
Tree-Based Approach’s to Mitigate the Heterogeneity Concerns among Different file

Systems: A Possible Solution

Sheikh Amir Fayaz1 , Majid Zaman2* , Iqbal Hasan3, Waseem Jeelani Bakshi1, Sameer Kaul1

1 Department of Computer Sciences, University of Kashmir, J&K 190006, India
2 Directorate of IT & SS, University of Kashmir, J&K 190006, India
3 Department of Computer Sciences, Jamia Millia Islamia, Delhi 110025, India

Corresponding Author Email: zamanmajid@gmail.com

https://doi.org/10.18280/ria.370129 ABSTRACT

Received: 21 December 2022

Accepted: 8 Feburary 2023

It might be quite difficult to search for words or phrases in the many file formats that are

based on various operating systems. To deal with this level of heterogeneity in different file

systems, several academics have put up a number of alternative strategies. Given that data

is stored in various formats and is controlled by several operating systems, such solutions,

however, proved to be extremely time-consuming. The suggested techniques work best

when the data is kept in a single source. The idea of bottlenecking and the resulting

heterogeneity in file systems are two main issues with looking for a certain collection of

data objects (folder, file, or directory) across many platforms (Windows, Linux, and so

forth). We made an effort to suggest fundamental searching methods that may deal with the

issue of heterogeneity while increasing efficiency and maintaining dependability. Our

method makes use of a concept known as tree-based breadth first search (BFS) and depth

first search techniques (DFS) to limit to an absolute minimum the amount of I/O operations

that might be required in the heterogeneous environment. The experiment was run on

Windows and Linux computers, and it was discovered that by using these strategies, the

heterogeneity issues may be greatly decreased, leading to some encouraging outcomes.

Keywords:

heterogeneous file systems, DFS, BFS,

windows, Linux

1. INTRODUCTION

In the last two decades, data has grown at an exponential

rate, and data analysis has become more important for many

real-world challenges in fields such as health, weathercasting,

academic, and commercial sectors, among others, since it

provides value by providing useful insights from data. As we

progress toward huge data sources with massive volumes of

data, the potential for important discoveries grows;

nevertheless, so does the volume of worthless data [1, 2].

Furthermore, the data to be processed is commonly stored in a

number of formats, ranging from fully organised to semi-

structured to completely unstructured, such as free text. As a

result, the challenges in processing all of the data available

today are in expressing and answering questions [3].

The idea of heterogeneity may be observed in the many

storage platforms supported by various file systems such as

Linux and Windows. Windows stores data in its architecture,

but Linux stores data in its architecture. The user wishes to

access data from both heterogeneous systems, and several

strategies have been developed to overcome the heterogeneity

[4]. It is critical to extract vital information from many

platforms. These sources of information might contain various

sorts of data, such as data stored at database levels and various

file systems such as pdf/txt and HTML file formats. Many

researchers have used different techniques in order to tackle

with the heterogeneity concerns which include parallel system

reliability analysis with a CECBO algorithm [5], HAS systems

at parallel systems [6], keyword based searching techniques

[7], indexing techniques [8], integrating different data sources

[9] and, other various techniques [10] and so on [11, 12]. All

of these approaches have their pros and cons and they mainly

security concerns and permanent and transient failures. As a

result, a good approach to break the heterogeneity levels

across storage devices run by heterogeneous platforms is

required. The technique should operate in a heterogeneous

environment, allowing data sharing and searching across many

different platforms; providing massive scalability of data,

servers, and clients; ensuring high availability of customer

data; and incorporating centralized, automated storage and

data management, which helps to reduce storage management

costs.

Therefore, in order to give true insights, we want a one-of-

a-kind system that can function and execute queries from one

or more file systems, such as in Linux and Windows. In

general, looking for data in various directories and folders of

Windows and Linux requires distinct commands since the

operating systems are different. However, this method is

restricted in scope because it only works with specific file

system types. To search in each and every directory, we must

employ some promising data structure strategy and technology.

