝒅𝒙, 𝒚 + 𝒅𝒚, 𝒕 + 𝒅𝒕) 

 

 
 

Figure 1. Optical Flow estimation using Lucas–Kanade 

method 
 

3.2 Space-time interest points 
 

Interest points provide compact and abstract representations 

of patterns in an image. So, to extend the notion of spatial 

interest points into the spatiotemporal domain and show how 

the resulting features often reflect interesting events that can 

be used for a compact representation of video data as well as 

for its interpretation. 

Many works have been presented to capture STIP 

information to improve activity recognition. 

 

3.2.1 STIP Methods 

The Harris STIP method can be used to detect corners in 

frames. It is used to detect corners in every pixel of an image 

by taking into account the corner's differential with respect to 

direction. If the pixel is in a region of uniform intensity, the 

adjacent edges will appear comparable. Furthermore, Gabor 

wavelets are used to find the corners from the exact location 

of the object using the Gabor STIP. 

 
 

Figure 2. Spatio-temporal interest point detection of two 

guys fencing 

 

The major goal of the STIPs (Figure 2), according to the 

study [17, 18], is to perform event detection directly from the 

image's spatiotemporal data, taking into account regions that 

have unique locations in space-time with enough robustness to 

detect and classify. 

The idea of the Harris and Forstner interest point operators 

is used to detect spatiotemporal events by detecting local 

structures in space-time where the image values have 

significant local variations in both space and time. 

Spatiotemporal extents of the detected events are estimated 

and scale-invariant spatiotemporal descriptors are computed. 

Video representation is constructed in terms of labeled space-

time points by using the descriptors to classify events. 

 

 

4. PROPOSED APPROACH 
 

The proposed approach divides each video into N segments, 

with each segment having α frames. The hyperparameter of α 

is kept fixed for the whole dataset and these chunks are 

referred to as segments. This approach is split into two stages, 

with each stage implementing a different neural network. 

 

4.1 Action Frame Selection Network (AFSN) 
 

The main strategy of this architecture (Figure 3) is to extract 

spatiotemporal features from the entire segment into a single 

frame, referred to as the "Action Frame".  

MobileNet V3 [19], a 2D Convolutional Neural Network 

(CNN) architecture, has been implemented as the main 

pipeline for this architecture. It was trained on the ImageNet 

Dataset, which consists of 14 million images in 1,000 

categories. This architecture has strong performance for image 

classification, object detection, and semantic segmentation 

tasks, and its characteristics include efficient network 

architecture, improved network scalability, and improved 

accuracy on ImageNet. 

A pre-trained 2D convolutional neural network is used to 

extract spatial features from each segment of the video. This 

network outputs a feature vector for each segment. The top 10 

classes of each segment are then predicted and weighted 

according to their order. A max voting system, referred to as 

Score Vote, is used to select the frame with the highest score 

from each segment. This results in the extraction of one frame 

for each segment that has the highest Score Vote among the 

other frames in that segment. This process is repeated for each 

segment of the video. Temporal features are obtained using 
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optical flow, with the previous frame used as the original point 

for the output action frame.  

The Lucas-Kanade (LK) method [20] is a well-known 

iterative sparse optical flow estimation technique used in 

computer vision to estimate the motion of objects from 

successive frames in a video sequence. It is based on the small 

motion assumption, which enables it to track a set of image 

points over multiple frames in order to calculate the optical 

flow. The LK method is highly regarded for its robustness to 

noise yet requires minimal computations, making it an ideal 

choice for our application. The Lucas-Kanade method has 

been selected due to its superior results.

 

 
 

Figure 3. Action Frame Selection Network (AFSN) 

4.2 Phase II - Segmental Action Network (SAN) 
 

In the field of image recognition, convolutional neural 

networks (CNNs) have proven to be an effective feature 

extractor. It has been demonstrated that just by making the 

proper adjustments during training, CNNs can achieve much 

greater success in visual target recognition and classification. 

Furthermore, CNN has invariance for lighting, and disorderly 

environmental change. 3D convolutional neural networks 

were initially developed for an action recognition problem, 3D 

CNN has been a common research method, as some works 

[21] shows that 3D CNN is better for low-level spatial 

temporal features extraction, in this phase, a novel 

architecture, Segmental Action Network (SAN), is utilized to 

train the model. SAN implements the Frame Selection 

Network architecture on each segment to output the selected 

frame in spatiotemporal dimensions (Figure 4). Subsequently, 

all frames are concatenated and fed into a pre-trained I3D, a 

widely adopted 3D video classification network that directly 

extracts spatiotemporal data from videos using 3D 

convolution. Consequently, I3D is selected as the main 

pipeline of the CNNs.

 
 

Figure 4. Segmental Action Network (SAN) 
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5. EXPERIMENTAL RESULTS 
 

5.1 Dataset 
 

The experiments were performed on HMDB-51 [22]. There 

are 6849 videos in 51 classes in the HMDB-51, with at least 

101 clips in each category. The work of classifying each video 

or action is difficult because all of the videos were acquired 

from YouTube and contain a wide range of degrees of freedom. 

