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The diagnosis techniques of diseases which are based on biomedical signals processing are 

constantly evolving, cardiovascular diseases are no exception to the other biomedical 

signals. Thanks to the development of signal processing techniques, it has been possible to 

extract several kinds of information from the ECG signals who told us about the heart's 

health. The goal of this study is to attempt to create a model based on two methods of signal 

processing: wavelet analysis and the determination of Mel frequency cepstral coefficients. 

With the help of this model, it is possible to extract statistical features and MFCC 

coefficients from approximation coefficients obtained when the discrete wavelet transform 

(DWT) is applied to analyze an ECG signal. As a result, the various features derived for 

each approximation coefficient will be classified using a support vector machine classifier 

(SVM classifier). The classifier's performance has been measured after the use a k fold cross 

validation technique to avoid the overfitting and the underfitting problems and making the 

results more reliable and credible. 
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1. INTRODUCTION

Biomedical signals are considered to be a huge amount of 

information deduced from the physiological activities of the 

human body that may be useful in diagnosing many diseases; 

the processing and correct interpretation of these signals 

provides a better understanding of the state of health of 

patients examined. 

The electrocardiogram (ECG) is a biomedical signal that is 

often employed in the healthcare field because it reflects the 

heart's electrical activity and its use allows the diagnosis of a 

large variety of cardiovascular problems (cardiovascular 

diseases); cardiovascular disease is the world's biggest major 

cause of death, according to World Health Organization 

estimates, nearly 9 million deaths were recorded in 2019 [1], 

representing more than 16% of all deaths in the world. 

Several heart issues can be diagnosed by analyzing ECG 

signals in various ways; for example, reading the 

electrocardiogram by a specialized person allows one to 

interpret and identify the state of health of the heart; however, 

this is not always the case. Indeed, in some cases, it is difficult 

to find trained people to evaluate these signals, that why we 

need methods more independent to any human intervention or 

even techniques which can do an automatic signal analysis. 

Thus, the field of signal processing makes a significant and 

effective contribution to the detection of any problem or 

abnormality. 

As a result, various studies have been done on this subject  

to improve efficiency of the automated diagnosis of the ECG 

signal by trying to extract more information as possible from 

the ECG signals; these works discuss several approaches to 

solving issues confronted in the processing of ECG signals; for 

example, Dwivedi et al. [2], and Sraitih and Jabrane [3] 

represent various decomposition techniques of the ECG signal 

such as EMD, DWT, and SWT in order to denoise the signal, 

some research also attempts to solve this problem by 

employing filters, as in the case of Das and Chakraborty [4], 

which use FIR and IIR filters, other research such as that of 

Khiter et al. [5] and Chen et al. [6] choose to use adaptive 

filters. On the other hand, the extraction of the features which 

can identify the signal is based on different approaches, among 

these approaches We find those that depend on the signal's 

morphology, for instance, the identification of the QRS 

complex established by Pan and Tompkins [7], the 

determination of the RR interval or detection of peaks [8], 

without missing the other types of features. Also, statistical 

features in particular are highly helpful for signal 

identification [9]. Other approaches suggest the identification 

using a combination of several types of features such as for 

example the combination between the statistical and 

morphological features proposed in the works of Sahoo et al. 

[10] or in the article of Chashmi and Amirani [11] which is

based on the wavelet coefficients in the feature extraction; As

a consequence, we can see that the diversity of approaches and

features implemented in signal diagnostics makes the selection

phase crucial and demands a lot of attention.

In this paper, we will focus on Mel Frequency Cepstral 

Coefficients (MFCC), which are a kind of feature that have 

shown to be extremely successful in the field of audio signal 

processing [12], these coefficients will be calculated after a 

wavelet decomposition of the ECG signal. In addition to 

knowing the use of the MFCC coefficients, we will study the 

effect of the combination of these coefficients with the 

statistical features on the quality of separation between normal 
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and pathological ECG signals, as well as the identification of 

the signal class will be performed using classification 

techniques for machine learning, which is the Support Vector 

Machine SVM. 