The main objective to carry out this study is to provide

individual users with simple and flexible access to their own

data and break the heterogeneity constraints when accessing

the data. Because personal data is very sensitive, privacy and

ethical concerns must be addressed when working with this

sort of information.

The study is organised as follows: Section 2 elaborates the

most recent research on heterogeneity, followed by Section 3

display of the various operating system search strategies, and

Revue d'Intelligence Artificielle
Vol. 37, No. 1, February, 2023, pp. 231-237

Journal homepage: http://iieta.org/journals/ria

231

https://orcid.org/0000-0001-6606-0864
https://orcid.org/0000-0003-1070-8195
https://orcid.org/0000-0003-0911-0073
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.370129&domain=pdf

Section 4 definition of the generic file systems used by

Windows and Linux. The implementation of the tree-based

algorithms is further demonstrated in Section 5, the evaluation

findings are defined in Section 6, the overall paper is discussed

in Section 7, and the study is finally concluded in Section 8.

2. LITERARURE REVIEW

Since there are many approaches which are currently in

process that deals with the heterogeneity and those include a

keyword based approaches, SAN system approach, indexing

technique and many more. Some of the solutions provided by

many researchers are mentioned below:

In the study [13], the impact of heterogeneity was

introduced and elaborated upon, and the overall performance

was determined by conducting an experiment. The experiment

involved accessing the parallel Orange file system using IOR

with four distinct HServers and four separate SServers.

In all, about 16 servers were employed in these trials.

Overall, the performance of hybrid clusters slightly

outperforms that of homogeneous clusters with four low-speed

HServers. As a result, the results indicated that the more

diverse the hardware, the worse the overall performance of the

system.

A study titled "Multi-Source Heterogeneous Data System

Architecture and Technology for Telecom Operator" [14] was

proposed based on a new multi-source heterogeneous data

(MSHD) with four modules: data access, data pre-processing,

data storage and administration, and data application and

visualization for telecom operators, in order to effectively

access multisource platforms and make use of valuable data

resources. Internal telecom applications as well as vertical

industry applications may benefit from the MSHD system.

In order to handle the data heterogeneity in share-disk file

systems the authors [15] developed and evaluated a method for

load management in shared-disk file systems built on

heterogeneous computer clusters. The study distributes file

sets among cluster server nodes to balance file metadata

workload and also reacts to changing server resources caused

by failure and recovery, as well as dynamically adding or

deleting servers. Furthermore, they used a technique known as

adaptive, non-uniform (ANU) randomness to continually

optimize load allocation. ANU randomization exploited the

benefits of hash-based, randomized placement approaches in

terms of scalability and metadata minimization. It also avoided

the downsides of hashing, such as load skew, inability to deal

with heterogeneity, and lack of processability. The simulation

results suggest that our load-management method outperforms

a predictive approach.

The authors [16] suggest FlexGate, a heterogeneous data

centre gateway that combines configurable packet processing

hardware and software gateways to accommodate large

amounts of inbound/outbound traffic. They presented two

function concepts based on observations in operational data

centres that may fully use the processing benefits of

hardware/software platforms. In addition, two load balancers

were used to efficiently distribute traffic to hardware

pipelines/software gateways. Experiments revealed that the

FlexGate technique can handle at least 1.5Tbps of traffic with

an average delay of 1.28 micro seconds.

Heterogeneity of parallel file systems (PFS’s) always

remains a concern and many studies are proposed and out of

which a study on HAS: Heterogeneity-Aware Selective

Layout Scheme for Parallel File Systems on Hybrid Servers

was taken into consideration for hybrid PFSs [17], where a

unique heterogeneity-aware selective data layout technique

was presented. HAS reduces inter-server load imbalance by

skewing data delivery across heterogeneous servers based on

storage performance. Depending on a newly designed

selection and distribution algorithm, HAS adaptively picked

the ideal data layout from three typical candidates based on the

application's data access patterns to greatly increase the overall

system's I/O efficiency. The authors of the study used HAS

inside OrangeFS to enable efficient data distribution for data-

intensive applications. The results confirmed that HAS greatly

improved the I/O performance of hybrid PFSs when compared

to conventional data layout pareto - optimal solutions.

