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Since their inception, industries have experienced the negative effects of downtime, lost 

productivity, lost revenue, as well as layoffs. The prediction of an item's remaining useful 

life (RUL) enables maintenance techniques to avoid costly and serious damage. As a 

result, a prognostic is now acknowledged as a crucial activity. Thanks to the Internet of 

Things (IoT) and IT solutions like Computer Aided Maintenance Management (CMMS) 

software packages, industries today have a vast amount of data gathered from on-site 

sensors. This offers real-time data on the equipment's state as well as each piece of 

equipment's history of interventions from the CMMS software database. By utilizing the 

vast amount of data that has accumulated over the years, we will be able to extract even 

more crucial information. The use of artificial intelligence (AI) methods can open up new 

possibilities for CMMS software packages. In this study, we try to predict RUL 

(Remaining Useful Time) using an artificial intelligence technique called association 

rules. This strategy is applied to enhance existing CMMS software programs. Experiment 

is carried out with a well-known dataset provided by the NASA Ames Research Center 

and the CoE "Center of Excellence". Experiment results indicate that our suggested 

approach performs well in forecasting the RUL of turbojet engines and that it also 

significantly improves the outcomes of predictive maintenance. 
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1. INTRODUCTION

The industrial maintenance industry is changing as a result 

of advances in predictivefigure maintenance, the Internet of 

Industrial Objects, and cutting-edge sophisticated 

technologies like machine learning (ML) and artificial 

intelligence (AI). 

Real-time monitoring of the equipment's condition, made 

possible by the sensors it has, is the foundation of predictive 

maintenance. The information gathered includes, among 

other things, a number of signs that help predict impending 

failures, including temperature, vibration, cavitations, and oil 

analysis. Even while this data is quite helpful on its own, it 

has tremendous potential when combined with service history, 

spare parts knowledge, and all the reports accessible. This 

information can be utilized to produce forecasting algorithms 

when recorded and examined in a CMMS software program. 

Having a modern and flexible CMMS is a sine qua non for 

setting up a prescriptive maintenance routine. As with any 

new technology, deploying a prescriptive strategy can be 

quite a daunting task at first. Computer hardware, software 

and training costs, the size of the company and its approach 

to innovative technologies can all constitute obstacles to the 

prescriptive. But this approach, which is ultimately quite 

emerging, has enormous potential and promises the entire 

sector to enter the world of Industry 4.0. In this world, 

Computer Assisted Maintenance Management is becoming 

Artificial Intelligence Assisted Maintenance Management in 

order to allow manufacturers to use AI as they operate a 

computer in the management of their maintenance (focus on 

the job and not on the means). 

This is the context in which this study is positioned. Our 

goal is to introduce new functionalities to classic CMMS 

software packages in order to become software that helps in 

the management of predictive maintenance. This 

improvement allows the use of AI in the maintenance 

business of industrial machines in order to capitalize on 

knowledge, plan maintenance actions and better manage 

stocks. 

Additionally, businesses today lament the excess data that 

is routinely retained on various media. Even though these 

massive databases have the potential to hold a wealth of 

important information, they are rarely or poorly utilized. In 

order to meet this need, it is necessary to deploy sizable 

resources in order to extract crucial information, leading to 

the development of data mining, which now serves as a 

crucial decision-making tool in industries that are highly 

competitive. 

Making maintenance decisions is made possible by the 

ability to forecast Remaining Useful Life (RUL) through a 

combination of management, supervisory, technical, and 

related administrative procedures [1]. 

This goal will be accomplished by utilizing a very potent 

data mining technique, the aim of which is to find 

correlations between two or more variables recorded in very 

big databases that are of interest to a data analyst. By 

examining several data sources, including machine profiles, 
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and failure histories, the goal is to create an automated RUL 

prediction system. 

This paper is organized as follows: Section 2 is an 

overview of the main contributions related to our work. 

Section 3 is dedicated to the presentation of the objectives of 

our approach. In section 4, we describe the suggested strategy 

and go over the findings of the experiment we ran to evaluate 

its efficacy. Conclusion and future works are described in 

Section 5. 

 

 

2. RELATED WORK 

 

Prognostics have received a lot of interest recently from 

both academic and industrial researchers. Model-based 

approaches, data-driven approaches and hybrid approaches 

are the three main categories of prognostic approaches.  

