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In this paper, a new Signal-to-Noise Ratio (SNR) metric is proposed to quantify the 

detectability of targets in infrared (IR) images. The proposed metric is based on the contrast 

between the target and the background, which is consistent with human perception in terms 

of distinguishing the target from the background, rather than the raw intensity values of the 

target. In the contrast calculation, individual contribution of each pixel value of the target is 

considered in the proposed metric, whereas the mean or a single representative raw intensity 

value of the target is taken into account in the existing metrics. As subjective evaluations 

are the most precise tools for distinguishing the target from the background, SNR metrics 

used for IR images are expected to be as consistent as possible with the human visual system. 

That is, due to its high contrast sensitivity, the human visual system responds to stimuli by 

cognitively distinguishing the target from the background. Therefore, human perception-

inspired target distinguishability metrics aim to quantify the target detectability consistent 

with the human visual system, which is capable of distinguishing very small differences in 

contrast. Extensive performance evaluation tests on well-known IR image datasets, VIVID, 

SENSIAC and AMCOM, and synthetic image sets demonstrate that the proposed pixel-wise 

SNR metric quantifies target distinguishability from the background more consistently with 

subjective evaluations than other SNR metrics. Furthermore, the proposed metric is always 

robust even when the other metrics fail to accurately quantify target distinguishability. 
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1. INTRODUCTION

Signal-to-Noise Ratio (SNR) quantifies signal or desired 

information with respect to noise or unwanted information. In 

infrared (IR) images, where the distinguishability of a target 

from the background is examined, the desired information is 

the target, and the unwanted information is the background. 

Since target distinguishability assessments are based on 

human perception, SNR metrics are expected to quantify IR 

images as consistently as possible with subjective assessment 

results. 

Quantifying target-background distinguishability in IR 

images by means of an objective metric is an essential task for 

evaluating object or target detection algorithms in remote 

sensing and reconnaissance applications. For this aim, various 

SNR metrics are used to interpret IR images in terms of target 

distinguishability from the background [1-3]. SNR metrics 

should accurately quantify this distinction consistent with the 

human visual system as subjective tests are taken as the 

reference gold standard for SNR metrics [4]. As being 

objective measures, SNR metrics consider two important 

aspects of an IR image that affect quantification success: (i) 

target saliency, and (ii) background complexity. Performance 

of a detection algorithm can be evaluated by comparing the 

SNR values regarding the target distinguishability of the input 

and enhanced output images [5]. Accordingly, the image 

enhancement for target distinguishability can be measured by 

SNR gain, which is the ratio of the output SNR to the input 

SNR [5, 6]. In addition to SNR gain, background suppression 

factor (BSF) is also used to evaluate the performance of a 

detection algorithm [7]. However, BSF quantifies the 

enhancement via background suppression, and does not 

contain any information about the target. Therefore, SNR gain 

is more commonly used than BSF to quantify enhancement in 

IR images. However, the reliability of the SNR gain depends 

on the accuracy of the SNR metric. If the SNR metric does not 

accurately quantify the target-background distinguishability, 

all results based on the SNR metric will be adversely affected. 

Even though different SNR metrics are used to quantify IR 

images for the detectability of targets, accuracy of these 

metrics has not been discussed.  

SNR metrics used in the literature to quantify IR images in 

terms of target detectability can be grouped into three main 

categories. In the first category, defined as raw SNR, metrics 

are given as the ratio of the target to the standard deviation of 

the background [1, 8]. Since these metrics do not take into 

account the contrast of the target with respect to the 

background [1, 9], they may not accurately quantify target 

distinguishability under different brightness conditions. In 

order to overcome this disadvantage, metrics that consider the 

contrast of the target against the background are used [2, 10]. 

These metrics, which are considered in the second category 

called contrast-to-noise ratio (CNR), can give inconsistent 

results with the human visual system when the target is not 

uniform. The third category of the metrics is called local 

signal-to-background ratio (LSBR), because the contrast 
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calculation uses a limited region around the target instead of 

the whole background [3]. LSBR can give different values 

depending on the selection of the local region, which may 

result in inconsistency with subjective evaluations. 

Consequently, in a target and background condition for which 

one metric is consistent with the human visual system, another 

metric may yield a less consistent or completely inconsistent 

result. In this context, the main problem with the SNR metrics 

that quantify target distinguishability in IR images is that they 

do not always give results consistent with subjective 

evaluations due to the specified disadvantages. 