The authors [18] developed a graph-based keyword search

solution in heterogeneous data sources, where as the amount

and diversity of data sources rise, query response must

accommodate for heterogeneous data models with varied

structures, or maybe no structure at all. The authors devised a

novel query approach for exploiting such disparate

information using keyword search. Given a list of search terms,

the authors arranged their underlying data as graphs, and their

algorithm develops linkages between them inside and across

the varied datasets included in the graph. They expanded on

previous work on keyword search in structured and

unstructured data, which they improved by adding the data

heterogeneity dimension, which makes the keyword search

problem computationally more challenging. They made use of

both synthetic and real-world datasets to construct the method

and assess its performance.

Because all of the above research had limitations, we

provide a possible solution to the heterogeneity problem.

Among the present issues are data processing, data

management, and, most critically, data storage. Many

academics are inspired to construct sophisticated

heterogeneous systems by data processing; yet, assessing

enormous amounts of data need more computer capability.

Furthermore, data management and storage are ongoing

difficulties with no clear solution in sight. As a result, the

major goal of our research is to solve these present challenges.

All of the systems under consideration support just a small

number of data sources. Wrappers must be produced manually

or hard-coded, and it appears that just a few data sources are

supported.

3. HOW SEARCHING WORKS IN DIFFERENT

OPERATING SYSTEMS

By default, Windows file searching scans not only the file

name but also the contents of the file. Even if we have a super-

fast nonvolatile memory express storage SSD, we ask the

operating system to go through and inspect every byte on the

drive, and each drive may potentially carry billions of bytes of

data, so this searching procedure can take a very long time and

sometimes frustrating. Therefore, in order to alleviate the

searching challenge, Microsoft employs the indexing

approach, in which material is indexed and then searched. For

example, it keeps note of the most often used place, and when

a search is performed, it initially scans that folder exclusively,

and if there is a match, it returns a hit; otherwise, it returns a

miss. Furthermore, a windows system has one more means of

searching which is using command prompt where a simple

command can also reach us to the respected file. In the case of

232

Linux operating systems, we normally don't have a searching

window and instead utilize a terminal-based search using

various Linux commands. Actually, regardless of the

operating system, the libcolombus library algorithms are

acting as searching algorithms inside. These techniques

include index based searches and contain files like

libcds/libcds2 [19] for exact match string, Lucene/Solr [20] for

full text searching and information retrieval and so on.

However, one of the key concerns of searching across

multiple platforms is whether or not the heterogeneity is truly

removed. It is evident that it does not eliminate the issues of

heterogeneity. Thus, in this work, we are attempting to provide

an overview of a method that may reduce heterogeneity

regardless of the operating systems used.

4. GENERAL FILE SYSTEMS: WINDOWS AND

LINUX

As we all know, Windows and Linux have various file

systems, and each file system has its own storage space. These

sections are divided into directories, folders, sub-folders, and

finally files [21]. Files might be of any format or type. The

basic file systems of Windows (Figure 1) and Linux (Figure 2)

are depicted here.