Understanding the system physics-of-failure and 

underlying system degradation models is necessary for the 

deployment of general model-based prognostic techniques. In 

order to anticipate real-time RUL in the situation of fatigue 

crack growth while taking into account the uncertainties in 

both degradation processes and condition monitoring 

techniques, Myötyri et al. [2] proposed the usage of a 

stochastic filtering technique. Later, condition-based 

component replacement in the context of fatigue crack 

formation used a similar particle filtering approach [3]. A 

vehicle suspension system was the subject of a model-based 

prognostic approach developed by Luo et al. [4] that depends 

on a precise simulation model for system degradation 

prediction. For RUL forecasts of rolling element bearings 

under time-varying operational settings [5] or in the absence 

of prior degradation information [6], Gebraeel provided a 

degradation modeling methodology. 

Understanding all conceivable physics-of-failures and their 

interactions for a complicated system is nearly hard since 

high-risk engineered systems typically consist of several 

components with multiple failure modes.  

The use of data-driven approaches is particularly prevalent 

in the field of RUL prediction, where RUL is calculated 

using statistical and probabilistic techniques using historical 

data and data from the system that is regularly monitored [7]. 

The availability of multivariate historical data regarding 

system behavior, which must cover all stages of system 

operation and degradation scenarios under specified 

operating parameters, is a prerequisite for setting up the data-

driven models for RUL prediction. Fielded applications, 

testing environments for experiments, and computer 

simulations are the three methods for obtaining these run-to-

failure data [8]. 

Although physics-based approaches are favoured over 

data-driven ones because to their accuracy and precision, 

getting a physics of failure (PoF) degradation model is 

frequently exceedingly challenging. The data-driven 

approaches, in comparison, tend to be more user-friendly 

because they primarily rely on AI tool techniques that can be 

deployed directly or with few modifications. The RUL 

prediction field sees a significantly faster spread pace than 

the physics-based ones due to the rapid implementation and 

deployment of data-driven prognostics. Another major factor 

in the proliferation of these types of approaches among 

prognostics system makers is the lack of a demand for 

knowledge of the system's physics. Both the advantages and 

the disadvantages of these methods are obvious. According to 

Leser, among the many data-driven methodologies, 

extrapolation and data collection are two of the most 

frequently mentioned challenges [9]. One of the fields of 

machine learning known as "deep learning" developed from 

artificial neural networks and is characterized by several 

nonlinear processing layers (ANN). Given its capacity to 

capture the hierarchical relationship hidden in deep structures, 

DL has emerged as one of the primary study issues in the 

field of prognostics due to the rapid growth of computational 

infrastructure [10]. In the area of RUL prediction, it hasn't yet 

been completely utilized [11]. An end-to-end prognostic 

paradigm for estimating state-of-health (SOH) and predicting 

remaining useful life (RUL) was put forth by Li et al. [12]. A 

hybrid neural network (NN), which combines an active-state-

tracking long-short-term memory NN and a one-dimensional 

convolutional NN, is created in such a framework to capture 

the hierarchical features between various variables affecting 

battery degeneration as well as the temporal dependencies 

contained in those features. A structured-effect neural 

network for estimating remaining useful life is suggested in 

Kraus and Feuerriegel [13]. Through the use of variational 

Bayesian inferences, the parameters are computed. In Hou et 

al. [14], the authors created a deep supervised learning 

method that makes use of similarity to boost prediction 

accuracy. Hou et al. [14] have devised an unsupervised 

learning strategy based on restricted Boltzmann machine 

(RBM) to create the health indicator (HI), as the health 

indicator (HI) generation procedures rely on manual labeling 

or expert opinion. They demonstrated that, in comparison to 

other conventional methodologies, their performance offers 

superior performance. 

For the RUL prediction of rolling bearings, Chen et al. [15] 

created a recurrent neural network (RNN) model employing 

an encoder-decoder structure with an attention mechanism. 

They proved that their model can work with less prior 

knowledge and gives higher performance compared to other 

algorithms. 

A transferable convolutional neural network (TCNN) was 

proposed by Cheng et al. [16] to train domain invariant 

characteristics for bearing RUL prediction. The authors 

demonstrated that their approach avoids the impact of kernel 

selection and offers improved RUL prediction performance.  