In this paper, considering the drawbacks of the existing 

metrics, a novel SNR metric consistent with the human visual 

system is proposed to quantify the distinguishability of the 

targets in IR images. SNR metrics are compared with the mean 

opinion scores of subjective evaluations to check the 

consistency of the proposed and other metrics with the human 

visual system. Well-known IR image datasets and synthetic 

image sets were used in the evaluations. Test results show that 

the proposed metric is more consistent with the subjective 

evaluations compared to other SNR metrics. Also, the 

proposed metric is always robust in quantifying 

distinguishability of different types of targets with various 

background conditions, whereas other metrics fail with certain 

types of targets and background conditions. 

The organization of this article is as follows. Current SNR 

metrics and the proposed pixel-wise SNR metric are explained 

in Section 2 and 3, respectively. Experimental results and 

related discussions are given in Section 4. Conclusion is given 

in the last section of the paper. 

 

 

2. EXISTING SNR METRICS 

 

In this section, properties and drawbacks of SNR metrics 

used to quantify the detectability of targets in IR images are 

explained. These metrics can be grouped into three main 

categories as follows: 

(i) Raw SNR: Metrics that calculate the ratio of the target 

signal to the standard deviation of the background are 

expressed by the following equation: 

 

𝑟𝑎𝑤𝑆𝑁𝑅 =
𝐼𝑇
𝜎𝐵

 (1) 

 

where, IT and σB represent intensity value of the target, and the 

standard deviation of the background, respectively [1]. In 

some studies, background is considered as the entire image if 

the target is very small [11], whereas it is mostly taken as the 

area other than the target especially when the target is 

relatively large [12]. In some studies, raw SNR is calculated 

as the second power of Eq. (1) [8], which is also given in dB 

as follows [9]: 

 

𝑟𝑎𝑤𝑆𝑁𝑅𝑑𝐵 = 10𝑙𝑜𝑔 (
𝐼𝑇
𝜎𝐵
)
2

 (2) 

 

Different definitions for intensity value of the target IT in Eq. 

(1) and (2) have been given in the literature. For one pixel-

targets, target’s own intensity value is considered as the target 

signal [11]. For a larger target, maximum [13] or mean [14] 

intensity value of the target pixels is commonly used to 

represent the target. Various raw SNR metrics that use the 

mean or standard deviation of the target are utilized in the 

paper of Usamentiaga et al. [15] for defect quantification in IR 

images. SNR is also referred to as Signal-to-Clutter Ratio 

(SCR) in some studies, and calculated by various equations 

[16, 17]. 

Despite its widespread use, raw SNR has two main 

disadvantages. The first one is that raw SNR value of an IR 

image with high-intensity background can be large even if the 

target is dim or barely distinguishable from the background. 

As the second disadvantage, brighter images can have larger 

raw SNR values than darker images even if the target 

distinguishability and contrast is low. 

(ii) Contrast-to-Noise Ratio (CNR): Metrics that consider 

the contrast of the target against the background are called 

CNR and can generally be described by either: 

 

𝐶𝑁𝑅 =
|𝐼𝑇 − 𝜇𝐵|

𝜎𝐵
 (3) 

 

or 

 

𝐶𝑁𝑅𝑑𝐵 = 10𝑙𝑜𝑔 (
|𝐼𝑇 − 𝜇𝐵|

𝜎𝐵
)

2

 (4) 

 

where, μB is the mean intensity value of the background. If 

there is a one-pixel target in the IR image, IT represents the 

target [10]. If the target consists of more than one pixel, IT 

represents the minimum [18], maximum [19], or mean [20] 

intensity value of the target. In the literature, the mean value is 

mostly used because it represents all pixel values of the target 

[20]. However, in case of bimodal target, i.e., if some parts of 

the target are brighter and other parts are darker than the 

background, intensity of the target IT becomes low because of 

the mean calculation. Consequently, quantifying the 

detectability of the target by CNR becomes unreliable because 

of the contradiction between low CNR value and high 

distinguishability score obtained from subjective evaluations. 