Figure 1. Basic Windows file system

Figure 2. Basic Redhat Linux file system (Source Google)

The file system manages how data is retrieved and saved by

keeping track of the disc and its locations. Internally, there are

no partitions in the storage discs, but the structure is presented

for simple retrieval and storage of the data so that we can

understand the data structure, such as its directories and

folders, and so on. In Linux, the file system tree begins at the

slash, which is symbolized by a forward slash (/). This

directory, which contains all underlying directories and files,

is sometimes known as the file system's root directory [22]. To

highlight their location and avoid confusion with other

directories that may have the same name, directories that are

just one level below the root directory are sometimes prefixed

with a slash. When starting with a fresh system, it is usually a

good idea to have a peek in the root directory [23]. Thus, all

files systems at least supports the following storage

components which include volume: where it is a collection of

directories and files, directories: where it is a hierarchy of

other directories and files and last if the files: where it is a

collection of similar type of data.

5. TREE-BASED APPROACH TO MITIGATE THE

HETEROGENEITY CONCERNS:

IMPLEMENTATION

BFS and DFS are popular algorithms in computer science

and have been used in a variety of applications. In the context

of alleviating heterogeneity problems in different data sources,

233

BFS and DFS can have several advantages over other

approaches. Some of these advantages include:

• Flexibility: BFS and DFS can be applied to different types

of data structures, including trees and graphs, making

them highly versatile for a range of applications.

• Ease of Implementation: BFS and DFS algorithms are

relatively simple to understand and implement, compared

to other complex algorithms.

• Optimality: In some cases, BFS and DFS can provide

optimal solutions, as they can be used to find the shortest

path or the deepest node in a tree, for example.

• Time Complexity: Both BFS and DFS have time

complexities that are linear in the number of nodes in the

data structure, making them efficient for large data sets.

Of course, these advantages must be evaluated in light of

the specific requirements of each problem, and there may be

other approaches that are better suited for a particular use case.

But, in general, BFS and DFS can be effective and efficient

methods for alleviating heterogeneity problems in different

data sources.

To reduce heterogeneity concerns in different operating

systems, we will build a rough sketch of the searching

algorithms that may be applied to prevent such issues. Breadth

first search (BFS) and Depth first search (DFS) are tree

traversal strategies included in these algorithms (DFS). BFS

and DFS are most often graph based algorithms used to

examine each and every node of the data structure.

5.1 Working of DFS algorithm in file systems

Suppose we need to search a particular file in a system

which is present in any operating system be it Linux or

windows. The general approach in the depth first search

algorithm is that it will follow the syntax of the searching of a

particular operating system and then it begins searching with

the root directory and proceeds deeper until we discover the

specific file or file with no path [24].

Because it is a recursive nature, stack data structure can be

used to build the DFS algorithm. First, it generates a stack with

the first root directory of the file system. It now selects any

directory as the starting point of the traverse and adds it to the

stack. Push a non-visited directory or file to the top of the stack

(next to the vertex at the top of the stack). This step is

continued until all directories and files have been visited. If

there are no more directories/folders/files, go back and pop the

same off the stack. Repeat the steps until the stack is empty i.e.

all the files are traversed. Based on the architecture shown

above we will implement the DFS algorithm in order to reach

to a particular file we are searching for. The general pseudo-

code of DFS algorithm implemented in both Linux and

Windows systems is shown below:

In this pseudocode, node is the current node being processed

and neighbor is an unvisited neighbor of the node. The DFS

function marks the current node as visited, and then iterates

over its unvisited neighbors, calling the DFS function on each

of them. This recursive process continues until all nodes have

been visited.

Note that this is a basic implementation of DFS and can be

modified based on the specific requirements of each problem.

Additionally, this pseudocode assumes that the data structure

being traversed is represented as a graph, but it can also be

adapted for use with trees or other data structures.

The general working of the above pseudocode of DFS is

shown below diagrammatically (Figure 3).

The following diagram depicts the general organization of

both Windows and Linux file systems, with the parent node

being the root node, which is the directory of the specific file

system. Because there are n directories in the system and we

have only presented a single directory in the preceding graphic.

Only these modules are relevant to this study; other modules

could be used as the research's capstone project. Following

that, the directories contain the folders, and those folders

include the file subfolders. The DFS algorithm operates in

such a way that it first traverses the directory and then its

associated children, and then files of that selected child, and

this process employs a stack and alternately push and pop

operations until the specific file is searched.