 

 

2. PROPOSED METHOD 

 

This section will explain the approach used in this paper, 

which attempts to design a model able to process and 

recognize a given ECG signal using the Mel frequency cepstral 

coefficients obtained from the wavelet coefficients signal. 

First, the ECG signals from the database are pre-processed; in 

this step, we remove noise from the signals and calculate the 

wavelet coefficients; after that, for every signal, each 

approximation coefficient obtained just after wavelet 

decomposition at different scales is used to calculate two types 

of parameters: statistical features and Mel frequency cepstral 

coefficients MFCC. This leads to the establishment of a 

database with two distinct types of features, namely statistical 

features and MFCC coefficients, which will finally be fed in 

an SVM classifier; Figure 1 illustrates the approach used in 

this paper. 

 

 
 

Figure 1. Diagram of the proposed approach 

 

2.1 The database 

 

The ECG signals used in this study were obtained from the 

MIT BIH Arrythmiya Database [13, 14], which contains 48 

recordings of ECG signals sampled at 360Hz, each signal 

enduring half an hour and representing two distinct classes. 

The first class indicates sick persons, and the second class 

represents the healthy ones. These 48 recordings were selected 

among 4000 recordings. 23 of these 48 signals are chosen 

randomly while the remaining recordings have been selected 

in order to represent some significant clinical cases for the 

reliability of the database, 47 patients served as the study's 

subjects (two recordings belong to the same patient), with 25 

males and 22 women whose ages ranged between 23 and 89.  

 

2.2 Wavelet analysis 

 

A popular signal processing method for analyzing non-

stationary signals is the wavelet transform; this concept was 

first proposed in the 1980s [15, 16]. It is based on analyzing 

the time and frequency of a given signal by convolving it with 

a function known as the mother wavelet 𝜓(𝑡), this wavelet 

must have a finite duration, so it is a window function that 

checks the condition [17]: 

 

∫ ψ(t)dt = 0
+∞

−∞

 (1) 

 

Additionally, the mother wavelet can shift along the time 

axis by a translation coefficient “a” and compress or expand 

through a scale coefficient “b”. As a result, the mother wavelet 

may be defined as follows [16, 18, 19]: 

 

ψa,b(t) =  
1

a
1

2⁄
ψ (

t − b

a
) (2) 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 
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(f) 

 

Figure 2. Some wavelet families 

 

a is defined as the scaling coefficient and b represents the 

shifting one. This decomposition technique may be calculated 

in two ways: continuous and discrete. The first form is the 

CWT continuous wavelet transform, which is calculated for a 

given signal s (t) using the following formula [20]: 

 

ca,b =
1

a1/2
∫ s(t)ψ∗ (

t − b

a
)

+∞

−∞

dt (3) 

 

𝜓∗  indicates the conjugate of the wavelet 𝜓 . Figure 2 

illustrates some of the most common mother wavelet families. 

However, the continuous wavelet transform is sometimes 

difficult to calculate since it consumes a lot of memory and 

takes time during the calculation [20]. These issues are 

resolved by the discrete wavelet transform (DWT), 

characterized by its simplicity this technique decomposes the 

signal studied in two parts, a low frequency component and 

another high frequency component and that is done on several 

levels. This decomposition is obtained when a block of low-

pass and high-pass filters are applied to the input signal in 

order to extract respectively the approximation and detail 

coefficients [15, 16, 21-23], and the coefficients of the next 

level are obtained by repeating the same procedure on the 

coefficient of approximation until the desired level is reached 

(see Figure 3). 

 

 
 

Figure 3. Discrete wavelet decomposition at 2nd level of 

scale 

 
 

Figure 4. ECG signal from MIT-BIH Arrhythmia Database 

(record n° 100m) 

 

 
 

Figure 5. CWT of the ECG signal 
 

 
 

Figure 6. Discrete wavelet transform applied to the ECG 

signal 

 

The DWT is particularly effective in identifying and 

extracting several bits of information contained in the signal 

owing to its simplicity of execution and good precision in 

temporal and frequency resolution [22]. 