(iii) Local Signal-to-Background Ratio (LSBR): Another 

commonly used specific SNR metric is LSBR [3], which is 

given as: 

 

𝐿𝑆𝐵𝑅 = 10𝑙𝑜𝑔 (
∑ ∑ (𝐼(𝑖, 𝑗) − 𝜇𝑅)

2𝐻𝑦
𝑗=𝐿𝑦

𝐻𝑥
𝑖=𝐿𝑥

𝜎𝑅
2 ) (5) 

 

This metric is calculated for a region whose boundaries are 

given by the coordinates (Lx, Ly) to (Hx, Hy) in image I. In this 

equation, mean intensity value and standard deviation of the 

region pixels are 𝜇𝑅, and 𝜎𝑅, respectively. There are several 

studies in the literature that use LSBR metric. For example, it 

is used in the analysis of IR dim small targets in the study of 

Bai and Zhou [21] and in the evaluation of small target 

enhancement obtained by IR sensor in the study of Bai [22]. 

The result of LSBR is closely related to target size, since the 

mean is not calculated for the target. Additionally, the clutter 

of the region around the target, not the whole background, is 

taken into account. Therefore, LSBR can yield different values 

based on the region around the target. Since LSBR does not 

consider the contrast of target pixels against the background, 

effect of the pixels of the target on the contrast calculation is 

reduced. Besides, the background complexity is not reflected 

in LSBR, as only the surrounding area of the target is used in 

LSBR calculation. 
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3. PROPOSED SNR METRIC: PIXEL-WISE SIGNAL-

TO-NOISE RATIO 

 

Since contrast is a decisive parameter in target detection 

[23], it is essential that an SNR metric takes contrast into 

account. This is due to the fact that perception is associated 

with contrast, which simulates the human visual system [24]. 

High-contrast regions appear more salient than their 

surroundings [25], even when the background clutter is high. 

According to a psychological study [26], if there is more than 

one stimulus inside a neuron’s perception area, the neuron 

tends to choose stimuli with the highest contrast. For this 

reason, target detection capability of a human is directly 

related to target’s contrast to the background rather than 

target’s brightness [27]. However, since raw SNR does not 

consider contrast, it often does not give results compatible 

with the human visual system. Also, although CNR is based 

on contrast calculation, there is no contribution to the contrast 

by the diversity of the target pixels against the background, as 

contrast calculation in CNR is obtained by subtracting the 

background average from the target pixels' maximum, 

minimum, or average value. As a result, CNR may give 

inconsistent results with the human visual system for 

nonuniform targets. Also, quantification of LSBR is limited to 

the area around the target. 

Considering the disadvantages of the existing metrics, a 

new pixel-based SNR (pwSNR) metric has been proposed, the 

consistency of which with the human visual system is shown 

by the subjective evaluations. The proposed metric is given as: 

 

𝑝𝑤𝑆𝑁𝑅 =
𝐸[|𝑇(𝑖, 𝑗) − 𝜇𝐵|]

𝜎𝐵
 (6) 

 

or 

 

𝑝𝑤𝑆𝑁𝑅𝑑𝐵 = 10𝑙𝑜𝑔 (
𝐸[|𝑇(𝑖, 𝑗) − 𝜇𝐵|]

𝜎𝐵
)

2

 (7) 

where, T(i, j) are the target pixel intensities located in rows i, 

and columns j. E[.] denotes the expected value. Unlike the 

contrast calculation in CNR, in the proposed metric, contrast 

between the target and the background is obtained in each 

target pixel separately, and then the average is calculated. 

Therefore, the advantage of the proposed metric is that it 

quantifies the distinguishability of the target against the 

background with the contribution of the bright and dark parts 

of the target to the contrast individually. In addition, the results 

are not dependent on the intensity change of the background 

or the image. The proposed and existing SNR metrics are 

briefly presented in Table 1. 

As summarized in Table 1, only the intensity of the target is 

taken into account, along with the standard deviation of the 

background, to calculate raw SNR. In other words, SNR does 

not evaluate target pixels against the background and is 

vulnerable to mean changes. As for CNR, it does not calculate 

individual contribution of each target pixel to the contrast. 