Figure 3. Working of DFS in removing heterogeneity at different file systems

234

5.1.1 Complexity concerns in DFS

In general, if a system contains

𝑛 directories/files/folders/subfolders, the complexity of the

DFS algorithm will be O(n) [25]. Assume the file system is

represented as an adjacent list, with each node keeping track

of all associated nodes. Thus the surrounding nodes will have

a linear time complexity and the temporal complexity will be:

𝑂(𝑛) + 𝑂(𝐸) = 𝑂 (𝑛 + 𝐸)

Furthermore, as it follows a structure of undirected traversal,

and therefore it appears twice and the complexity will be:

𝑂(𝑛) + 𝑂(2𝐸) 𝑂(𝑛 + 𝐸)

In addition, the file system will be coupled with a matrix list,

and the DFS algorithm will have a complexity of:

𝑂(𝑛𝑥𝑛) = 𝑂(𝑛)2

Thus the complexity of DFS algorithm in case of file

systems will remain O(n)2. Furthermore, the space complexity

in case of DFS will remain O(n) only because it keeps the track

of only last visited file/directory/folders of a system.

5.2 Working of BFS algorithm in file systems

The process of traversing each node of the graph is known

as breadth-first search. BFS begins with a node, then examines

all nodes one distance away from the beginning node, then all

nodes two distances away, and so on. BFS use a queue to

retrieve the nodes to be visited [26].

The general pseudo-code of the BFS algorithm is shown

below:

5.2.1 Complexity concerns in BFS

The temporal complexity of the BFS algorithm is O(n+E),

where n represents the number of nodes and E indicates the

number of connected links. In addition, the BFS algorithm has

an O(n) space complexity [26, 27].

6. EXPERIMENTAL EVALUATION

On single PCs with 8GB RAM and 250GB HDD configured

with dual boot operating systems (Linux and Windows), we

carried out an experiment. The implementation was purely

done using python and its associated libraries. In this study,

tree-based searching algorithms were created on various

platforms (Linux and Windows). Before beginning the

implementation process, we assume that we have complete

access to all files/directories and folders on both Linux and

Windows computers. Following the implementation of the

algorithms, we obtained the following results:

Both file systems are built differently depending on the

operating system environment. The data saved in the system is

accessible to any systems using this file system, regardless of

operating system or hardware platform. In our experiment, the

implementation of BFS and DFS breaks the degrees of

heterogeneity because we simply use different syntax to access

the file and the rest of the job remains the same. Our goal was

to provide a solution that outperformed other ways for

breaking heterogeneity constraints, and these strategies appear

to be performing well. Both these searching approaches

doesn't break any sort of semantics of the system although it

maintain local file system semantics in a network system

independent of the platform which we are using.

Furthermore, the same experiment was performed on two

individual system with almost same file systems and we feel

that the configuration of the systems play major role in these

experiments in case of time complexity, but the level of

heterogeneity has been removed totally.

7. THEORETICAL ANALYSIS

Breadth-first search (BFS) and depth-first search (DFS) are

commonly used algorithms for traversing and searching graph

and tree structures. When applied to data integration, these

algorithms can be used to alleviate heterogeneity problems

that arise from differences in the data sources being integrated.

Heterogeneity can arise from differences in data formats,

data structures, data contents, and more. In order to integrate

these sources, the data must be transformed and mapped to a

common format. BFS and DFS can be used to search the data

structure and identify differences between the sources,

allowing for the development of mappings that align the data

[28, 29].

For example, BFS can be used to perform a top-down search

of the data structure, starting from a known common ancestor

node and expanding to its descendants. This approach can be

useful when the data structure is organized in a hierarchical

manner, and the goal is to find a common format that spans all

sources. On the other hand, DFS can be used to perform a

bottom-up search of the data structure, starting from the leaf

nodes and working towards the root. This approach can be

useful when the data structure is more complex and there is no

clear hierarchy, and the goal is to find the closest common

format for each set of nodes.