For two rotating machinery datasets, Li et al. [17] work 

showed promising results. The authors of this study 

computed the distribution of the healthy state data using the 

generative adversarial network (GAN) technique and 

developed a health indicator.  

In order to predict RUL, Li et al. [18] created a multi-scale 

deep convolutional neural network (MS-DCNN) and 

combined the MS-DCNN algorithm with min-max 

normalization. The authors demonstrated that the new model 

offers promising results on the NASA C-MAPSS dataset by 

comparing its performance with that of other cutting-edge 

models. 

Recurrent convolutional neural network (RCNN) for RUL 

prediction was proposed by Wang et al. [19] who also 

demonstrated its efficacy using two case studies. The authors 

demonstrated how successfully the suggested model can 

forecast the RUL of rolling element bearings and milling 

cutters. Their model streamlines decision-making and offers 

a probabilistic result for RUL prediction. 

Although data-driven approaches based on deep learning 

have produced promising results for RUL prediction tasks, 

these approaches require a significant amount of labeled 
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datasets for the network to be trained before it can provide a 

model that is accurate enough. However, it is frequently 

challenging to gather enough data with run-to-failure 

information for complicated systems. The training dataset 

and test dataset must also have identical distributions in order 

for the current deep learning methods to work, which means 

that the dataset must originate from the same feature space. 

However, because of the shifting environment in which 

equipment operates, changes in data distribution are 

pervasive during the actual application process, which lowers 

the RUL prediction accuracy. In other words, the 

performance on the test dataset may be subpar, and the RUL 

prediction model obtained through the training dataset may 

not have high generalization capacity. 

By combining the knowledge from the two methodologies, 

hybrid approaches try to benefit from both the strengths of 

model-based and data-driven approaches. A relatively small 

number of studies focus on hybrid approaches, while the 

majority of studies focus on data-driven and physics-based 

approaches. Only 8% of the research in this area was focused 

on hybrid prognostics approaches as of 2017 [20]. The 

disadvantage of hybrid approaches is that they also have the 

drawbacks of both approaches and add to the complexity of 

finding a solution. 

This work is a data-driven approach where aims to use a 

very potent data mining technique to find correlations 

between two or more variables recorded in very big databases. 

By examining several data sources, including machine 

profiles and failure histories, the goal is to create an 

automated RUL prediction system. 
 

 

3. PRINCIPLES AND OBJECTIVES 
 

Through-life engineering services are the technical 

services needed to guarantee that a complex engineering 

system operates as required, as predictably as possible for the 

duration of its anticipated operational life, and at the overall 

lowest cost [21]. 

This is fuelled by rapid decision-making process 

maintenance, repair, and overhaul [21] with the goal of 

returning assets to a state where they regularly satisfy design 

requirements. The capacity to forecast Remaining Useful 

Life (RUL) makes these maintenance decisions possible 

through a mix of management, supervisory, technical, and 

corresponding administrative operations [1]. 

Numerous predictors, or variable characteristics that could 

potentially have an impact on future behavior or outcomes, 

make up a predictive model [22]. Predictive modeling 

therefore includes any classifier that may be used to assign a 

certain class (such as spam) to a test object. 

An emerging method called data mining seeks to identify 

important patterns or intriguing rules from transaction 

databases. Many domains, including user behavior analysis, 

network intrusion detection, event categorization and 

regression, etc., have successfully used it in recent years. A 

common data mining technique is association rule, which is 

used to uncover possibly significant connections between 

data itemsets. It can be divided into two smaller problems: 

finding all frequent item sets that satisfy the minimal support 

threshold, and creating all association rules that satisfy the 

minimum confidence level.  

We can determine whether our data contains any 

relationships through association rule mining. Think about a 

simple illustration where one observes that bread and butter 

are frequently purchased together. When information about 

the other is available, this could be used to forecast sales of 

either bread or butter. 

Prediction is a fascinating use case for association mining 

in context temporal databases. To forecast the consequence 

of a rule, one must use the antecedent of the rule. However, 

not every association rule may be appropriate for prediction. 

In this study, we explore the characteristics of prediction 

rules and create a method for finding association rules that 

are helpful for RUL's prediction. 