Therefore, structure of the target is not taken into account in 

CNR. For example, when computing mean of a nonuniform 

target with different temperatures in an IR image, brighter and 

darker areas cancel each other’s contribution to the contrast 

calculation in CNR, which results in low contrast and 

subsequently low CNR value even though the human 

perception of the contrast of the target is high. LSBR is related 

to the surrounding region around the target, without 

considering target structure and standard deviation of the 

background. On the other hand, in pwSNR, since the mean of 

the background is firstly subtracted from each pixel of the 

target and then absolute values of the resulting pixels are 

obtained, brighter and darker parts of the target pixels do not 

cancel each other’s contribution to the contrast of the target 

against the background. 

Consistency of the target distinguishability quantification of 

the proposed metric with subjective evaluations and 

disadvantages of aforementioned SNR metrics are 

demonstrated by the experiments in the next section. 

 

Table 1. Existing and proposed SNR definitions 

 
Definition Formulation Explanation 

rawSNR 
𝐼𝑇
𝜎𝐵

 
Problem of quantifying target distinguishability from the background accurately, since only 

intensity of the target is considered. 

CNR 
|𝐼𝑇 − 𝜇𝐵|

𝜎𝐵
 

Quantifies target detectability more reasonable than raw SNR since background mean is also 

taken into consideration together with the target intensity. However, it is weak for nonuniform 

targets. 

LSBR 10𝑙𝑜𝑔(
∑ ∑ (𝐼(𝑖, 𝑗) − 𝜇𝑅)

2𝐻𝑦

𝑗=𝐿𝑦

𝐻𝑥
𝑖=𝐿𝑥

𝜎𝑅
2 ) Considers only the local clutter, and results are closely related to the local region size. 

𝒑𝒘𝑺𝑵𝑹 

(Proposed) 

𝐸[|𝑇(𝑖, 𝑗) − 𝜇𝐵|]

𝜎𝐵
 

Considers the contrast between the background and each pixel of the target instead of raw 

intensity of the target or contrast between the mean intensity values of the background and the 

target. It is always robust and consistent with subjective evaluations. 

 

 

4. EXPERIMENTAL RESULTS AND DISCUSSIONS  

 

The consistency of the proposed and other metrics with the 

human visual system was compared using real-world IR image 

datasets and synthetic image sets. For this aim, the mean 

opinion scores of subjective evaluations for target-background 

distinguishability were used as reference. A subject group of 

20 engineering graduates familiar with IR images participated 

in the subjective evaluations. 

Real-world IR images from three different well-known IR 

image datasets, VIVID, SENSIAC and AMCOM, were used 

in the evaluations. Also, 8-bit synthetic images with a 

resolution of 128×128 pixels were generated for the 

evaluations. Two types of patterns, uniform and nonuniform, 

were used as targets in the synthetic images, since both target 

types are common in IR images. There is a four-bar pattern 

among the nonuniform targets used in the evaluations, as it has 

been used in some studies on IR images before [28, 29]. It was 

defined in the study of Ratches et al. [28] for Minimum 

Resolvable Temperature Difference (MRTD) studies in IR 
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images, and a similar pattern was also used in a psychological 

study for visual saliency [29]. It represents a target with low 

and high temperature regions. Uniform pattern represents a 

target whose pixels have the same or close intensity values, i.e., 

temperatures. An 8-bit grayscale synthetic image can be 

modeled as: 

𝐼 = 𝐵 + 𝑇 (8) 

where, I, B, and T are image, background and target, 

respectively. An image consisting of background and a target 

is shown in Figure 1. In this study, background is modeled 

using Gaussian noise in the synthetic images.  

In the following subsections, disadvantages of the SNR 

metrics described in the previous sections and consistency of 

the proposed metric with the subjective evaluations are 

demonstrated by experiments. 

Figure 1. Synthetic image model: Background (left), target 

(middle) and resulting image (right) 

4.1 Examples regarding the inconsistency of the existing 

metrics with subjective evaluations 

The main disadvantage of the existing metrics is that they 

do not give consistent results with the subjective evaluations 

in all target and background conditions. As mentioned in Sec. 

2, raw SNR cannot accurately quantify target 

distinguishability in situations where it is difficult to 

subjectively distinguish the target from the high-intensity 

background. An example for this case is given by the images 

shown in Figure 2. 