In comparison to other techniques for alleviating

heterogeneity problems in different data sources, BFS and

DFS have several advantages. For example, they can be more

flexible than techniques that are based on predefined

ontologies, as they can adapt to different data structures and

formats. They can also be more efficient than techniques that

rely on manual mapping, as they can automate the mapping

process. Additionally, BFS and DFS can be more scalable than

techniques that rely on manual mapping, as they can handle

large data sets with ease.

However, it is important to note that BFS and DFS are not

always the best choice for every use case. In some cases, other

techniques such as semantic web technologies or machine

learning algorithms may be more suitable, depending on the

specific requirements of the task at hand. In these cases, a

comparative analysis should be performed to determine which

approach is best suited for the problem at hand.

In conclusion, BFS and DFS are effective algorithms for

alleviating heterogeneity problems in different data sources.

They have several advantages over other approaches,

including flexibility, efficiency, and scalability, but it is

important to compare them with other techniques to determine

their suitability for a particular use case.

235

8. DISCUSSION

One of the key concerns in this study was to remove the

heterogeneity among the file systems which are operated by

different operating systems. We used a tree based search

algorithms to check if the heterogeneity level is reduced or not.

We assumed that we have full access to the data stored in the

files systems and by the experimental analysis we observe that

the level of heterogeneity level gets reduced because by

applying a particular syntax only we are able to get the data

which we are looking for. These DFS and BFS algorithms also

perform in a manner that the data can be searched in two ways:

by searching those folder/s/files which are closer to the

directory and by searching those file/s/folders which are away

to the root directory. With this these are also suitable for

decision making like in case of puzzles as well. While in case

of DFS there is one big advantage of backtracking which help

in reducing the time complexity issues in searching the

particular file and thus it is considered as one of the best

technique in comparison with BFS. Additionally, the user-

returned results are far less than the responses trees found,

demonstrating the importance of minimality as a criterion for

delivering the results. These methods also exactly match the

word string.

9. CONCLUSION AND FUTURE WORK

To eliminate heterogeneity in searching huge sets of

heterogeneous documents on different platforms (windows

and Linux in this study), has shown to be a powerful,

responsive, and resilient approach, which is the major purpose

behind providing BFS and DFS. We have discussed our

performance optimization methods and the architecture of

BFS and DFS on Windows and Linux systems. With

comparison to the previous system, all improvements made to

the system have significantly improved performance by

reducing reaction time. Our method aids in improving search

performance in distributed and heterogeneous file systems

since these approaches are extremely responsive and fault-

tolerant. We are currently employing the same methodology

to work on three other file systems, as well as parallel file

systems, and we are hoping that these approaches will perform

significantly better in every heterogeneous, parallel, and

distributed setting.

REFERENCES

[1] Kenny, M., Schoen, I. (2021). Violin SuperPlots:

Visualizing replicate heterogeneity in large data sets.

Molecular Biology of the Cell, 32(15): 1333-1334.

https://doi.org/10.1091/mbc.E21-03-0130

[2] Kaul, S., Fayaz, S.A., Zaman, M., Butt, M.A. (2022). Is

decision tree obsolete in its original form? A Burning

debate. Revue d'Intelligence Artificielle, 36(1): 105-113.

https://doi.org/10.18280/ria.360112

[3] Fayaz, S.A., Zaman, M., Butt, M.A. (2022). Numerical

and experimental investigation of meteorological data

using adaptive linear M5 model tree for the prediction of

rainfall. Review of Computer Engineering Research, 9(1):

1-12. http://dx.doi.org/10.18488/76.v9i1.2961

[4] Li, Z., He, Y., Yu, H., Kang, J., Li, X., Xu, Z., Niyato, D.