Figure 4 is an extract from a database recording of an ECG 

signal that will be analyzed using continuous and discrete 

wavelet transforms. The CWT localizes the information in 

time and frequency as shown in Figure 5, and this information 

is located at low frequencies (yellow areas). This is also valid 

for the discrete analysis (Figure 6), as we can see from the 

higher amplitudes of the coefficients that describe low 

frequencies. 

 

2.3 Mel frequency cepstral coefficients (MFCC) 

 

This approach is well-known for its robustness and is 

widely used as a technique of processing and extracting 

features from audio signals; it is based on the determination of 

cepstral coefficients; Figure 7 illustrates the process that helps 

us in calculating the MFCC coefficients. 
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Figure 7. MFCC Diagram bloc 

The MFCC coefficients are extracted according to the 

following steps: 

2.3.1 Pre-emphasis 

In the pre-emphasis phase, a finite impulse response filter is 

used to process the signal [23], the filter used at the following 

transfer function [24]: 

𝐻 = 1 − 𝛼𝑧−1 (4) 

So, the sample of the signal after pre-emphasis 𝑠𝑛
′  is: 

𝑠𝑛
′ = 1 − 𝛼𝑠𝑛−1 (5) 

This step is used to accentuate the signal's high frequency 

components. We choose 0.95 as the value of 𝛼 in this study. 

2.3.2 Framing and windowing 

The fact that the signal is not stationary, it is necessary to 

divide the signal into small segments in order to be able to 

apply the usual signal processing techniques [23], these 

segments have a limited duration ranging between 40ms and 

60ms. This process can lead to discontinuity between the 

frames of the segmented signal; thus, an overlap of about 10ms, 

as well as windowing of each frame of the signal, is proposed 

to resolve this problem [25], windowing aims to reduce signal 

discontinuities and make the boundaries of each frame 

sufficiently smooth to connect with the beginnings [26], this 

step is performed by multiplying the samples of the signal by 

the Hamming window as the following formula shows [27]: 

𝑠𝑛
′′ = 𝑤(𝑛)𝑠𝑛

′  (6)

With 𝑤(𝑛) the Hamming window which has the expression: 

𝑤(𝑛) = 0.54 − 0.46 cos (
2𝜋𝑛

𝑁 − 1
) (7) 

In each frame, N is the number of the signal. 

2.3.3 Discrete Fourier transform 

The discrete Fourier transform is employed in this stage to 

move from the time domain to the frequency domain in order 

to collect the information contained in the ECG signal's 

spectrum [28]. 

2.3.4 Mel's filter bank 

The spectrum from each frame is then fed into a sequence 

of triangular bandpass filters that overlap with each other [25, 

29], in this paper, we have chosen a bloc composed by twenty 

triangular filter (Figure 8); these filters are based on Mel's 

scale, and their characteristics are similar to those of the 

auditory system. The following formula is used to convert 

frequency f to Mel's frequency: 

𝑚𝑒𝑙 = 2595𝑙𝑜𝑔10 (1 +
𝑓

700
) (8) 

Figure 8. Mel filter bank 

2.3.5 Logarithm & discrete cosine transform DCT 

Applying the discrete cosine transform and decimal 

logarithm to the energy obtained at each filter's output, the 

following calculation determines the MFCC coefficients by 

using to the following formula: 

𝑐𝑖 =  √
2

𝑁
∑ 𝑚𝑗 cos (

𝜋𝑖

𝑁
(𝑗 − 0.5))

𝑁

𝑗

 (9) 

With 𝑚𝑗  the logarithm of the energy coming from each

filter's output and N the number of filters. 