These datasets are divided into three groups using various 

combinations of training and testing data. The original dataset 

was utilized to train and evaluate the method, ensuring an 

accurate comparison with earlier methods (Figure 5). 

 

 
 

Figure 5. Example of HMDB Dataset action classes 

 

5.2 Experimental settings 
 

Several experiments are conducted to evaluate the 

performance of our proposed method on HMDB Dataset. The 

proposed approach is implemented using Python, OpenCV 

and deep learning API Keras with Tensorflow as a backend. 

The experiment was performed with an Nvidia Tesla K80 

GPU having 4992 Nvidia Cuda cores. 

 

5.3 Results 
 

Multiple pipeline variants for the convolutional networks 

feature extractor have been implemented, with MobileNet V3 

performing well in terms of accuracy among the other 

backbones. 

 

Table 1. Results of our approach using different 2D CNN 

pipeline variants on HMDB-51 

 
2D CNN pipeline 

variant 
Accuracy 

GoogleNet 

(Inception) [23] 
68.14% 

ResNet-50 [24] 70.42% 

VGG-16 [25] 71.21% 

Xception [26] 72.76% 

SqueezeNet [27] 73.18% 

MobileNet V3  73.32% 

 

A comparison of our model and other models is shown in 

Table 1. Note that Segmental Architecture Network (SAN) 

achieved comparable performance by utilizing a smaller 

backbone network such as MobileNet V3. 

The reason for the significant difference in GFLOPs 

between MobileNet V3 and other popular models in Table 2 is 

that MobileNet V3 is a very lightweight architecture, whereas 

the other models have a very large number of parameters. 

A comparison of the 3D CNN pipeline is shown in Table 3. 

I3D was used as the main 3D CNN pipeline due to its 

performance. the best in all of the studies mentioned, which 

were all conducted on the same platform. 

 

Table 2. Comparison of our approach using different 

backbones on HMDB-51, the complexity is evaluated using 

FLOPs, i.e. floating-point operations per second, results are 

only using RGB information, no optical flow is used for these 

experiments 

 
2D CNN pipeline 

variant 
FLOPs 

ResNet-50 217 G 

VGG-16 124 G 

Xception 168 G 

MobileNet V3 74 G 

 

Table 3. Results of our approach using different 3D CNN 

pipeline variants on HMDB-51 

 
3D CNN pipeline 

variant 
Accuracy 

Two-Stream 52.6% 

C3D 64.43% 

Res3D 69.18% 

TSN 72.18% 

I3D 73.32% 

MobileNet V3  73.32% 

 

5.4 Comparison 
 

The value of the representation flow was verified by 

comparing it to other CNN-based motion representation 

techniques currently in use. When the authors' code was 

accessible, it was utilized for the tests, otherwise the methods 

were carried out independently. The use of 3x224x224 as input 

frames enabled more accurate comparisons to previous works. 

Table 4 show a comparison between our model and other 

models on HMDB-51. 

 

Table 4. Comparison of our approach with other results on 

HMDB-51 

 

Method Backbone 
Pre-train 

Data 
Accuracy 

C3D 3D VGG-11 Sports-1M 51.6% 

STC [28] ResNet101 Kinetics 66.8% 

ARTNet with 

TSN [29]  
3D ResNet-18 Kinetics 70.9% 

ECO [30] 
BNInception+

3D ResNet-18 
Kinetics 72.4% 

TSN [31] ResNet-50 
ImageNet+Ki

netics 
54.7% 

TSM [32] ResNet-50 ImageNet 70.7% 

STM [33] ResNet-50 
ImageNet+Ki

netics 
72.2% 

Our 

Approach 

(SAN) 

MobileNet 

V3 
ImageNet 73.32% 

 

Table 4 provides a summary of the performance 

comparisons. The Segmental Action Network scores overall 

of 73.32% on HMDB-51 show that the visual representation 

created by our feature extraction method provides an 

improvement in performance over baselines on the action 

recognition task. 
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6. CONCLUSION 
 

This study presented a novel approach to learn better 

representations for action recognition in videos. The proposed 

approach extracts the action frame spatial feature from the 

segments using MobileNet V3, then applies an optical flow to 

this action frame, which helps to extract the temporal features. 

This leads to improved performance on the downstream task 

of action recognition as well as enhancing performance by 

reducing computational costs, as the video is segmented into 

chunks to make the system benefit from parallel computing. 

Furthermore, the proposed architecture was able to effectively 

extract visual characteristics from each image, calculate the 

optical flow in the sequence of selected images, and use a 3D 

spatio-temporal convolutional network as a feature extractor 

for human action recognition. Results from the HMDB 

database showed that the proposed model was able to 

accurately recognize human actions with a high level of 

accuracy. The approach can be extended to explicitly handle 

missing joint information and people in the background. there 

is considerable potential for applications of these methods in a 

variety of scenarios, and further research is needed to explore 

these applications. 

 

 

DATA AVAILABILITY 

 

The datasets analyzed during the current study are available 

at https://serre-lab.clps.brown.edu/resource/hmdb-a-large-

human-motion-database/#dataset. 
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