(2022). Data heterogeneity-robust federated learning via

group client selection in industrial IoT. IEEE Internet of

Things Journal, 18: 17844-17857.

https://doi.org/10.1109/JIOT.2022.3161943

[5] Cheng, J., Zhao, W. (2021). Parallel system reliability

analysis with a CECBO algorithm. Structural and

Multidisciplinary Optimization, 64(1): 71-88.

https://doi.org/10.1007/s00158-021-02857-8

[6] Michlowicz, E., Wojciechowski, J. (2021). A method for

evaluating and upgrading systems with parallel structures

with forced redundancy. Eksploatacja i Niezawodność,

23(4). https://doi.org/10.17531/ein.2021.4.19

[7] Qi, L., He, Q., Chen, F., Dou, W., Wan, S., Zhang, X.,

Xu, X. (2019). Finding all you need: web APIs

recommendation in web of things through keywords

search. IEEE Transactions on Computational Social

Systems, 6(5): 1063-1072.

https://doi.org/10.1109/TCSS.2019.2906925

[8] Mishra, P., Poddar, R., Chen, J., Chiesa, A., Popa, R.A.

(2018). Oblix: An efficient oblivious search index. In

2018 IEEE Symposium on Security and Privacy (SP), pp.

279-296. https://doi.org/10.1109/SP.2018.00045

[9] Subramanian, I., Verma, S., Kumar, S., Jere, A.,

Anamika, K. (2020). Multi-omics data integration,

interpretation, and its application. Bioinformatics and

Biology Insights, 14: 1177932219899051.

https://doi.org/10.1177/1177932219899051

[10] Willms, E., Cabañas, C., Mäger, I., Wood, M.J., Vader,

P. (2018). Extracellular vesicle heterogeneity:

Subpopulations, isolation techniques, and diverse

functions in cancer progression. Frontiers in

Immunology, 9: 738.

https://doi.org/10.3389/fimmu.2018.00738

[11] Altaf, I., Butt, M.A., Zaman, M. (2021). A pragmatic

comparison of supervised machine learning classifiers

for disease diagnosis. In 2021 Third International

Conference on Inventive Research in Computing

Applications (ICIRCA), pp. 1515-1520.

https://doi.org/10.1109/ICIRCA51532.2021.9544582

[12] Fayaz, S.A., Zaman, M., Butt, M.A. (2021). An

application of logistic model tree (LMT) algorithm to

ameliorate Prediction accuracy of meteorological data.

International Journal of Advanced Technology and

Engineering Exploration, 8(84): 1424-1440.

http://dx.doi.org/10.19101/IJATEE.2021.874586

[13] He, S., Sun, X.H., Feng, B. (2014). S4D-cache: Smart

selective SSD cache for parallel I/O systems. In 2014

IEEE 34th International Conference on Distributed

Computing Systems, pp. 514-523.

https://doi.org/10.1109/ICDCS.2014.59

[14] Xu, L., Cui, G., Hu, X., Liu, S., Jia, Y., Zhang, T., Gao,

J., Dong, R., Zhou, Y., Cheng, X., He, X. (2021).

Architecture and technology of multi-source

heterogeneous data system for telecom operator. In:

Wang, Y., Xu, L., Yan, Y., Zou, J. (eds) Signal and

Information Processing, Networking and Computers.

Lecture Notes in Electrical Engineering, vol 677.

Springer, Singapore. https://doi.org/10.1007/978-981-

33-4102-9_120

[15] Wu, C., Burns, R. (2003). Handling heterogeneity in

shared-disk file systems. In SC'03: Proceedings of the

2003 ACM/IEEE Conference on Supercomputing, pp. 7-

7. http://dx.doi.org/10.1109/SC.2003.10045

[16] Qian, K., Ma, S., Miao, M., Lu, J., Zhang, T., Wang, P.,

Sun, C., Ren, F. (2019). Flexgate: High-performance

236

heterogeneous gateway in data centers. In Proceedings of

the 3rd Asia-Pacific Workshop on Networking 2019, pp.