 

 

4. APPROACH DESCRIPTION AND EXPERIMENTAL 

RESULTS 
 

We conducted an experiment utilizing a well-known 

dataset provided by the NASA Ames Research Center and 

the CoE "Center of Excellence" to estimate the RUL using 

the association rules method. With the help of this dataset, 

which simulates turbojet degradation, we can derive 

association rules that pinpoint a turbojet's status during the 

previous 30 cycles. As a result, we will be able to estimate 

whether the turbojet will hit its limit after a maximum of 30 

cycles or not. This will make it possible for the maintenance 

crew to do the necessary repairs to further the turbojet 

engine's lifespan. 

The dataset in use is an example of a C-MAPSS simulation 

of the deterioration of a turbojet engine. The operation of 

four separate sets of turbojets was simulated under various 

configurations of operational circumstances. In order to 

characterize the progression of the faults, the deterioration is 

recorded using multiple sensor channels. The dataset is 

supplied as a zip file that contains four training files, each 

with a unique set of operating settings, and a test file that is 

subjected to the same set of conditions. Only the first file, 

"train FD001.txt", will be worked on here. 

 

 
 

Figure 1. Visualization of the sensors 01, 02, 03, and 06's 

variation over time 
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A data table of 20631 rows (observations) and 27 columns 

makes up the file. These observations are based on 100 

turbojets, and each observation comprises of a turbojet's life 

cycle. Columns include: 

(1) Unit_ID: identifying the number of the turbojet; 

(2) Cycle: the number of the cycle; 

(3) PO_1, PO_2, PO_3: Three operational parameters; 

(4) Sensor_01, Sensor_02…. Sensor_21: 21 sensors which 

each measure a specific characteristic during system 

operation. 

In this experiment, we used 15 turbojets as the test table 

and 85 turbojets as a training table. 

 

For the first ten turbojets, a plot is created to observe the 

variation of a few variables with respect to the cycle. This 

will enable us to visualize our data more effectively. Figure 1 

shows that some of these variables (Sensor_01) remain the 

same during the course of their lifetimes. The "Sensor_06" is 

another option, and its values only differ by two with regard 

to turbojets: of the 20631 values, 20225 are 21.61 and 406 

are 21.60. Nevertheless, for the sake of this study, it can also 

be regarded as constant because, 98.03% of the time, it only 

takes on a constant value. 

In actuality, there are other variables in the table that 

remain constant as well. Complete visualization reveals that 

sensors 1, 05, 10, 16, 18, and 19 are all constants in addition 

to the operational parameter 03; this gives us eight variables 

that can be disregarded because they are constant and won't 

affect the results of our study. Considering them would be a 

waste of time and memory. 

 

4.1 RUL extraction 

 

The RUL is the number of operational cycles left before a 

failure. Therefore, in order to locate it, we must first 

determine each turbojet's maximum cycle life, or "Max 

Cycle" as presented in Table 1. Then, calculating RUL will 

be far too easy; all we have to do is take the number of cycles 

that have already passed from "Max Cycle", and the output 

will be the RUL. 

We must first read our table and then determine the RUL 

for each observation. For this purpose we take the highest 

cycle number for each unit and call it "Max Cycle". 

Then, we subtract each cycle number in each observation 

of the “Max_Cycle” from each “Unit_ID”. The result 

presented in Table 2 is the RUL we were looking for. 

 
Table 1. The maximum number of cycles reached by each turbojet 

 
Unit_ID 1 2 3 4 5 6 7 8 9 10 

Max_Cycle 192 287 179 189 269 188 259 150 201 222 

 

Table 2. A sample data table displaying the RUL 

 
 Unit_ID Cycle PO_1 PO_2 Sensor _02 Sensor _03 Sensor_04 RUL 

0 1 1 -0,0007 -0,0004 641,82 1589,7 1400,6 191 

1 1 2 0,0019 -0,0003 642,15 1591,82 1403,14 190 

2 1 3 -0,0043 0,0003 642,35 1587,99 1404,2 189 

3 1 4 0,0007 0 642,35 1582,79 1401,87 188 

4 1 5 -0,0019 -0,0002 642,37 1582,85 1406,22 187 

5 1 6 -0,0043 -0,0001 642,1 1584,47 1398,37 186 

6 1 7 0,001 0,0001 642,48 1592,32 1397,77 185 

7 1 8 -0,0034 0,0003 642,56 1582,96 1400,97 184 

8 1 9 0,0008 0,0001 642,12 1590,98 1394,8 183 

9 1 10 -0,0033 0,0001 641,71 1591,24 1400,46 182 

10 1 11 0,0018 -0,0003 642,28 1581,75 1400,64 181 

 

Table 3. The data table was encoded using one-hot. 