2.3.6 The liftering 

The last step is to increase the amplitude of the higher order 

cepstral coefficients to make them sufficiently similar using 

the following relation [23, 27]: 

𝑐𝑛
′ =  (1 +

𝐿

2
sin (

𝜋𝑛

𝐿
)) 𝑐𝑛 (10) 

2.4 Support vector machine classifier 

The classification technique proposed in this study is 

support vector machine (SVM). SVM is a machine learning 

method that allows for binary classification. The goal of this 

method is to divide the signal's characteristics into many 

classes [28-30]. It is based on the development of a separation 

area between the various learning set classes (also called test 

set). The boundaries of this area are known as hyperplanes [12, 

30, 31]. A good classification via this method is based on the 

increase of the margin located between the different 

hyperplanes [31, 32]. 
The selection of training and test sets is extremely important 

since it may lead to several problems that lower the model's 
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efficiency, such as overfitting and underfitting [33]. To 

address these issues, we employ k fold cross validation [34, 

35], which entails splitting the data set into k parts, selecting 

one of these parts as a test subset and the remaining k -1 parts 

as a training subset, and repeating this procedure k times. The 

accuracy of the model is determined by averaging the accuracy 

of each iteration. 

3. RESULTS

To identify the signal, the proposed model allows to 

introduce an electrocardiogram (ECG) signal obtained from 

the MIT BIH Arrythmia database in various blocks. As we 

have seen we will first decompose the signal in order to 

remove all the noise that affects the signal, this decomposition 

is done using the DWT discrete wavelet transform, the 

coefficients extracted during the decomposition allow the 

detection of high frequency noise (50 Hz - 60 Hz) of various 

origins, such as those caused by power line interference, 

physical activity, or bad wiring. We discovered that these 

noises are mostly concentrated in the detail coefficients d1 and 

d2. It is also highly recommended to remove the offset 

generated by the baseline, which manifests in the frequency 

interval range [0, 0.5 Hz] and is contained in the 

approximation coefficient a8 [36]. 

We acquire a fresh denoised signal after eliminating these 

coefficients (d1, d2, and a8) by thresholding. The ECG signal 

is then decomposed for the second time in order to obtain the 

first eight approximation coefficients to extract the other 

features that include the signal's information; this step aims to 

extracting statistic features which are [37]: 

The mean value: 

𝜇 =  
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

(11) 

The root mean square: 

𝑟𝑚𝑠 =  √
1

𝑁
∑ 𝑥𝑖

2

𝑁

𝑖=1

(12) 

The variance: 

𝑣 =  
1

𝑁
∑(𝑥𝑖 − 𝜇)2

𝑁

𝑖=1

(13) 

Standard deviation: 

𝜎 =  √
1

𝑁
∑(𝑥𝑖 − 𝜇)2

𝑁

𝑖=1

(14) 

The skewness: 

𝜑 =  
1

𝑁

∑ (𝑥𝑖 − 𝜇)3𝑁
𝑖=1

𝜎3
(15) 

The kurtosis: 

𝜓 =  
1

𝑁

∑ (𝑥𝑖 − 𝜇)4𝑁
𝑖=1

𝜎4
(16) 

Wavelet entropy: 

𝐻 = −
1

𝑁
∑ 𝑥𝑖

2log (𝑥𝑖
2)

𝑁

𝑖=1

(17) 

N signifies the number of samples, and x (t) denotes a signal 

that has been sampled. 

Moreover, the first twelve MFCC coefficients of each of the 

acquired approximation coefficients are calculated, as a result, 

we make a data set containing seven statistical features and 

twelve MFCC coefficients for each record. After that comes 

the classification step, in this step the data set will be classified 

by injecting it into an SVM classifier to distinguish between 

two classes of patients, one class of sick patients and the other 

class of people concerned the healthy persons, this classifier 

use k fold cross validation with k = 8 to avoid overfitting the 

model and improve the credibility of obtained results. The 

following metrics are used to evaluate the performance of the 

classification of features acquired for each scale coefficient 

[38]: 

𝐴𝑐𝑐 =  
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100 (18) 

𝑆𝑒𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 (19) 

𝑆𝑝𝑒 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100 (20) 

TP: True positive (illustrates a normal signal that were 

appropriately identified)  

TN: True negative (illustrates abnormal signal that were 

appropriately identified) 

FP: False positive (reflects normal signal that were 

misclassified) 

FN: False negative (shows abnormal signal that were 

misclassified) 

The proposed method in this paper try to combine between 

two different types of features which are calculated from the 

wavelet coefficients which are extracted from the ECG signal, 

these features are the statistical features and the MFCC 

coefficients. 