36-42. https://doi.org/10.1145/3343180.3343182

[17] He, S., Sun, X.H., Haider, A. (2015). HAS:

Heterogeneity-aware selective data layout scheme for

parallel file systems on hybrid servers. In 2015 IEEE

International Parallel and Distributed Processing

Symposium, pp. 613-622.

https://doi.org/10.1109/IPDPS.2015.23

[18] Anadiotis, A.C., Haddad, M.Y., Manolescu, I. (2020).

Graph-based keyword search in heterogeneous data

sources. In BDA 2020-36ème Conférence sur la Gestion

de Données–Principes, Technologies et Applications.

https://doi.org/10.48550/arXiv.2009.04283

[19] F. Claude. libcds Compact Data Structures Library.

Website. 2008. https://github.com/fclaude/libcds.

[20] Apache Software Foundation. Apache Lucene. Website.

2014. https://lucene.apache.org, acessed on Sep. 24,

2022.

[21] Neyaz, A., Shashidhar, N. (2019). USB artifact analysis

using windows event viewer, registry and file system

logs. Electronics, 8(11): 1322.

https://doi.org/10.3390/electronics8111322

[22] Mohd, R., Butt, M.A., Baba, M.Z. (2020). GWLM–

NARX: Grey Wolf Levenberg–Marquardt-based neural

network for rainfall prediction. Data Technologies and

Applications, 54(1): 85-102.

https://doi.org/10.1108/DTA-08-2019-0130

[23] Fayaz, S.A., Zaman, M., Butt, M.A. (2022). A hybrid

adaptive grey wolf Levenberg-Marquardt (GWLM) and

nonlinear autoregressive with exogenous input (NARX)

neural network model for the prediction of rainfall.

International Journal of Advanced Technology and

Engineering Exploration, 9(89): 509.

https://doi.org/10.19101/ijatee.2021.874647

[24] Gopisetty, R., Ragunathan, T., Bindu, C.S. (2020).

Improving performance of the distributed file system

using speculative read algorithm and support-based

replacement technique. International Journal of

Advanced Research in Engineering and Technology,

11(9). pp. 602-611.

[25] Perpignan, C., Robin, V., Eynard, B. (2018). From

ecodesign to DFS in engineering education. In DS 93:

Proceedings of the 20th International Conference on

Engineering and Product Design Education (E&PDE

2018), Dyson School of Engineering, Imperial College,

London, 6th-7th September 2018, pp. 622-627.

[26] Zhang, F., Lin, H., Zhai, J., Cheng, J., Xiang, D., Li, J.,

Chai, Y., Du, X. (2018). An adaptive breadth-first search

algorithm on integrated architectures. The Journal of

Supercomputing, 74(11): 6135-6155.

https://doi.org/10.1007/s11227-018-2525-0

[27] Rehman, A., Butt, M.A., Zaman, M. (2021). A survey of

medical image analysis using deep learning approaches.

In 2021 5th International Conference on Computing

Methodologies and Communication (ICCMC), pp. 1334-

1342.

https://doi.org/10.1109/ICCMC51019.2021.9418385

[28] Fayaz, S.A., Zaman, M., Kaul, S., Butt, M.A. (2022). Is

deep learning on tabular data enough? An assessment.

International Journal of Advanced Computer Science and

Applications, 13(4).

https://dx.doi.org/10.14569/IJACSA.2022.0130454

[29] Fayaz, S.A., Kaul, S., Zaman, M., Butt, M.A. (2022). An

adaptive gradient boosting model for the prediction of

rainfall using ID3 as a base estimator. Revue

d'Intelligence Artificielle, 36(2): 241-250.

https://doi.org/10.18280/ria.360208

237