(a) (b)

Figure 2. Same target with different backgrounds 

In the subjective evaluations of these two images, all 

subjects agreed that the distinguishability of the target in 

Figure 2 (a) is higher than the target in Figure 2 (b). The targets 

in both images are the same with the mean intensity value of 

149.9, while the mean intensity value of the background on the 

left and on the right are 50.1 and 140.0, respectively. Standard 

deviation of both backgrounds is the same, which is 8.07. By 

using Eq. (1) with IT being the mean intensity value of the 

target, raw SNR of both images is the same with the value of 

18.58. Therefore, raw SNR is not consistent with the 

subjective evaluation results, as it cannot quantify target-

background distinguishability correctly. That is, since the 

target intensity and background variance of both images are 

the same, raw SNR values calculated for both images are also 

the same. In Table 2, results of all SNR metrics for the images 

in Figure 2 (a) and (b) are given. As seen in this table, all 

metrics, except raw SNR, are consistent with the subjective 

evaluation results on the target distinguishability of the images, 

i.e., values of all metrics except raw SNR for Figure 2 (a) are

larger than those for Figure 2 (b).

Table 2. Results of the SNR metrics for the images in Figure 

2 (a) and (b) 

Image raw SNR CNR LSBR pwSNR 

Figure 2 (a) 18.58 10.28 1021.2 10.28 

Figure 2 (b) 18.58 1.18 633.4 1.32 

The second example regarding the inconsistency of raw 

SNR is given in Figure 3. Properties of the images in Figure 3 

are given in Table 3, where, μT, μB, and μ are the mean intensity 

of the target, background, and whole image, respectively. 

(a) (b)

Figure 3. Images with different brightness 

In this example, it was shown that brighter images can have 

larger raw SNR values than darker ones even if target 

distinguishability and contrast is low. Images in Figure 3 have 

the same target distinguishability from the background 

according to the subjective evaluations, and also have the same 

contrast. However, raw SNR of the left and right images are 

24.95 and 31.74, respectively, Therefore, raw SNR results are 

not consistent with the subjective evaluations. 

Table 3. Properties of the images in Figure 3 

Image μT μB μ 

Figure 3 (a) 174.7 169.9 170.1 

Figure 3 (b) 234.6 229.9 230.0 

On the other hand, as shown in Table 4, pwSNR values for 

both images are nearly equal, which is the most consistent 

result with the subjective evaluations. 

Table 4. Results of the SNR metrics for the images in Figure 

3 (a) and (b) 

Image raw SNR CNR LSBR pwSNR 

Figure 3 (a) 24.95 0.65 590 0.97 

Figure 3 (b) 31.74 0.64 460 0.96 

In the next example, the most common disadvantage of 

CNR is considered. That is, although CNR takes into account 

the contrast, it may give inconsistent results with subjective 

evaluations for bimodal targets. 

(a) (b)

Figure 4. Bimodal and monomodal targets 
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In Figure 4, both images have the same background with a 

mean of 70.06. Also, the target size in both images is the same, 

but the means of the inner and outer parts of the bimodal target 

in the left image are 5.0, and 169.69, respectively. Target mean 

of the right image is 119.99. In the subjective evaluations, all 

subjects agreed that the target of the image in Figure 4 (a) is 

more distinguishable than the one in Figure 4 (b). However, 

CNR value of the image with bimodal target is 5.23, whereas 

CNR value of the right image is 5.97 as shown in Table 5. 

Therefore, target distinguishability is not accurately quantified 

by CNR, as it is inconsistent with the subjective evaluation 

results. 

 

Table 5. Results of the SNR metrics for the images in Figure 

4 (a) and (b) 

 
Image Raw SNR CNR LSBR pwSNR 

Figure 4 (a) 20.10 5.23 1297 9.36 

Figure 4 (b) 17.00 5.97 777 5.97 

 

4.2 Performance evaluations with synthetic and real-world 

image sets 

 

In this section, performance evaluations are carried out 

through image sets with five different target distinguishability 

levels. Initial assessments have three sets of five images each. 

Experiments were then conducted for three sets of 25 images 

each. These experiments are described respectively in the next 

two subsections. 
 
4.2.1 Experiment for three sets of five images each 

In this experiment, two synthetic and one real-world image 

sets are used. These sets, each consisting of five images, are 

shown in Figure 5. In this figure, each image set is shown in a 

column from top to bottom with increasing target 

distinguishability based on subjective evaluations. Image set 

with uniform target, image set with four-bar target, real-world 

IR image set, and ground truth set of the real-world IR image 

set are shown in Figure 5 (a), (b), (c) and (d), respectively. 