 
 Unit_ID Cycle RUL 50%<PO_01<60% 60%<PO_01<70% 70%<PO_01<80% 

0 1 1 191 0 0 1 

1 1 2 190 0 0 0 

2 1 3 189 1 0 0 

3 1 4 188 0 0 0 

4 1 5 187 0 0 1 

5 1 6 186 1 0 0 

6 1 7 185 0 0 0 

7 1 8 184 0 1 0 

8 1 9 183 0 0 0 

9 1 10 182 0 1 0 

10 1 11 181 0 0 0 

 

4.2 Setting up the transaction table 

 

A table must first be converted into a binary transaction 

table in order to extract the association rules from it. 

However, in this case, our values are numerical rather than 

category. Therefore, we must convert them into categorical 

values. We must first construct categories for each variable 

before we can do this. Ten categories will be established, as 

follows: 

1. Each column is subject to the formula (1), where 𝑥𝑖 
stands for a column's values. 

 

𝑓(𝑥𝑖) =
𝑥𝑖 −min

𝑖
(𝑥𝑖)

max
𝑖
(𝑥𝑖) − min

𝑖
(𝑥𝑖)

 (1) 
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2. When we're finished, all of the columns' values fall 

within the range [0: 1]. The values between 0.1*(i-1) and 

0.1*i are now replaced with the corresponding values, where 

i is an integer between 1 and 10 inclusive. We will then have 

ten categories, each of which will represent 10% of the range 

[min: max] inclusive. 

4.3 One-hot encoding 

 

The one hot encoding is a process of converting 

categorical data variables so they can be provided to machine 

learning algorithms to improve predictions. This encoding is 

a crucial part of feature engineering for machine learning. 

Table 4. A sneak peek at the training table 

 
Sensor_21(%) Target 

[20, 30] [30, 40] [40, 50] [50, 60] [60, 70] [70, 80] [80, 90] [90, 100] 

0 0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 

0 0 1 0 0 0 0 0 1 

0 0 1 0 0 0 0 0 1 

0 0 0 1 0 0 0 0 1 

0 1 0 0 0 0 0 0 1 

 

Thus, we must write our transaction table in binary by 

using one-hot encoding. To do this there is a simple example: 

if a variable x takes a value between 90% and 100% that 

implies it is greater than 70% and 80% at the same time, so 

we assign a value of 1 to each of them. The same procedure 

is followed for the three little values, i.e., we assign a value 

of 1 to each of the other two categories if the value is 

between 0% and 10%, which denotes that it is smaller than 

30% and 20%. As a result, Table 3 provides a summary of 

the final table.  

Since all of these turbojets are identical and belong to the 

same model and we have already retrieved the RUL for each 

turbojet and each observation, we can now remove the "Unit 

ID" and "Cycle" columns. 

We still have a problem, even after doing all of this. Only 

the values "0" and "1" can be used in the "Apriori" 

association rules extraction technique. However, since there 

are 362 different RUL values here and they are all integers, if 

we treat them as categories, we will run into two issues: 

1. With 361 new columns, our table will be much bigger 

and include 7,467,791 more values, which will use up too 

much RAM. 

2. For each turbojet, the 362 new columns will only accept 

a value a maximum of once. In other words, for all turbojets, 

the value 1 will only appear 100 times at most in the same 

column among 20,631 observations, making it impossible for 

us to draw any conclusions about them. They cannot be 

regarded as categories, though. 

The fact that association rules take into account the 

likelihood of two or more elements occurring simultaneously 

in a transaction is another issue. However, they are unable to 

foretell what the following sighting may bring. To address 

this, we suggest adding a new column called "Target" and 

inserting a limit "L" that specifies how many cycles will pass 

before the failure we're trying to forecast. Additionally, this 

column will receive the value 0 if the RUL is greater than L 

and the value 1 if it is lower than L. This indicates that if this 

column is given the value 1 in an observation, it follows that 

no more than L cycles are possible before failure. 