Algorithm 1. Description of the process 

1: #Create empty arrays 

2: {Si}i = 1, …, 8 (8 arrays for storing statistical features) 

3: {Mi}i = 1, …, 8 (8 arrays for storing MFCC features) 

4: LOAD ECG database, Y labels for ECG signal 

5: FOR each signal from database 

6: #Denoising ECG 

7: Decompose the signal using DWT 

8: 𝑑1 ← 0, 𝑑2 ← 0, 𝑎8 ← 0
9: Reconstruct the signal 

10: #Calculate eight first approximation coefficients 

11: FOR each coefficient ai 

12: Calculate statistical features 

13: Calculate MFCC features 

14: 𝑆𝑖 ← statistical features, 𝑀𝑖 ←  MFCC features
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15:  end FOR 

16: end FOR 

17: #Classification 

18: LOAD {Si}i = 1, …, 8, {Mi}i = 1, …, 8 

19: FOR each i 

20: Create train and test datasets [Mi Y], [Si Y] 

21: and [Si Mi Y] with k fold cross validation 

22: Train the models 

23: Test the models 

24: Store the metrics in a table 

25: end FOR 

26: Display the table of metrics 

The exploitation of the approximation coefficients for 

different mother wavelets allowed us to create three different 

models. the first model consists of the statistical characteristics, 

the second is designed from the MFCC coefficients, while the 

last is a combination of the two previous models. 

According to the results mentioned in Tables 1, 2 and 3 we 

note that the best accuracies are those obtained by the 

coefficients of approximation a7 (symlet 7 and 8) and a5 a6 

for (coiflet 4 and 5), while for the second model is the 

coefficient a4 which gives the best accuracy.
In relation to the third model, we notice that the accuracy of 

the model is clearly improved in the majority of cases after the 

combination between the MFCC coefficients and the 

statistical features (see Table 1 & Table 2). Table 3 

summarizes the results obtained for different wavelet families. 

We notice that the best result in terms of accuracy is obtained 

for the approximation coefficient which is extracted at the 

fourth scale level with the mother wavelet coiflet 4. 