Images with 320×256-pixel resolution from VIVID dataset are 

seen in the first and the fourth row, while a 640×512-pixel 

image from SENSIAC dataset is shown in the second row of 

Figure 5 (c). Images from AMCOM dataset with 128×128-

pixel resolution are placed in the third and the last row of 

Figure 5 (c). 

For subjective evaluations, subjects were shown the test 

images of the uniform, four-bar and real-world image sets in 

Figure 5 (a), (b) and (c), respectively, and asked to score target 

distinguishability for each set. Hard-to-detect targets have the 

lowest score of 1, while others have increasing scores by one 

according to the distinguishability up to the score of 5. Finally, 

for each set, the mean of the scores given by the subjects to 

each image was calculated. 

The mean opinion scores of the subjective evaluations for 

the three image sets in Figure 5 are shown at the left column 

of Figure 6 (a, b, c). In this figure, the image numbers in the 

horizontal axis correspond to the images shown in Figure 5 

from top to bottom. 

 

 

 

 

    

    

    

    

    
(a) (b) (c) (d) 

 

Figure 5. Image sets with five different target-background 

distinguishability levels used to evaluate SNR metrics. a) 

Synthetic uniform target image set, b) synthetic four-bar 

target image set, c) real-world IR image set, d) ground truth 

of the images in (c) 

 

  
(a) (d) 

  
(b) (e) 

  
(c) (f) 

 

Figure 6. Results of subjective evaluations and SNR metrics 

for the experiments with uniform, four-bar and real-world IR 

image sets with 5 images each. Left column from top to 

bottom: Mean opinion scores of the sets in Figure 5 (a), (b) 

and (c), respectively. Right column from top to bottom: SNR 

metric results of the sets in Figure 5 (a), (b) and (c), 

respectively 
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All subjects gave the same scores to the same images for the 

distinguishability of the synthetic uniform targets in Figure 5 

(a), and the mean opinion scores for this set is given in Figure 

6 (a). Only three of the subjects have different opinions for 

synthetic four-bar targets in Figure 5 (b), for which mean 

opinion scores are given in Figure 6 (b). Also, mean opinion 

scores of the real-world IR images in Figure 5 (c) are shown 

in Figure 6 (c). 

Results of SNR metrics for the image sets in Figure 5 are 

given in Figure 6 (d), (e), and (f), next to the mean opinion 

scores. LSBR results are divided by 1000 in order to be shown 

together with the other metrics. When compared to the mean 

opinion scores at the left column of Figure 6, it is seen that the 

most consistent metric is pwSNR for all image sets. On the 

other hand, other metrics are less consistent with the subjective 

evaluations, especially for real-world image set. For uniform 

target, CNR and the proposed metric pwSNR in Figure 6 (d) 

have close values and are consistent with the mean opinion 

scores in Figure 6 (a). However, for four-bar image set, CNR 

in Figure 6 (e) is inconsistent with the mean opinion scores in 

Figure 6 (b), since the four-bar target is nonuniform. In this 

case, CNR is close to zero for all five images in Figure 5 (b). 

In the next subsection, experimental studies were conducted 

using a larger data set in which the proposed metric was 

compared with other metrics. 

 
4.2.2 Experiment for three sets of 25 images each 

 

  
(a) (d) 

  
(b) (e) 

  
(c) (f) 

 

Figure 7. Results of subjective evaluations and SNR metrics 

for the experiments with uniform, four-bar and real-world IR 

image sets with 25 images each. Left column from top to 

bottom: (a) Mean opinion scores of uniform target image set, 

(b) Mean opinion scores of four-bar target image set (c) 

Mean opinion scores of real-world image set. Right column 

from top to bottom: Corresponding SNR metric results of the 

left column 

A second experiment similar to the first one but this time 

with 25 images in each of the three sets was carried out. 

Images in each set in this experiment also have five different 

target distinguishability levels. Mean opinion score results for 

three sets of 25 images are given at the left column of Figure 

7 for uniform, four bar and real-world image sets in (a), (b) 

and (c), respectively. Results of SNR metrics are given at the 

right column of Figure 7, in (d), (e) and (f). 