Take L=30 Cycle and apply this to our table. After that, 

since the "RUL" column is no longer useful to us, we can 

delete it. 

The association rules that describe the status of a turbojet 

in its final 30 cycles before failure are now ready to be 

extracted from our table. 

 

4.4 Extracting association rules 
 

Our objective is to produce association rules with support 

and confidence values greater than "min support" and "min 

confidence", respectively. As a result, we'll proceed in two 

steps: Identify the itemsets "E" that are most common and 

confirm the condition: supp (E)≥min_support, and from “E”, 

produce association rules to confirm the following: conf 

(R_i)≥min_confidence. 

We'll utilize the "apriori" function from the Python 3.9 

"mlxtend" module to accomplish this. The "prior" function 

accepts a DataFrame with columns that only contain the 

values 0 or 1 (false or true), together with the value of the 

minimal support, as input, and returns a DataFrame with two 

columns that contains the frequent item sets and their 

corresponding supports. 

Using the "apriori" function of "frequent patterns", which 

takes the training table "Table 4" as input, we have 

determined the frequent itemsets after applying this function. 

Then, using mlxtend's "association rules" function, we 

extracted the rules that have a confidence level higher than 

min confidence. 

Finding all the rules that adhere to specific minimal 

support and confidence requirements is the goal of 

association rules mining. The extracted rules become more 

obvious when the support value is increased, which makes 

them less useful to the user. As a result, in order to retrieve 

crucial information, the support value must be set low 

enough. Only an estimate of the rules' correctness in the 

future is provided by the confidence. It stands for the trust in 

the laws that we seek. Finding the appropriate support and 

confidence settings and obtaining the best rules that have an 

impact on the rate of F-measure require a certain level of 

competence. Two experiments are conducted to determine 

the ideal minimum support and minimum confidence values. 

In the first experiment, we use our dataset to find the ideal 

minimum support value. To determine the value for which 

our approach performs best, we consider several minimum 

support values between 0 and 1. As a consequence, 0.029 is 

the most appropriate minimum support number that results in 

the greatest F-measure metric value. 

The second experiment uses the experimental dataset with 
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minimum support set to 0.029 in order to find the ideal value 

of minimum confidence. In this experiment, various minimal 

confidence values between 0 and 1 are employed. As a result, 

0.9 is the ideal minimal confidence number that offers the 

optimum performance. The appropriate support and 

confidence settings in the experiments that follow are 0.029 

and 0.9, respectively. 

Each turbojet contains 30 true values; hence the training 

table contains 30x85=2550 true values. To go back to relative 

support, we divide it by 17,340, which is the number of 

observations for the first 85 turbojets, and we get a minimum 

support of 0.029. 

This gives back an array of the most common itemsets 

with support higher than 0.029. This results in an excessively 

large table with an excessive number of useless item sets 

since the support is too tiny. Finding all the important 

itemsets is the first step in tidying up this mess (Table 5 

presents a preview on frequent itemsets). Then, we simply 

delete all the itemsets that are not a part of or are equal to any 

of the itemsets that contain our target after finding all the 

itemsets that contain our target in them as presented in Table 

6. 

Table 5. Preview on frequent itemsets 

 
 Support Itemsets 

0 0,980342 '70%<Sensor_06<80%' 

1 0,980342 '80%<Sensor_06<90%' 

2 0,980342 '90%<Sensor_06<100%' 

3 0,895178 '20%<Sensor_09<30%' 

4 0,866614 '20%<Sensor_14<30%' 

5 0,980342 '80%<Sensor_06<90%', '70%<Sensor_06<80%' 

6 0,980342 '90%<Sensor_06<100%', '70%<Sensor_06<80%' 

7 0,875717 '20%<Sensor_09<30%', '70%<Sensor_06<80%' 

8 0,847615 '20%<Sensor_14<30%', '70%<Sensor_06<80%' 

9 0,980342 '80%<Sensor_06<90%', '90%<Sensor_06<100%' 

 

Table 6. Insight into frequent itemsets related to "Target" 

  
Support Itemsets 

0 0,147059 'Target' 

1 0,042849 'Target', '40%<PO_01<50%' 