Table 1. Accuracy (Acc), sensitivity (Sen) and specificity (Spe) for MFCC only 

wavelet Metrics The first eight approximation scale coefficients 

a1 a2 a3 a4 a5 a6 a7 a8 

Sym7 Acc 35.4 39.6 66.7 56.3 64.6 64.6 77.1 68.1 

Sen 29.2 41.7 54.2 50.0 54.2 66.7 79.2 78.3 

Spe 41.7 37.5 79.2 62.5 75.0 62.5 75.0 58.3 

Sym8 Acc 47.9 35.4 50.0 58.3 64.6 68.8 77.1 65.2 

Sen 54.2 50.0 25.0 45.8 66.7 70.8 75.0 72.7 

Spe 41.7 20.8 75.0 70.8 62.5 66.7 79.2 58.3 

Coif4 Acc 46.0 39.8 52.8 57.1 63.8 67.8 67.4 59.7 

Sen 21.4 46.9 37.2 55.4 66.4 70.1 63.5 64.9 

Spe 70.6 32.6 68.6 58.8 61.3 65.4 71.6 54.4 

Coif5 Acc 46.5 44.8 68.0 59.7 73.1 68.2 68.2 61.7 

Sen 37.3 45.7 60.1 49.5 79.0 65.6 65.6 65.6 

Spe 55.6 43.1 75.8 69.9 67.2 70.8 70.8 58.1 

Table 2. Accuracy, sensitivity and specificity for statistical features only 

wavelet Metrics The first eight approximation scale coefficients 

a1 a2 a3 a4 a5 a6 a7 a8 

Sym7 Acc 71.0 71.4 73.1 79.8 72.0 69.8 59.9 42.1 

Sen 76.2 76.6 77.5 88.9 85.3 82.6 61.3 55.7 

Spe 65.9 66.1 68.6 70.7 58.8 57.0 58.5 30.0 

Sym8 Acc 72.2 73.2 73.1 75.7 70.0 68.9 58.8 48.6 

Sen 76.4 76.7 78.1 84.6 79.5 77.7 66.3 60.1 

Spe 68.1 69.7 68.2 66.7 60.5 60.0 51.3 38.8 

Coif4 Acc 74.6 74.7 75.4 83.1 72.6 75.2 60.3 48.6 

Sen 81.3 81.6 82.8 93.8 81.3 82.8 72.0 67.5 

Spe 67.8 67.9 68.0 72.3 63.9 67.7 48.5 32.3 

Coif5 Acc 74.6 74.6 75.6 83.9 72.8 72.5 54.7 47.0 

Sen 81.0 81.2 82.8 94.6 81.8 81.4 63.3 62.7 

Spe 68.3 68.1 68.3 73.1 63.7 63.6 46.0 31.7 

Table 3. Accuracy, sensitivity and specificity for MFCC and statistical features together 

wavelet Metrics The first eight approximation scale coefficients 

a1 a2 a3 a4 a5 a6 a7 a8 

Sym7 Acc 73.0 65.0 73.0 83.3 70.8 72.9 66.7 55.3 

Sen 75.0 67.0 75.0 95.8 79.2 79.2 62.5 60.9 

Spe 71.0 63.0 71.0 70.8 62.5 66.7 70.8 50.0 

Sym8 Acc 72.9 62.5 72.9 81.3 68.8 75.0 66.7 62.8 

Sen 75.0 66.7 79.7 95.8 79.7 79.7 58.3 63.0 

Spe 70.8 58.3 66.7 66.7 70.8 70.8 75.0 62.5 

Coif4 Acc 75.0 72.3 72.9 85.4 77.1 75.0 75.0 66.7 

Sen 75.0 79.2 79.7 95.8 83.3 83.3 66.7 66.7 

Spe 75.0 66.7 66.7 75.0 70.8 66.7 83.3 66.7 

Coif5 Acc 75.0 68.8 66.7 83.3 66.7 75.0 70.8 64.7 

Sen 75.0 75.0 75.0 95.8 75.0 79.2 62.5 66.7 

Spe 75.0 62.5 58.0 70.8 58.3 70.8 79.2 62.5 
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Table 4. Comparison results 

Paper Used method Classifier Accuracy 

Siti [25] 

DWT 

d4, d5, d6 

Haar 

KNN 

68% 

Sym 7 71% 

MFCC 85% 

Proposed 

method 
DWT, a4 

MFCC  

Sym7 

SVM 

83.3% 

Coif 4 85.4% 

The comparison of the obtained results with those of other 

previous works which study the same topics shows that this 

combination of features gives promising results. Indeed, 

according to the work of Yusuf and Hidayat [25], we 

respectively reach a precision of 68%, 71% with the use only 

the fourth, fifth and the sixth detail coefficient and 85% by 

using only the MFCC coefficients extracted directly from the 

ECG signal (see Table 4), while in the adopted approach in 

this work we have reached 85.4% as the best accuracy by only 

the use of the features extracted from the approximation 

coefficient a4.  

4. CONCLUSION

In this article we have tried to introduce new features which 

are the Mel Frequency Cepstral Coefficients in order to 

identify the ECG signals, after the calculation of the wavelet 

coefficients we have extracted from them the statistical 

features and the MFCC coefficients that we will then classify 

them with an SVM classifier for different types of mother 

wavelets, we have seen that in this approach we have reached 

85.4% as better precision and it has improved for some mother 

wavelet families compared to some work that has been done 

previously. Also, the results of this analysis further supported 

our conviction that the model's accuracy is definitely increased 

when the MFCC coefficients are added to other features. This 

is due to the fact that in a prior study [39], we used a similar 

process to merge two types of features: the MFCC coefficients 

produced from PCG signal and additional features derived 

from an ECG signal of the same patient. Finally, we may 

conclude that the features we choose and the method we use 

to classify them have a big influence on how well the model 

performs. 
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