As in the first experiment, the pwSNR results for all three 

data sets are consistent with the mean opinion scores of 

subjective evaluations. CNR and the proposed metric give 

close results if the target is uniform as can be seen in Figure 7 

(d), and both are consistent with the scores in Figure 7 (a). On 

the other hand, CNR in Figure 7 (e) is inconsistent with the 

mean opinion scores in Figure 7 (b), since four-bar target is 

bimodal. It is also not successful in quantifying the 

detectability of nonuniform targets in real-world images. For 

real world images, raw SNR is also less consistent with the 

mean opinion scores since it does not consider the contrast. 

LSBR, on the other hand, is more relevant to the target size 

rather than the distinguishability. As can be seen from Figure 

7 (c) and (f), LSBR is the least consistent metric with the mean 

opinion scores. 

In this section, the consistency of the SNR metrics with the 

subjective evaluations has been visually evaluated using mean 

opinion score and SNR graphics. In the next section, this 

consistency is evaluated quantitatively using correlation 

coefficients. 

 

4.3 Quantitative analysis of consistency between SNR 

metrics and subjective evaluations through correlation 

coefficients 

 

In this section, consistency between SNR metrics and the 

mean opinion scores is evaluated using Pearson, Kendall and 

Spearman correlation coefficients [29]. Pearson correlation 

coefficient is a strength measure of a linear relationship 

between two variables. It is also called Pearson product-

moment correlation coefficient or bivariate correlation. 

Kendall rank correlation coefficient is a special case of a more 

general correlation coefficient and commonly referred to as 

Kendal’s tau coefficient. Spearman rank correlation 

coefficient or Spearman’s rho is another measure of rank 

correlation [30]. The value of all three correlation coefficients 

ranges between -1 and 1. In other words, the coefficient is 1 if 

the correlation is the highest, 0 if there is no correlation, and -

1 if there is a negative correlation between the variables being 

compared. 

The correlation coefficients between the SNR metrics and 

the mean opinion scores are given in Tables 6, 7, and 8 for 

uniform synthetic, four-bar synthetic, and real-world IR image 

sets in Figure 5, respectively. The correlation coefficients are 

calculated between the mean opinion scores at the left column 

and the values of the SNR metrics at the corresponding right 

column of Figure 6. As can be seen from these tables, the 

correlation coefficients for pwSNR takes the highest value or 

is equal to 1 for all image sets. This shows the superiority of 

the proposed pwSNR over the other metrics for all three sets, 

and its consistency with the human visual system. On the other 

hand, other metrics have lower correlations with the mean 

opinion scores compared to pwSNR, especially for real-world 

images. Also note that, in Tables 7 and 8, the correlation 

coefficients for CNR are among the lowest, as CNR is 

disadvantageous for nonuniform targets. 
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Table 6. Correlation coefficients between the mean opinion 

scores in Figure 6 (a) and SNR metrics in Figure 6 (d) for 

uniform target image set 

 
Metric Pearson’s Kendall’s Spearman’s 

raw SNR 0.9784 1 1 

CNR 0.9991 1 1 

LSBR 0.7847 0.6 0.7 

pwSNR 0.9994 1 1 

 

Table 7. Correlation coefficients between the mean opinion 

scores in Figure 6 (b) and SNR metrics in Figure 6 (e) for 

four-bar image set 

 
Metric Pearson’s Kendall’s Spearman’s 

raw SNR 0.9893 1 1 

CNR 0.5910 0.4 0.4 

LSBR 0.9091 1 1 

pwSNR 0.9997 1 1 

 

Table 8. Correlation coefficients between the mean opinion 

scores in Figure 6 (c) and SNR metrics in Figure 6 (f) for 

real-world IR image set 

 
Metric Pearson’s Kendall’s Spearman’s 

raw SNR 0.8216 0.8 0.9 

CNR 0.6719 0.4 0.4 

LSBR 0.5674 0.4 0.6 

pwSNR 0.8754 1 1 

 

Table 9. Correlation coefficients between the mean opinion 

scores in Figure 7 (a) and SNR metrics in Figure 7 (d) of 

uniform target image set 

 
Metric Pearson’s Kendall’s Spearman’s 

raw SNR 0.9794 0.9129 0.9806 

CNR 0.9815 0.9129 0.9806 

LSBR 0.9339 0.9129 0.9806 

pwSNR 0.9823 0.9129 0.9806 
 

Table 10. Correlation coefficients between the mean opinion 

scores in Figure 7 (b) and SNR metrics in Figure 7 (e) of 

four-bar image set 

 
Metric Pearson’s Kendall’s Spearman’s 

raw SNR 0.9861 0.8165 0.9549 

CNR 0.4903 0.2381 0.3409 

LSBR 0.8974 0.8573 0.9661 

pwSNR 0.9781 0.8505 0.9649 

 