2 0,042042 'Target', '50%<PO_01<60%' 

3 0,037255 'Target', '20%<PO_02<30%' 

4 0,036217 'Target', '70%<PO_02<80%' 

5 0,03489 '50%<Sensor_02<60%', 'Target' 

6 0,049539 'Target', '60%<Sensor_02<70%' 

7 0,051096 'Target', '70%<Sensor_02<80%' 

8 0,04902 'Target', '50%<Sensor_03<60%' 

9 0,048731 'Target', '60%<Sensor_03<70%' 

10 0,052307 'Target', '60%<Sensor_04<70%' 

 

Table 7. All association rules extracted with confidence>0.9 

 
 Antecedents Consequents Support Confidence Lift 

R0 ['70%<Sensor_11<80%','70%<Sensor_15<80%'] 'Target' 0,032987 0,996516 6,776307 

R1 ['70%<Sensor_11<80%','20%<Sensor_7<30%'] 'Target' 0,029758 0,996139 6,773745 

R2 ['70%<Sensor_4<80%', '20%<Sensor_7<30%'] 'Target' 0,032065 0,992857 6,751429 

R3 ['20%<Sensor_12<30%', '20%<Sensor_7<30%'] 'Target' 0,029815 0,992322 6,747793 

R4 ['70%<Sensor_11<80%','20%<Sensor_12<30%'] 'Target' 0,033852 0,991554 6,742568 

R5 ['20%<Sensor_12<30%' '70%<Sensor_15<80%'] 'Target' 0,030392 0,988743 6,723452 

R6 ['70%<Sensor_11<80%', '70%<Sensor_4<80%'] 'Target' 0,039273 0,986957 6,711304 

R7 ['70%<Sensor_11<80%' '20%<Sensor_21<30%'] 'Target' 0,03391 0,986577 6,708725 

R8 ['20%<Sensor_12<30%','70%<Sensor_4<80%'] 'Target' 0,037197 0,986239 6,706422 

R9 ['70%<Sensor_11<80%','20%<Sensor_20<30%'] 'Target' 0,03564 0,985646 6,702392 

R10 ['70%<Sensor_4<80%', '70%<Sensor_2<80%'] 'Target' 0,030854 0,983456 6,6875 

R11 ['70%<Sensor_15<80%', '70%<Sensor_4<80%'] 'Target' 0,03564 0,982512 6,681081 

R12 ['20%<Sensor_20<30%','70%<Sensor_15<80%'] 'Target' 0,033045 0,979487 6,660513 

R13 ['70%<Sensor_4<80%', '20%<Sensor_21<30%'] 'Target' 0,038062 0,979228 6,658754 

R14 ['20%<Sensor_12<30%','20%<Sensor_21<30%'] 'Target' 0,031084 0,978221 6,651906 

R15 ['70%<Sensor_15<80%','20%<Sensor_21<30%'] 'Target' 0,030392 0,975926 6,636296 

R16 ['20%<Sensor_12<30%','20%<Sensor_20<30%'] 'Target' 0,031949 0,973638 6,620738 

R17 ['20%<Sensor_20<30%', '70%<Sensor_4<80%'] 'Target' 0,037889 0,970458 6,599114 

R18 ['70%<Sensor_11<80%'] 'Target' 0,055709 0,966 6,5688 

R19 ['20%<Sensor_20<30%','20%<Sensor_21<30%'] 'Target' 0,033737 0,948136 6,447326 

R20 ['20%<Sensor_7<30%'] 'Target' 0,046021 0,945498 6,429384 

R21 ['20%<Sensor_12<30%'] 'Target' 0,053403 0,938197 6,379737 

R22 ['70%<Sensor_4<80%'] 'Target' 0,066032 0,919679 6,253815 
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We will use the "association rules" function on this new 

table of itemsets. The updated frequent itemset table and the 

minimum confidence value, which is 0.9, are the inputs for 

this function. These resulting rules will undoubtedly have a 

wide range of effects, but we are only concerned with those 

that will have our "Target" as a result. 

All the rules from our training table that were extracted are 

in Table 7. 

There are 23 association rules total, each having a 

confidence better than 0.9 and a lift between 6.25 and 6.77. 

Each row in this table represents an association rule. For 

instance, the first rule states that we are in the final 30 cycles 

99.65% of the time if the readings of sensors 11 and 15 are 

higher than 70%. 

 

4.5 Testing and assessing the rules 

 

We must utilize the "test" table in order to verify these 

rules. We will take the "antecedents" of each rule and search 

for the observations in the "test" table where the antecedents 

for each rule are true. 

Since these rules are only designed to detect situations in 

which the target is equal to 1, we will naturally concentrate 

our evaluation just on the predictions of the "Target=1" class. 

Precision, recall, and F-measure were calculated on the test 

data to evaluate our rules. When we apply these functions to 

the outcomes of the test of each rule separately, we obtain the 

outcomes shown in Table 8. 

Table 8 displays the precision of the forecast we made 

utilizing all of the previously extracted association rules. To 

determine if there were predicted false values or actual values, 

this table is only calculated for those instances where a value 

of 1 was predicted. 

 

Table 8. Each rule's precision, recall, and F-score 

 
Rule Precision Recall F-measure 

R0 1 0,222989 0,182331 

R1 0,988095 0,190805 0,159923 

R2 0,980198 0,227586 0,184701 

R3 1 0,216092 0,177694 

R4 0,991667 0,273563 0,214414 

R5 0,989796 0,222989 0,181989 

R6 1 0,312644 0,238179 

R7 0,989796 0,222989 0,181989 

R8 0,977444 0,298851 0,228873 

R9 0,97479 0,266667 0,209386 

R10 0,989691 0,22069 0,180451 

R11 0,975806 0,278161 0,216458 

R12 1 0,222989 0,182331 

R13 0,974138 0,25977 0,205082 

R14 0,990291 0,234483 0,189591 

R15 1 0,2 0,166667 

R16 0,964912 0,252874 0,200364 

R17 0,977444 0,298851 0,228873 

R18 0,969231 0,434483 0,3 

R19 0,961165 0,227586 0,184015 

R20 0,911765 0,285057 0,217163 

R21 0,946809 0,409195 0,285714 

R22 0,898374 0,508046 0,324523 

 

We identified rules that enabled us to predict 435 values 

with a minimum confidence level of 0.9, or 90%, of which 

384 were correctly predicted and 51 were incorrectly 

forecasted. However, we are aware that there are a total of 

450 values, or 30x15 true values. We can easily observe the 

outcomes of our predictions and the areas where our rules 

became confused during the prediction by utilizing the 

"confusion- matrix" function of the "metrics" module in the 

"sklearn" library. Figure 2 shows the resulting confusion 

matrix. 
 

 
 

Figure 2. Confusion matrix of all the rules 

 

We can thus calculate the precision of the recall and the F-

score of our predictions: 

Starting with class 0 (RUL≥30): Precision0=0.9768 and 

Recall0=0.9820 

Now let's move on to class 1 (RUL<30): 

Precision1=0.8827, Recall1=0.8533 

Now let's calculate the F-score: F=0.9237 

And if we focus on class 1 only: the F-score would be: 

F1=0.8677 

This means that our model has an accuracy of 88.27%, a 

recall of 85.33% and an F-score of 0.86 in the prediction of 

class 1 (RUL<30), which can be considered a good result. 

This means that now we can predict that there will be a 

maximum of 30 life cycles left for the turbojet engine with an 

accuracy of 88.27% if we use all these rules. 

 

 

5. CONCLUSIONS 

 

The purpose of this study was to use one of the AI 

technologies to optimize the CMMS software packages. As a 

result, we chose association rules to estimate how many 

turbojet life cycles are left. 

We were able to take advantage of the data gathered by the 

sensors thanks to the Internet of Things and extrapolate more 

information from it by using association rules, one of many 

AI tools. In this study, we focused on the most recent 30 

cycles in order to be able to roughly predict when the last 

cycle will be. 

This prediction will give us the advantage of being able to 

make the necessary repairs before the equipment 

malfunctions, prolonging its life in particular so that we can 

get the most out of these services before purchasing another. 

We have tested our approach on a baseline dataset where we 

have obtained good results. 

Other AI methods, such as neural networks and deep 

learning, can also forecast how long an item will last. 

We plan to use one of these tools to attempt to forecast the 

RUL, then we'll compare the outcomes to see which strategy 
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performed the best. 
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