Table 11. Correlation coefficients between the mean opinion 

scores in Figure 7 (c) and SNR metrics in Figure 7 (f) of real-

world IR image set 

 
Metric Pearson’s Kendall’s Spearman’s 

raw SNR 0.6890 0.4992 0.6723 

CNR 0.7927 0.6600 0.7985 

LSBR 0.1110 0.1374 0.1878 

pwSNR 0.8428 0.8677 0.9694 

 

In Tables 9, 10 and 11, correlation coefficients calculated 

between the mean opinion scores at the left column and SNR 

metrics at the corresponding right column of Figure 7 are 

given. In these tables, correlation coefficients show that 

pwSNR is the most consistent metric with the subjective 

evaluations for the three sets of 25 images each as well. The 

other metrics cannot accurately quantify the target 

detectability for all cases, especially for nonuniform targets 

and real-world images. 

In the next subsection, we extend the experiments using 120 

real-world IR images to generalize the consistency of the 

proposed metric with the subjective evaluations. 

 

4.4 Experiments for extended real-world image dataset 

 

We performed an extensive experiment for 120 real-world 

IR images from AMCOM dataset to examine the reliability 

and validity of the proposed metric. For the dataset, subjects 

are asked to grade distinguishability of the targets in IR images 

within sets consist of five images each. The scoring strategy is 

the same as in the previous experiments, and is from 1 to 5. 

After computing the mean opinion scores of the subjective 

results and the mean of each SNR metric, we calculated 

correlation coefficients shown in Table 12. 

 

Table 12. Correlation coefficients for 120 real-word IR 

images from AMCOM dataset 

 
Metric Pearson’s Kendall’s Spearman’s 

raw SNR 0.6743 0.5277 0.6577 

CNR 0.8437 0.7703 0.8540 

LSBR 0.7367 0.6860 0.7766 

pwSNR 0.8500 0.7869 0.8665 

 

As seen in Table 12, correlation coefficients between the 

proposed metric pwSNR and the subjective results are the 

highest. This shows that, as in the other experiments, the most 

consistent metric with the human visual system is pwSNR. 

As a result, experimental studies have shown that the 

proposed metric, pwSNR, is superior to other metrics. In 

summary, in the first part of the experimental studies, it was 

shown with specific examples under which conditions the 

existing metrics have disadvantages. In the subsequent 

experiment, the consistency of the metrics with human 

perception was tested with three data sets, two synthetic and 

one real-world, consisting of five images each with five 

different levels of detectability. In these experiments, the 

proposed method gave the most consistent results with the 

mean opinion scores, as shown in the tables and graphs. In the 

extended experiment, the results of the metrics for three sets 

of 25 images each with five detectability levels were compared 

with the mean opinion scores, and it was again graphically and 

quantitatively shown that the proposed metric gave closest 

results to human perception. In addition, in the next two 

experiments, the correlation coefficients between the metrics 

and the mean opinion scores were calculated, and the best 

results were obtained for the proposed metric. Finally, an 

experiment was performed for a large real-world data set and 

the correlation coefficients between mean opinion scores and 

SNR metrics was calculated and it was seen that the highest 

values were obtained for pwSNR. 

 

 

5. CONCLUSIONS 

 

In this paper, a new Signal-to-Noise Ratio metric, pwSNR, 

which is consistent with the human visual system, is proposed 

to quantify target distinguishability from the background in IR 

images. Various well-known real-world IR image datasets as 

well as synthetic image sets have been used in the experiments 

to evaluate the consistency of the SNR metrics with the mean 

opinion scores of the subjective evaluations by means of 
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correlation coefficients. Disadvantages of the existing SNR 

metrics used to quantify target distinguishability in IR images 

have also been shown. Extensive experiments using different 

datasets show that the proposed metric is more consistent with 

the human visual system than the other metrics. Moreover, 

while the other metrics cannot accurately quantify the target 

distinguishability for certain types of targets and background 

conditions, the proposed metric is always robust and give 

consistent results with subjective evaluations. 
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